Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = cholinergic circuit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6730 KiB  
Article
Accelerated Electron Ionization-Induced Changes in the Myenteric Plexus of the Rat Stomach
by Raina Ardasheva, Veselin Popov, Viktor Yotov, Natalia Prissadova, Mina Pencheva, Iva Slavova, Valentin Turiyski and Athanas Krastev
Int. J. Mol. Sci. 2024, 25(12), 6807; https://doi.org/10.3390/ijms25126807 - 20 Jun 2024
Cited by 2 | Viewed by 1233
Abstract
The influence of accelerated electrons on neuronal structures is scarcely explored compared to gamma and X-rays. This study aims to investigate the effects of accelerated electron radiation on some pivotal neurotransmitter circuits (cholinergic and serotonergic) of rats’ myenteric plexus. Male Wistar rats were [...] Read more.
The influence of accelerated electrons on neuronal structures is scarcely explored compared to gamma and X-rays. This study aims to investigate the effects of accelerated electron radiation on some pivotal neurotransmitter circuits (cholinergic and serotonergic) of rats’ myenteric plexus. Male Wistar rats were irradiated with an electron beam (9 MeV, 5 Gy) generated by a multimodality linear accelerator. The contractile activity of isolated smooth muscle samples from the gastric corpus was measured. Furthermore, an electrical stimulation (200 μs, 20 Hz, 50 s, 60 V) was performed on the samples and an assessment of the cholinergic and serotonergic circuits was made. Five days after irradiation, the recorded mechanical responses were biphasic—contraction/relaxation in controls and contraction/contraction in irradiated samples. The nature of the contractile phase of control samples was cholinergic with serotonin involvement. The relaxation phase involved ACh-induced nitric oxide release from gastric neurons. There was a significant increase in serotonergic involvement during the first and second contractile phases of the irradiated samples, along with a diminished role of acetylcholine in the first phase. This study demonstrates an increased involvement of serotonergic neurotransmitter circuits in the gastric myenteric plexus caused by radiation with accelerated electrons. Full article
(This article belongs to the Special Issue Interactions between the Nervous System and Gastrointestinal Motility)
Show Figures

Figure 1

33 pages, 11637 KiB  
Article
Thyroid Hormone Transporters MCT8 and OATP1C1 Are Expressed in Projection Neurons and Interneurons of Basal Ganglia and Motor Thalamus in the Adult Human and Macaque Brains
by Ting Wang, Yu Wang, Ana Montero-Pedrazuela, Lucía Prensa, Ana Guadaño-Ferraz and Estrella Rausell
Int. J. Mol. Sci. 2023, 24(11), 9643; https://doi.org/10.3390/ijms24119643 - 1 Jun 2023
Cited by 5 | Viewed by 4337
Abstract
Monocarboxylate transporter 8 (MCT8) and organic anion-transporting polypeptide 1C1 (OATP1C1) are thyroid hormone (TH) transmembrane transporters relevant for the availability of TH in neural cells, crucial for their proper development and function. Mutations in MCT8 or OATP1C1 result in severe disorders with dramatic [...] Read more.
Monocarboxylate transporter 8 (MCT8) and organic anion-transporting polypeptide 1C1 (OATP1C1) are thyroid hormone (TH) transmembrane transporters relevant for the availability of TH in neural cells, crucial for their proper development and function. Mutations in MCT8 or OATP1C1 result in severe disorders with dramatic movement disability related to alterations in basal ganglia motor circuits. Mapping the expression of MCT8/OATP1C1 in those circuits is necessary to explain their involvement in motor control. We studied the distribution of both transporters in the neuronal subpopulations that configure the direct and indirect basal ganglia motor circuits using immunohistochemistry and double/multiple labeling immunofluorescence for TH transporters and neuronal biomarkers. We found their expression in the medium-sized spiny neurons of the striatum (the receptor neurons of the corticostriatal pathway) and in various types of its local microcircuitry interneurons, including the cholinergic. We also demonstrate the presence of both transporters in projection neurons of intrinsic and output nuclei of the basal ganglia, motor thalamus and nucleus basalis of Meynert, suggesting an important role of MCT8/OATP1C1 for modulating the motor system. Our findings suggest that a lack of function of these transporters in the basal ganglia circuits would significantly impact motor system modulation, leading to clinically severe movement impairment. Full article
(This article belongs to the Special Issue Local Control of Thyroid Hormone Action 2.0)
Show Figures

Figure 1

17 pages, 2417 KiB  
Review
Cholinergic Modulation of Locomotor Circuits in Vertebrates
by Didier Le Ray, Sandrine S. Bertrand and Réjean Dubuc
Int. J. Mol. Sci. 2022, 23(18), 10738; https://doi.org/10.3390/ijms231810738 - 14 Sep 2022
Cited by 16 | Viewed by 3594
Abstract
Locomotion is a basic motor act essential for survival. Amongst other things, it allows animals to move in their environment to seek food, escape predators, or seek mates for reproduction. The neural mechanisms involved in the control of locomotion have been examined in [...] Read more.
Locomotion is a basic motor act essential for survival. Amongst other things, it allows animals to move in their environment to seek food, escape predators, or seek mates for reproduction. The neural mechanisms involved in the control of locomotion have been examined in many vertebrate species and a clearer picture is progressively emerging. The basic muscle synergies responsible for propulsion are generated by neural networks located in the spinal cord. In turn, descending supraspinal inputs are responsible for starting, maintaining, and stopping locomotion as well as for steering and controlling speed. Several neurotransmitter systems play a crucial role in modulating the neural activity during locomotion. For instance, cholinergic inputs act both at the spinal and supraspinal levels and the underlying mechanisms are the focus of the present review. Much information gained on supraspinal cholinergic modulation of locomotion was obtained from the lamprey model. Nicotinic cholinergic inputs increase the level of excitation of brainstem descending command neurons, the reticulospinal neurons (RSNs), whereas muscarinic inputs activate a select group of hindbrain neurons that project to the RSNs to boost their level of excitation. Muscarinic inputs also reduce the transmission of sensory inputs in the brainstem, a phenomenon that could help in sustaining goal directed locomotion. In the spinal cord, intrinsic cholinergic inputs strongly modulate the activity of interneurons and motoneurons to control the locomotor output. Altogether, the present review underlines the importance of the cholinergic inputs in the modulation of locomotor activity in vertebrates. Full article
(This article belongs to the Special Issue Neuronal Control of Locomotion)
Show Figures

Figure 1

18 pages, 3809 KiB  
Article
Basal Forebrain-Dorsal Hippocampus Cholinergic Circuit Regulates Olfactory Associative Learning
by Yingwei Zheng, Sijue Tao, Yue Liu, Jingjing Liu, Liping Sun, Yawen Zheng, Yu Tian, Peng Su, Xutao Zhu and Fuqiang Xu
Int. J. Mol. Sci. 2022, 23(15), 8472; https://doi.org/10.3390/ijms23158472 - 30 Jul 2022
Cited by 9 | Viewed by 3286
Abstract
The basal forebrain, an anatomically heterogeneous brain area containing multiple distinct subregions and neuronal populations, innervates many brain regions including the hippocampus (HIP), a key brain region responsible for learning and memory. Although recent studies have revealed that basal forebrain cholinergic neurons (BFCNs) [...] Read more.
The basal forebrain, an anatomically heterogeneous brain area containing multiple distinct subregions and neuronal populations, innervates many brain regions including the hippocampus (HIP), a key brain region responsible for learning and memory. Although recent studies have revealed that basal forebrain cholinergic neurons (BFCNs) are involved in olfactory associative learning and memory, the potential neural circuit is not clearly dissected yet. Here, using an anterograde monosynaptic tracing strategy, we revealed that BFCNs in different subregions projected to many brain areas, but with significant differentiations. Our rabies virus retrograde tracing results found that the dorsal HIP (dHIP) received heavy projections from the cholinergic neurons in the nucleus of the horizontal limb of the diagonal band (HDB), magnocellular preoptic nucleus (MCPO), and substantia innominate (SI) brain regions, which are known as the HMS complex (HMSc). Functionally, fiber photometry showed that cholinergic neurons in the HMSc were significantly activated in odor-cued go/no-go discrimination tasks. Moreover, specific depletion of the HMSc cholinergic neurons innervating the dHIP significantly decreased the performance accuracies in odor-cued go/no-go discrimination tasks. Taken together, these studies provided detailed information about the projections of different BFCN subpopulations and revealed that the HMSc-dHIP cholinergic circuit plays a crucial role in regulating olfactory associative learning. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

21 pages, 438 KiB  
Review
The Neuromodulatory Role of the Noradrenergic and Cholinergic Systems and Their Interplay in Cognitive Functions: A Focused Review
by Cody Slater, Yuxiang Liu, Evan Weiss, Kunpeng Yu and Qi Wang
Brain Sci. 2022, 12(7), 890; https://doi.org/10.3390/brainsci12070890 - 7 Jul 2022
Cited by 23 | Viewed by 7940
Abstract
The noradrenergic and cholinergic modulation of functionally distinct regions of the brain has become one of the primary organizational principles behind understanding the contribution of each system to the diversity of neural computation in the central nervous system. Decades of work has shown [...] Read more.
The noradrenergic and cholinergic modulation of functionally distinct regions of the brain has become one of the primary organizational principles behind understanding the contribution of each system to the diversity of neural computation in the central nervous system. Decades of work has shown that a diverse family of receptors, stratified across different brain regions, and circuit-specific afferent and efferent projections play a critical role in helping such widespread neuromodulatory systems obtain substantial heterogeneity in neural information processing. This review briefly discusses the anatomical layout of both the noradrenergic and cholinergic systems, as well as the types and distributions of relevant receptors for each system. Previous work characterizing the direct and indirect interaction between these two systems is discussed, especially in the context of higher order cognitive functions such as attention, learning, and the decision-making process. Though a substantial amount of work has been done to characterize the role of each neuromodulator, a cohesive understanding of the region-specific cooperation of these two systems is not yet fully realized. For the field to progress, new experiments will need to be conducted that capitalize on the modular subdivisions of the brain and systematically explore the role of norepinephrine and acetylcholine in each of these subunits and across the full range of receptors expressed in different cell types in these regions. Full article
12 pages, 464 KiB  
Review
Cholinergic Regulation of Hippocampal Theta Rhythm
by Zhenglin Gu and Jerrel L. Yakel
Biomedicines 2022, 10(4), 745; https://doi.org/10.3390/biomedicines10040745 - 23 Mar 2022
Cited by 21 | Viewed by 3502
Abstract
Cholinergic regulation of hippocampal theta rhythm has been proposed as one of the central mechanisms underlying hippocampal functions including spatial memory encoding. However, cholinergic transmission has been traditionally associated with atropine-sensitive type II hippocampal theta oscillations that occur during alert immobility or in [...] Read more.
Cholinergic regulation of hippocampal theta rhythm has been proposed as one of the central mechanisms underlying hippocampal functions including spatial memory encoding. However, cholinergic transmission has been traditionally associated with atropine-sensitive type II hippocampal theta oscillations that occur during alert immobility or in urethane-anesthetized animals. The role of cholinergic regulation of type I theta oscillations in behaving animals is much less clear. Recent studies strongly suggest that both cholinergic muscarinic and nicotinic receptors do actively regulate type I hippocampal theta oscillations and thus provide the cholinergic mechanism for theta-associated hippocampal learning. Septal cholinergic activation can regulate hippocampal circuit and theta expression either through direct septohippocampal cholinergic projections, or through septal glutamatergic and GABAergic neurons, that can precisely entrain hippocampal theta rhythmicity. Full article
(This article belongs to the Special Issue Acetylcholine and Acetylcholine Receptors)
Show Figures

Figure 1

19 pages, 4842 KiB  
Review
Parkinson’s Disease: Personalized Pathway of Care for Device-Aided Therapies (DAT) and the Role of Continuous Objective Monitoring (COM) Using Wearable Sensors
by Vinod Metta, Lucia Batzu, Valentina Leta, Dhaval Trivedi, Aleksandra Powdleska, Kandadai Rukmini Mridula, Prashanth Kukle, Vinay Goyal, Rupam Borgohain, Guy Chung-Faye and K. Ray Chaudhuri
J. Pers. Med. 2021, 11(7), 680; https://doi.org/10.3390/jpm11070680 - 19 Jul 2021
Cited by 12 | Viewed by 4591
Abstract
Parkinson’s disease (PD) is a chronic, progressive neurological disorder and the second most common neurodegenerative condition. Advanced PD is complicated by erratic gastric absorption, delayed gastric emptying in turn causing medication overload, and hence the emergence of motor and non-motor fluctuations and dyskinesia, [...] Read more.
Parkinson’s disease (PD) is a chronic, progressive neurological disorder and the second most common neurodegenerative condition. Advanced PD is complicated by erratic gastric absorption, delayed gastric emptying in turn causing medication overload, and hence the emergence of motor and non-motor fluctuations and dyskinesia, which is initially predictable and then becomes unpredictable. As the patient progresses to the advanced stage, advanced Parkinson’s disease (APD) is characterized by refractory motor and non motor fluctuations, unpredictable OFF periods, and troublesome dyskinesias. The management of APD is a complex affair. There is growing recognition that GI dysfunction is common in PD, with virtually the entire GI system (the upper and lower GI tracts) causing problems from dribbling to defecation. The management of PD should focus on personalized care addressing both motor and non-motor symptoms, ideally including not only dopamine replacement but also associated non-dopaminergic circuits, particularly focusing on noradrenergic, serotonergic, and cholinergic therapies bypassing the gastrointestinal tract (GIT) by infusion or device-aided therapies (DAT), including levodopa–carbidopa intestinal gel infusion, apomorphine subcutaneous infusion, and deep brain stimulation, which are available in many countries for the management of the advanced stage of Parkinson’s disease (APD). The PKG (KinetiGrap) can be used as a continuous objective monitoring (COM) aid, as a screening tool to help to identify advanced PD (APD) patients suitable for DAT, and can thus improve clinical outcomes. Full article
Show Figures

Figure 1

27 pages, 845 KiB  
Review
Neuropsychiatric and Cognitive Deficits in Parkinson’s Disease and Their Modeling in Rodents
by Mélina Decourt, Haritz Jiménez-Urbieta, Marianne Benoit-Marand and Pierre-Olivier Fernagut
Biomedicines 2021, 9(6), 684; https://doi.org/10.3390/biomedicines9060684 - 17 Jun 2021
Cited by 23 | Viewed by 5549
Abstract
Parkinson’s disease (PD) is associated with a large burden of non-motor symptoms including olfactory and autonomic dysfunction, as well as neuropsychiatric (depression, anxiety, apathy) and cognitive disorders (executive dysfunctions, memory and learning impairments). Some of these non-motor symptoms may precede the onset of [...] Read more.
Parkinson’s disease (PD) is associated with a large burden of non-motor symptoms including olfactory and autonomic dysfunction, as well as neuropsychiatric (depression, anxiety, apathy) and cognitive disorders (executive dysfunctions, memory and learning impairments). Some of these non-motor symptoms may precede the onset of motor symptoms by several years, and they significantly worsen during the course of the disease. The lack of systematic improvement of these non-motor features by dopamine replacement therapy underlines their multifactorial origin, with an involvement of monoaminergic and cholinergic systems, as well as alpha-synuclein pathology in frontal and limbic cortical circuits. Here we describe mood and neuropsychiatric disorders in PD and review their occurrence in rodent models of PD. Altogether, toxin-based rodent models of PD indicate a significant but non-exclusive contribution of mesencephalic dopaminergic loss in anxiety, apathy, and depressive-like behaviors, as well as in learning and memory deficits. Gene-based models display significant deficits in learning and memory, as well as executive functions, highlighting the contribution of alpha-synuclein pathology to these non-motor deficits. Collectively, neuropsychiatric and cognitive deficits are recapitulated to some extent in rodent models, providing partial but nevertheless useful options to understand the pathophysiology of non-motor symptoms and develop therapeutic options for these debilitating symptoms of PD. Full article
(This article belongs to the Special Issue Animal Models of Parkinson's Disease)
Show Figures

Figure 1

30 pages, 1452 KiB  
Review
Recurrent Implication of Striatal Cholinergic Interneurons in a Range of Neurodevelopmental, Neurodegenerative, and Neuropsychiatric Disorders
by Lauren A. Poppi, Khue Tu Ho-Nguyen, Anna Shi, Cynthia T. Daut and Max A. Tischfield
Cells 2021, 10(4), 907; https://doi.org/10.3390/cells10040907 - 15 Apr 2021
Cited by 28 | Viewed by 7495
Abstract
Cholinergic interneurons are “gatekeepers” for striatal circuitry and play pivotal roles in attention, goal-directed actions, habit formation, and behavioral flexibility. Accordingly, perturbations to striatal cholinergic interneurons have been associated with many neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. The role of acetylcholine in many of [...] Read more.
Cholinergic interneurons are “gatekeepers” for striatal circuitry and play pivotal roles in attention, goal-directed actions, habit formation, and behavioral flexibility. Accordingly, perturbations to striatal cholinergic interneurons have been associated with many neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. The role of acetylcholine in many of these disorders is well known, but the use of drugs targeting cholinergic systems fell out of favor due to adverse side effects and the introduction of other broadly acting compounds. However, in response to recent findings, re-examining the mechanisms of cholinergic interneuron dysfunction may reveal key insights into underlying pathogeneses. Here, we provide an update on striatal cholinergic interneuron function, connectivity, and their putative involvement in several disorders. In doing so, we aim to spotlight recurring physiological themes, circuits, and mechanisms that can be investigated in future studies using new tools and approaches. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Neocortical Circuit Formation)
Show Figures

Figure 1

13 pages, 1502 KiB  
Article
Influence of Brain-Derived Neurotrophic Factor Genotype on Short-Latency Afferent Inhibition and Motor Cortex Metabolites
by Ryoki Sasaki, Naofumi Otsuru, Shota Miyaguchi, Sho Kojima, Hiraku Watanabe, Ken Ohno, Noriko Sakurai, Naoki Kodama, Daisuke Sato and Hideaki Onishi
Brain Sci. 2021, 11(3), 395; https://doi.org/10.3390/brainsci11030395 - 20 Mar 2021
Cited by 10 | Viewed by 3147
Abstract
The Met allele of the brain-derived neurotrophic factor (BDNF) gene confers reduced cortical BDNF expression and associated neurobehavioral changes. BDNF signaling influences the survival, development, and synaptic function of cortical networks. Here, we compared gamma-aminobutyric acid (GABA)ergic network activity in the human primary [...] Read more.
The Met allele of the brain-derived neurotrophic factor (BDNF) gene confers reduced cortical BDNF expression and associated neurobehavioral changes. BDNF signaling influences the survival, development, and synaptic function of cortical networks. Here, we compared gamma-aminobutyric acid (GABA)ergic network activity in the human primary motor cortex (M1) between the Met (Val/Met and Met/Met) and non-Met (Val/Val) genotype groups. Short- and long-interval intracortical inhibition, short-latency afferent inhibition (SAI), and long-latency afferent inhibition were measured using transcranial magnetic stimulation (TMS) as indices of GABAergic activity. Furthermore, the considerable inter-individual variability in inhibitory network activity typically measured by TMS may be affected not only by GABA but also by other pathways, including glutamatergic and cholinergic activities; therefore, we used 3-T magnetic resonance spectroscopy (MRS) to measure the dynamics of glutamate plus glutamine (Glx) and choline concentrations in the left M1, left somatosensory cortex, and right cerebellum. All inhibitory TMS conditions produced significantly smaller motor-evoked potentials than single-pulses. SAI was significantly stronger in the Met group than in the Val/Val group. Only the M1 Glx concentration was significantly lower in the Met group, while the BDNF genotype did not affect choline concentration in any region. Further, a positive correlation was observed between SAI and Glx concentrations only in M1. Our findings provide evidence that the BDNF genotype regulates both the inhibitory and excitatory circuits in human M1. In addition, lower Glx concentration in the M1 of Met carriers may alter specific inhibitory network on M1, thereby influencing the cortical signal processing required for neurobehavioral functions. Full article
Show Figures

Figure 1

16 pages, 2111 KiB  
Article
Spontaneous Depolarization-Induced Action Potentials of ON-Starburst Amacrine Cells during Cholinergic and Glutamatergic Retinal Waves
by Rong-Shan Yan, Xiong-Li Yang, Yong-Mei Zhong and Dao-Qi Zhang
Cells 2020, 9(12), 2574; https://doi.org/10.3390/cells9122574 - 1 Dec 2020
Cited by 4 | Viewed by 2925
Abstract
Correlated spontaneous activity in the developing retina (termed “retinal waves”) plays an instructive role in refining neural circuits of the visual system. Depolarizing (ON) and hyperpolarizing (OFF) starburst amacrine cells (SACs) initiate and propagate cholinergic retinal waves. Where cholinergic retinal waves stop, SACs [...] Read more.
Correlated spontaneous activity in the developing retina (termed “retinal waves”) plays an instructive role in refining neural circuits of the visual system. Depolarizing (ON) and hyperpolarizing (OFF) starburst amacrine cells (SACs) initiate and propagate cholinergic retinal waves. Where cholinergic retinal waves stop, SACs are thought to be driven by glutamatergic retinal waves initiated by ON-bipolar cells. However, the properties and function of cholinergic and glutamatergic waves in ON- and OFF-SACs still remain poorly understood. In the present work, we performed whole-cell patch-clamp recordings and Ca2+ imaging from genetically labeled ON- and OFF-SACs in mouse flat-mount retinas. We found that both SAC subtypes exhibited spontaneous rhythmic depolarization during cholinergic and glutamatergic waves. Interestingly, ON-SACs had wave-induced action potentials (APs) in an age-dependent manner, but OFF-SACs did not. Simultaneous Ca2+ imaging and patch-clamp recordings demonstrated that, during a cholinergic wave, APs of an ON-SAC appeared to promote the dendritic release of acetylcholine onto neighboring ON- and OFF-SACs, which enhances their Ca2+ transients. These results advance the understanding of the cellular mechanisms underlying correlated spontaneous activity in the developing retina. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

12 pages, 2416 KiB  
Article
Disruption of Cholinergic Circuits as an Area for Targeted Drug Treatment of Alzheimer’s Disease: In Vivo Assessment of Short-Term Plasticity in Rat Brain
by Vergine Chavushyan, Ani Soghomonyan, Gohar Karapetyan, Karen Simonyan and Konstantin Yenkoyan
Pharmaceuticals 2020, 13(10), 297; https://doi.org/10.3390/ph13100297 - 9 Oct 2020
Cited by 9 | Viewed by 4386
Abstract
The search for new therapeutics for the treatment of Alzheimer’s disease (AD) is still in progress. Aberrant pathways of synaptic transmission in basal forebrain cholinergic neural circuits are thought to be associated with the progression of AD. However, the effect of amyloid-beta (Aβ) [...] Read more.
The search for new therapeutics for the treatment of Alzheimer’s disease (AD) is still in progress. Aberrant pathways of synaptic transmission in basal forebrain cholinergic neural circuits are thought to be associated with the progression of AD. However, the effect of amyloid-beta (Aβ) on short-term plasticity (STP) of cholinergic circuits in the nucleus basalis magnocellularis (NBM) is largely unknown. STP assessment in rat brain cholinergic circuitry may indicate a new target for AD cholinergic therapeutics. Thus, we aimed to study in vivo electrophysiological patterns of synaptic activity in NBM-hippocampus and NBM-basolateral amygdala circuits associated with AD-like neurodegeneration. The extracellular single-unit recordings of responses from the hippocampal and basolateral amygdala neurons to high-frequency stimulation (HFS) of the NBM were performed after intracerebroventricular injection of Aβ 25–35. We found that after Aβ 25–35 exposure the number of hippocampal neurons exhibiting inhibitory responses to HFS of NBM is decreased. The reverse tendency was seen in the basolateral amygdala inhibitory neural populations, whereas the number of amygdala neurons with excitatory responses decreased. The low intensity of inhibitory and excitatory responses during HFS and post-stimulus period is probably due to the anomalous basal synaptic transmission and excitability of hippocampal and amygdala neurons. These functional changes were accompanied by structural alteration of hippocampal, amygdala, and NBM neurons. We have thus demonstrated that Aβ 25–35 induces STP disruption in NBM-hippocampus and NBM-basolateral amygdala circuits as manifested by unbalanced excitatory/inhibitory responses and their frequency. The results of this study may contribute to a better understanding of synaptic integrity. We believe that advancing our understanding of in vivo mechanisms of synaptic plasticity disruption in specific neural circuits could lead to effective drug searches for AD treatment. Full article
(This article belongs to the Special Issue New Drugs and Biologics For Treatment of Central Nervous Dysfunction)
Show Figures

Graphical abstract

11 pages, 955 KiB  
Review
Neuromodulation of Synaptic Transmission in the Main Olfactory Bulb
by John D. Harvey and Thomas Heinbockel
Int. J. Environ. Res. Public Health 2018, 15(10), 2194; https://doi.org/10.3390/ijerph15102194 - 8 Oct 2018
Cited by 33 | Viewed by 8058
Abstract
A major step in our understanding of brain function is to determine how neural circuits are altered in their function by signaling molecules or neuromodulators. Neuromodulation is the neurochemical process that modifies the computations performed by a neuron or network based on changing [...] Read more.
A major step in our understanding of brain function is to determine how neural circuits are altered in their function by signaling molecules or neuromodulators. Neuromodulation is the neurochemical process that modifies the computations performed by a neuron or network based on changing the functional needs or behavioral state of the subject. These modulations have the effect of altering the responsivity to synaptic inputs. Early sensory processing areas, such as the main olfactory bulb, provide an accessible window for investigating how neuromodulation regulates the functional states of neural networks and influences how we process sensory information. Olfaction is an attractive model system in this regard because of its relative simplicity and because it links primary olfactory sensory neurons to higher olfactory and associational networks. Likewise, centrifugal fibers from higher order brain centers target neurons in the main olfactory bulb to regulate synaptic processing. The neuromodulatory systems that provide regulatory inputs and play important roles in olfactory sensory processing and behaviors include the endocannabinoid system, the dopaminergic system, the cholinergic system, the noradrenergic system and the serotonergic system. Here, we present a brief survey of neuromodulation of olfactory signals in the main olfactory bulb with an emphasis on the endocannabinoid system. Full article
Show Figures

Figure 1

Back to TopTop