Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = chlorite geothermometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6537 KiB  
Article
The Peak Metamorphic PT Conditions of the Sanbagawa Schists in the Shibukawa Area, Central Japan: Application of Raman Geothermobarometry
by Yuki Tomioka, Yui Kouketsu and Katsuyoshi Michibayashi
Minerals 2025, 15(7), 724; https://doi.org/10.3390/min15070724 - 11 Jul 2025
Viewed by 343
Abstract
The quantitative pressure (P)–temperature (T) conditions of low-grade metamorphic rocks, such as pumpellyite–actinolite and greenschist facies, are largely unknown mainly owing to the difficulty in applying thermodynamic methods despite their importance in understanding the protolith and metamorphism within subducting [...] Read more.
The quantitative pressure (P)–temperature (T) conditions of low-grade metamorphic rocks, such as pumpellyite–actinolite and greenschist facies, are largely unknown mainly owing to the difficulty in applying thermodynamic methods despite their importance in understanding the protolith and metamorphism within subducting oceanic crusts. In this study, Raman spectroscopy was applied to constrain the peak metamorphic conditions independent of thermodynamic methods for the lowest grade part (chlorite zone) of the Sanbagawa schists in the Shibukawa area, central Japan, where research on metamorphic conditions is limited. The metamorphic peak temperature of the pelitic schists estimated by Raman carbonaceous material geothermometry was 307 ± 27 °C to 395 ± 16 °C, which increased towards the northern fault (Median Tectonic Line). Raman geobarometry using the quartz-inclusions-in-spessartine system on a siliceous schist sample estimated a peak metamorphic pressure of 0.78–0.94 GPa at 360–390 °C. These results suggest that the rocks in the Shibukawa area were subducted to a depth equivalent to that of the garnet zone in central Shikoku and were then exhumed without experiencing further heating. The combination of Raman carbonaceous material geothermometry and Raman geobarometry (Raman geothermobarometry) can be effectively applied to estimate the metamorphic conditions of low-grade metamorphic rocks independent of thermodynamic methods. Full article
Show Figures

Figure 1

36 pages, 12535 KiB  
Article
Mineral Chemistry of Chlorites and Feldspars and Their Genetic Linkage to Uranium Mineralization: An Example from Polymetallic Uranium Deposit in Rohil, Rajasthan, Western India
by Ajoy K. Padhi, Mrinal K. Mukherjee, Balbir S. Bisht, Brajesh K. Tripathi, Dheeraj Pande and Saravanan Baskaran
Minerals 2025, 15(1), 41; https://doi.org/10.3390/min15010041 - 31 Dec 2024
Viewed by 1246
Abstract
A genetic linkage between U–Cu–Mo mineralization with feldspar and chlorite minerals and the discrimination of different mineralization events in the hydrothermal and metasomatic system in the Rohil polymetallic uranium deposit in India is presented on the basis of textural relationships and mineral chemistry. [...] Read more.
A genetic linkage between U–Cu–Mo mineralization with feldspar and chlorite minerals and the discrimination of different mineralization events in the hydrothermal and metasomatic system in the Rohil polymetallic uranium deposit in India is presented on the basis of textural relationships and mineral chemistry. Field and EPMA studies reveal that the chlorite formed in two possible modes, viz. (a) replacement of ferromagnesian minerals of the host rock and (b) precipitated directly from hydrothermal solutions. Chlorites follow a distinctive composition from Al-saturated to Al-undersaturated and, in most cases, from Mg- to Fe-rich species as alteration progressed. The chlorites show a wide range of Fe content (1.86–5.06 apfu), high Mg content (3.96–6.28 apfu), and Si contents (5.99–6.90 apfu) with an Fe/(Fe + Mg) ratio (0.23–0.56), leading to their classification as Diabantite/Pycnochlorite. Empirical and thermodynamic geothermometers have been used to determine the temperature of chlorite formation based on chemical composition, which revealed a large variation in temperatures from 130 °C to 260 °C. The feldspar geothermometry reveals a temperature range of 158 to 236 °C, which is in congruence with that of chlorites. Geothermometry by two different methods provides the range of temperature that prevailed in the study area during and succeeding the crystallization of uraninite and associated ore minerals. Mineral chemistry vis-à-vis geothermometry of feldspars and chlorite can provide impetus to geochemical evolution in the North Delhi Fold Belt (NDFB) and similar geological setups in metasomatite-type uranium deposits. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

18 pages, 7145 KiB  
Review
Evolution of Auriferous Fluids in the Kraaipan-Amalia Greenstone Belts: Evidence from Mineralogical and Isotopic Constraints
by Kofi Adomako-Ansah, Napoleon Q. Hammond, Yuichi Morishita and Daizo Ishiyama
Minerals 2024, 14(11), 1171; https://doi.org/10.3390/min14111171 - 18 Nov 2024
Viewed by 1186
Abstract
The Kraaipan and Amalia greenstone belts in South Africa occur in the western part of the Kaapvaal Craton. The two belts stretch discontinuously in an approximately north–south orientation over a distance of about 250 km from southern Botswana in the north to the [...] Read more.
The Kraaipan and Amalia greenstone belts in South Africa occur in the western part of the Kaapvaal Craton. The two belts stretch discontinuously in an approximately north–south orientation over a distance of about 250 km from southern Botswana in the north to the Vaal River near Christiana in the south and are separated by a distance of about 90 km. Gold mineralization is hosted in banded iron formation at both the Kalahari Goldridge deposit (Kalgold) in the Kraaipan greenstone belt in the north and the Amalia deposit in the Amalia greenstone belt in the south, with the mineralization associated with quartz–carbonate veins. The footwalls of these deposits are generally composed of mafic volcanic schist and the hanging walls consisting of graywackes, schist and shale units. The Kalgold and Amalia gold deposits show some variation in the redox condition of the mineralizing system and fluid chemistry. The ore mineral assemblage is characterized by magnetite–pyrrhotite–pyrite at Kalgold, which is indicative of reducing conditions, and a magnetite–hematite–pyrite assemblage at Amalia that suggests a relatively oxidizing environment. Average mineralizing temperatures determined from chlorite geothermometry were relatively higher at the Kalahari Goldridge deposit ranging from 350 to 400 °C compared to the slightly cooler range of 330 to 390 °C at Amalia. The composition of the fluids derived from fluid inclusions is indicative of low salinity H2O--CO2±CH4-rich fluids at Kalgold against relatively H2O-CO2-rich fluids at Amalia. Evidence from strontium–carbon–oxygen isotopic ratios from carbonates suggests that differences in redox conditions in the deposits could be attributed to different flow pathways by an evolving fluid from a common source (with minimum 87Sr/86Sr = 0.70354) to the sites of gold deposition, with a significant ore fluid interaction with a thick sequence of carbonaceous meta-pelitic rock units at the Kalahari Goldridge deposit that is absent in the Amalia deposit. Full article
(This article belongs to the Special Issue Geochemistry and Genesis of Hydrothermal Ore Deposits)
Show Figures

Figure 1

30 pages, 13193 KiB  
Article
Revisiting the Concealed Zn-Pb±(Ag,Ge) VMS-Style Ore Deposit, Molai, Southeastern Peloponnese, Greece
by Elias Kevrekidis, Stavros Savvas Triantafyllidis, Stylianos Fotios Tombros, Sotirios Kokkalas, Joan Papavasiliou, Konstantinos Kappis, Konstantinos Papageorgiou, Ioannis Koukouvelas, Michalis Fitros, Dimitrios Zouzias, Panagiotis Voudouris, Degao Zhai and Karen St Seymour
Minerals 2024, 14(9), 885; https://doi.org/10.3390/min14090885 - 30 Aug 2024
Viewed by 2428
Abstract
The concealed Molai Zn-Pb±(Ag,Ge) stratiform deposit in southeastern Peloponnese is hosted in Triassic intermediate tuffs, ignimbrites and subaerial andesitic flows. The host rocks display trace element signatures of a Supra-Subduction Zone (SSZ) setting. Three ore-forming stages are recognized, with stages I and II [...] Read more.
The concealed Molai Zn-Pb±(Ag,Ge) stratiform deposit in southeastern Peloponnese is hosted in Triassic intermediate tuffs, ignimbrites and subaerial andesitic flows. The host rocks display trace element signatures of a Supra-Subduction Zone (SSZ) setting. Three ore-forming stages are recognized, with stages I and II related to formation of the epigenetic, stratiform, massive-to-semi-massive ore and a late stage III associated with vein-type mineralization. The O and D isotope geochemistry of gangue chlorite and epidote reveal mixing with fresh meteoric water during the weaning stages of the hydrothermal activity of the late stage II due to uplifting of the hydrothermal system. Sphalerite is the major ore phase, with three different varieties formed during stages I (Sp-I) and II (Sp-II and Sp-III). All sphalerite varieties coexist, depicting gradual change in the chemistry of the ore-forming fluids. Molai ores are characterized by elevated Ag and Ge contents. Tetrahedrite is the major Ag carrier, while among the three sphalerite varieties, early Sp-I comprises the highest Ge contents. The Molai Zn-Pb±(Ag,Ge) deposit is characterized by intermediate features between bimodal felsic massive sulfides and subaerial epithermal systems based on the shallow formation depth, the presence of hydraulic breccias associated with phase separation, the ore formation along high-angle faults, the relatively low ore-forming temperatures below 250 °C obtained from geothermometry, and the absence of the typical structure of bimodal felsic type ores. Full article
(This article belongs to the Special Issue Mineralization and Geochemistry of VMS Deposits)
Show Figures

Figure 1

22 pages, 2938 KiB  
Review
Application of Minerals for the Characterization of Geothermal Reservoirs and Cap Rock in Intracontinental Extensional Basins and Volcanic Islands in the Context of Subduction
by Béatrice A. Ledésert
Minerals 2024, 14(3), 263; https://doi.org/10.3390/min14030263 - 29 Feb 2024
Cited by 3 | Viewed by 2519
Abstract
Whether from the near-surface or at great depths, geothermal energy aims to harness the heat of the Earth to produce energy. Herein, emphasis is put on geothermal reservoirs and their cap rock in crystalline rocks, in particular, the basements of sedimentary basins and [...] Read more.
Whether from the near-surface or at great depths, geothermal energy aims to harness the heat of the Earth to produce energy. Herein, emphasis is put on geothermal reservoirs and their cap rock in crystalline rocks, in particular, the basements of sedimentary basins and volcanic islands in the context of subduction. This study is based on a case study of three examples from around the world. The aim of this paper is to show how the study of newly formed minerals can help the exploration of geothermal reservoirs. The key parameters to define are the temperature (maximum temperature reached formerly), fluid pathways, and the duration of geothermal events. To define these parameters, numerous methods are used, including optical and electronic microscopy, X-ray diffraction, microthermometry on fluid inclusions, chlorite geothermometry, and geochemistry analysis, including that of isotopes. The key minerals that are studied herein are phyllosilicates and, in particular, clay minerals, quartz, and carbonates. They are formed because of hydrothermal alterations in fracture networks. These minerals can have temperatures of up to 300 °C (and they can cool down to 50 °C), and sometimes, they allow for one to estimate the cooling rate (e.g., 150 °C/200 ka). The duration of a hydrothermal event (e.g., at least 63 Ma or 650 ka, depending on the site) can also be established based on phyllosilicates. Full article
Show Figures

Figure 1

22 pages, 15546 KiB  
Article
Mineral Chemistry of Low-Temperature Phyllosilicates in Early Paleozoic Metaclastic Rocks, Eastern Tauride Belt, Türkiye
by Ömer Bozkaya and Hüseyin Yalçın
Minerals 2022, 12(9), 1088; https://doi.org/10.3390/min12091088 - 28 Aug 2022
Cited by 3 | Viewed by 1761
Abstract
The mineral chemistry of illite/mica and chlorites, together with the evaluation of textural data of low-temperature metaclastic rocks, plays an important role in determining their origin and metamorphic grade. This study aimed to investigate the chemical properties of phyllosilicates in early Paleozoic metaclastic [...] Read more.
The mineral chemistry of illite/mica and chlorites, together with the evaluation of textural data of low-temperature metaclastic rocks, plays an important role in determining their origin and metamorphic grade. This study aimed to investigate the chemical properties of phyllosilicates in early Paleozoic metaclastic rocks in the Eastern Tauride Belt, Türkiye. The textural (electron microscopy) and chemical (mineral chemistry analysis) analyses were performed on the samples representing different grades of metamorphism. The illites/micas and chlorites are observed as detrital (chlorite–mica stacks) and neoformation origin. Trioctahedral chlorites (chamosite) exhibit different chemistry for detrital and neoformed origin as well as the metamorphic grade. Tetrahedral Al and octahedral Fe + Mg increase, whereas octahedral Al decreases together with the increasing grade of metamorphism. The detrital chlorites have higher tetrahedral Al and Fe contents than their neoformed counterparts. Chlorite geothermometry data (detrital: 241–≥350 °C; neoformed: 201–268 °C) are compatible with the texture and illite Kübler index data. Illite/white-mica compositions display muscovite and Na-K mica. Tetrahedral Al and interlayer K + Na contents of illites/micas increase with metamorphic grade. Na-K mica and paragonite are observed as replacement-type developments within the detrital CMS. The obtained data indicate that phyllosilicate chemistry can be used effectively for determining the geological evolution of low-grade metamorphic sequences. Full article
(This article belongs to the Special Issue Advances in Low-Temperature Mineralogy and Geochemistry)
Show Figures

Figure 1

16 pages, 46518 KiB  
Article
Geochemical Characteristics of Chlorite in Xiangshan Uranium Ore Field, South China and Its Exploration Implication
by Yongjian Wang, Honghai Fan, Yaqing Pang and Wei Xiao
Minerals 2022, 12(6), 693; https://doi.org/10.3390/min12060693 - 30 May 2022
Cited by 8 | Viewed by 3664
Abstract
Chlorite is one of the most important hydrothermal minerals in many hydrothermal uranium deposits worldwide and is commonly closely associated with the uranium mineralization. Trace elements in chlorite have been extensively applied to fingerprinting the hydrothermal fluid evolution and indicating the concealed ore [...] Read more.
Chlorite is one of the most important hydrothermal minerals in many hydrothermal uranium deposits worldwide and is commonly closely associated with the uranium mineralization. Trace elements in chlorite have been extensively applied to fingerprinting the hydrothermal fluid evolution and indicating the concealed ore bodies in porphyry Cu (-Au) deposits and skarn-related Pb-Zn deposits. However, this approach was rarely attempted on hydrothermal uranium deposits to date. Xiangshan uranium ore field, located in the southeast part of Gan-Hang Metallogenic (or Volcanic) Belt (GHMB), is the largest volcanic-related ore field in the whole country. In this study, the focus was placed on the petrographic characteristics and trace elements in hydrothermal chlorite from two typical deposits (Zoujiashan and Yunji) at Xiangshan. Four types of chlorites were identified, i.e., Chl1-Y and Chl2 from Yunji deposit, and Chl1-Z and Chl3 from Zoujiashan deposit. The pre-ore Chl1-Y and Chl1-Z are formed through replacing the original magmatic biotite. Chl2 and Chl3 occur as veinlets or disseminated, and are closely associated with early-ore U mineralization and main-ore U mineralization, respectively. All the four types of chlorites are typically trioctahedral chlorite. Vein-type/disseminated Chl2 and Chl3 in ore veins were precipitated directly from the hydrothermal fluids through dissolution-migration-precipitation mechanism, whereas the replacement-type chlorite was formed by the dissolution–crystallization mechanism. Empirical geothermometry indicates that the chlorite from Yunji and Zoujiashan were crystallized at 179~277 °C, indicating a mesothermal-epithermal precipitation environment. EPMA and LA-ICP-MS results show that the replacement-type chlorite has relatively consistent compositions at Yunji and Zoujiashan. Both Chl2 and Chl3 are enriched in U, Th but depleted in Mn and Ti. Compared with the Chl2 related to early-ore U mineralization, Chl3 that formed at main-ore stage has higher concentrations of Fe, U, Th, REEs, Mn and Ti, as well as higer Fe/(Fe + Mg) ratios. Such compositional differences between Chl2 and Chl3 are mainly attributed to the formation temperatures and fluid compositions/natures. Combined with petrology and chemical compositions of different types of chlorite, we propose that the presence of vein-type/disseminated chlorite with high U and Fe/(Fe + Mg) ratio but relatively low Mn, Ti and Pb contents can be regarded as an effective vector toward the most economic (high U grade) mineralized zone, whereas the occurrence of Chl2 is likely to indicate the subeconomic U mineralization and less potential exploration for uranium at depth. Full article
Show Figures

Figure 1

25 pages, 7614 KiB  
Article
Mineralogy, Fluid Inclusions, and Oxygen Isotope Geochemistry Signature of Wolframite to Scheelite and Fe,Mn Chlorite Veins from the W, (Cu,Mo) Ore Deposit of Borralha, Portugal
by Iuliu Bobos, Carlos Marques de Sá and Fernando Noronha
Minerals 2022, 12(1), 24; https://doi.org/10.3390/min12010024 - 23 Dec 2021
Cited by 5 | Viewed by 3763
Abstract
Scheelitization of Mn-bearing wolframite, scheelite, quartz, and Fe,Mn-chlorite veins was identified in the W, (Cu,Mo) ore deposits of Borralha, by optical microscopy, electron-microprobe analysis, and stable isotope geochemistry. Fluid inclusions derived scheelite crystallization temperature was compared with the oxygen isotope temperature estimated. Scheelite [...] Read more.
Scheelitization of Mn-bearing wolframite, scheelite, quartz, and Fe,Mn-chlorite veins was identified in the W, (Cu,Mo) ore deposits of Borralha, by optical microscopy, electron-microprobe analysis, and stable isotope geochemistry. Fluid inclusions derived scheelite crystallization temperature was compared with the oxygen isotope temperature estimated. Scheelite was formed mainly during stage I from a low salinity aqueous-carbonic fluid dominated by CO2, where the homogenization temperature (Th) decreased from 380 °C to 200 °C (average of 284 °C). As temperature decreased further, the aqueous-carbonic fluid became dominated by CH4 (Stage II; (average Th = 262 °C)). The final stage III corresponds to lower temperature mineralizing aqueous fluid (average Th = 218 °C). In addition, salinity gradually decreased from 4.8 wt.% to 1.12 wt.%. The δ18OFluid values calculated for quartz-water and wolframite-water fractionation fall within the calculated magmatic water range. The ∆quartz-scheelite fractionation occurred at about 350–400 °C. The ∆chlorite-water fractionation factor calculated is about +0.05‰ for 330 °C, dropping to −0.68‰ and −1.26‰ at 380 °C and 450 °C, respectively. Estimated crystallizing temperatures based on semi-empirical chlorite geothermometers range from 373 °C to 458 °C and 435 °C to 519 °C. A narrower temperature range of 375 °C to 410 °C was estimated for Fe,Mn-chlorite crystallization. Full article
(This article belongs to the Special Issue Advances in Low-Temperature Mineralogy and Geochemistry)
Show Figures

Figure 1

51 pages, 21481 KiB  
Article
Potential for Volcanogenic Massive Sulfide Mineralization at the A6 Anomaly, North-West British Columbia, Canada: Stratigraphy, Lithogeochemistry, and Alteration Mineralogy and Chemistry
by Stefanie M. Brueckner, Gregory Johnson, Stephanie Wafforn, Harold Gibson, Ross Sherlock, Christina Anstey and Ken McNaughton
Minerals 2021, 11(8), 867; https://doi.org/10.3390/min11080867 - 11 Aug 2021
Cited by 2 | Viewed by 4404
Abstract
The Middle Jurassic A6 Anomaly is located 30 km southeast of Eskay Creek, north-central British Columbia and consists of thick, altered felsic igneous rocks overlain by a mafic volcano-sedimentary package. Lithogeochemistry on igneous rocks, X-ray diffraction on altered felsic units, and electron probe [...] Read more.
The Middle Jurassic A6 Anomaly is located 30 km southeast of Eskay Creek, north-central British Columbia and consists of thick, altered felsic igneous rocks overlain by a mafic volcano-sedimentary package. Lithogeochemistry on igneous rocks, X-ray diffraction on altered felsic units, and electron probe microanalysis and secondary ion mass spectrometry on illite and quartz were applied to explore the volcanogenic massive sulfide (VMS) potential, characterize alteration, and determine fluid conditions at the A6 Anomaly. Lithogeochemistry revealed calc-alkaline rhyodacite to trachyte of predominantly FII type, tholeiitic basalts with Nb/Yb < 1.6 (i.e., Group A), and transitional to calc-alkaline basalts and andesites with Nb/Yb > 2.2 (i.e., Group B). The felsic units showed weakly to moderately phyllic alteration (quartz–illite with minor orthoclase and trace chlorite–pyrite–calcite–barite–rutile). Illite ranged in composition from illite/smectite (K = 0.5–0.69 apfu) to almost endmember illite (K = 0.69–0.8 apfu), and formed from feldspar destruction by mildly acidic, relatively low temperature, oxidized hydrothermal fluids. The average δ18O composition was 10.7 ± 3.0‰ and 13.4 ± 1.3‰ relative to Vienna Standard Mean Ocean Water for illite and quartz, respectively. Geothermometry involving illite composition and oxygen isotope composition on illite and quartz yielded average fluid temperatures of predominantly 200–250 °C. Lithogeochemical results showed that the A6 Anomaly occurred in a late-Early to Middle Jurassic evolving back-arc basin, further east then previously recognized and in which transitional to calc-alkaline units formed by crustal assimilation to enriched Mid-Ocean Ridge Basalt (EMORB) (i.e., felsic units, Group B), followed by thinning of the crust resulting in tholeiitic normalized MORB basalts (i.e., Group A) with a minor crustal component. The alteration assemblage is representative of distal footwall alteration, and metal transport in this zone was limited despite favorable temperature, pH, and redox state, indicating a metal depleted source (i.e., felsic units). Full article
Show Figures

Figure 1

16 pages, 1859 KiB  
Review
Low-Temperature Chlorite Geothermometry and Related Recent Analytical Advances: A Review
by Franck Bourdelle
Minerals 2021, 11(2), 130; https://doi.org/10.3390/min11020130 - 28 Jan 2021
Cited by 41 | Viewed by 6965
Abstract
Chlorite, a 2:1:1 phyllosilicate, has all the required attributes to form the basis of a geothermometer: this mineral is ubiquitous in metamorphic, diagenetic, and hydrothermal systems with a broad field of stability and a chemical composition partly dependent on temperature (T) and pressure [...] Read more.
Chlorite, a 2:1:1 phyllosilicate, has all the required attributes to form the basis of a geothermometer: this mineral is ubiquitous in metamorphic, diagenetic, and hydrothermal systems with a broad field of stability and a chemical composition partly dependent on temperature (T) and pressure (P) conditions. These properties led to the development of a multitude of chlorite thermometers, ranging from those based on empirical calibrations (linking T to AlIV content) to thermodynamic or semi-empirical models (linking T to chlorite + quartz + water equilibrium constant). This present study provides an overview of these geothermometers proposed in the literature for low-temperature chlorite (T < 350 °C), specifying the advantages and limitations of each method. Recent analytical developments that allow for circumventing or responding to certain criticisms regarding the low-temperature application of thermometers are also presented. The emphasis is on micrometric and nanometric analysis, highlighting chemical intracrystalline zoning—which can be considered as evidence of a succession of local equilibria justifying a thermometric approach—and mapping ferric iron content. New perspectives in terms of analysis (e.g., Mn redox in Mn-chlorite) and geothermometer (molecular solid-solution model, oxychlorite end-member) are also addressed. Full article
(This article belongs to the Special Issue Advances in Low-Temperature Mineralogy and Geochemistry)
Show Figures

Figure 1

15 pages, 7164 KiB  
Communication
First Detection of Methane within Chromitites of an Archean-Paleoproterozoic Greenstone Belt in Brazil
by Yuri de Melo Portella, Federica Zaccarini and Giuseppe Etiope
Minerals 2019, 9(5), 256; https://doi.org/10.3390/min9050256 - 29 Apr 2019
Cited by 9 | Viewed by 3539
Abstract
Abiotic methane is widely documented in seeps, springs and aquifers associated with mafic-ultramafic rocks in Phanerozoic ophiolites, peridotite massifs and intrusions worldwide. Chromitites in ophiolites, in particular, have been interpreted as the rocks potentially generating methane though CO2 hydrogenation. Here, we document, [...] Read more.
Abiotic methane is widely documented in seeps, springs and aquifers associated with mafic-ultramafic rocks in Phanerozoic ophiolites, peridotite massifs and intrusions worldwide. Chromitites in ophiolites, in particular, have been interpreted as the rocks potentially generating methane though CO2 hydrogenation. Here, we document, for the first time, the presence of methane within chromitites in South America. We analyzed, through milling and gas extraction, the content of gas occluded in Cedrolina chromitite samples, belonging to the Pilar de Goiás greenstone belt in Brazil. The chromitites display significant gas concentrations up to 0.31 µg CH4/grock and 2800 ppmv of hydrogen, while the host talc schist is devoid of gas. Stable C isotope composition of methane (δ13C from −30 to −39.2‰) and the absence of organic-matter rich metasediments in the region suggest an abiotic origin. Hydrogen and methane concentrations appear related to high-Cr chromite modal content and to the presence of Ni-sulfides/alloys, which are potential catalysts of CO2 hydrogenation at temperatures above 200 °C. Accessory ruthenium-bearing minerals occurring in the chromitites could also act as catalysts, even at lower temperatures. Geothermometry of chlorite found in the chromitites constrains serpentinization at ~250 °C, during lower greenschist facies retrometamorphism. Hydrogen could be autochthonous, and thus formed under similar temperature, which we hypothesize represents the upper limit for abiotic methane generation in the area (250 °C). The Cedrolina chromitites are the first example of CH4 occurrence in ultramafic rocks related to an Archean-Paleoproterozoic greenstone belt. This may imply that serpentinized Cr-rich chromitites could have been sources of methane for the early Earth’s atmosphere. Full article
(This article belongs to the Special Issue Spinel Group Minerals)
Show Figures

Figure 1

Back to TopTop