Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = chirp spread spectrum (CSS) modulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2695 KB  
Article
LoRa/LoRaWAN Time Synchronization: A Comprehensive Analysis, Performance Evaluation, and Compensation of Frame Timestamping
by Stefano Rinaldi, Elia Mondini, Paolo Ferrari, Alessandra Flammini and Emiliano Sisinni
Future Internet 2026, 18(2), 80; https://doi.org/10.3390/fi18020080 (registering DOI) - 2 Feb 2026
Abstract
This paper examines precise timestamping of LoRaWAN messages (particularly beacons) to enable wide-area synchronization for end devices without GNSS. The need for accuracy demands hardware-level timestamping architectures, possibly using time-domain cross-correlation (matched filtering) against internally generated chirp references. Focusing on Time-of-Arrival (TOA [...] Read more.
This paper examines precise timestamping of LoRaWAN messages (particularly beacons) to enable wide-area synchronization for end devices without GNSS. The need for accuracy demands hardware-level timestamping architectures, possibly using time-domain cross-correlation (matched filtering) against internally generated chirp references. Focusing on Time-of-Arrival (TOA) estimation from raw IQ samples, the authors analyze effects of non-idealities—additive white Gaussian noise (AWGN), Carrier Frequency Offset (CFO), Sampling Phase and Frequency Offset (SPO and SFO, respectively), and radio parameters such as spreading factor (SF) and sampling rate of the baseband signals. A MATLAB (R2020) simulation mimics preamble detection and Start-of-Frame Delimiter (SFD) timestamping while sweeping SF (7, 9, 12), sampling rates (0.25–10 MSa/s), SNR (−20 to +20 dB), and CFO/SFO offsets (−10–10 ppm frequency deviation). Errors are evaluated in terms of mean and dispersion, the latter represented by the P95–P5 range metric. Results show that oversampling not only improves temporal resolution, but sub-microsecond error dispersion can be achieved with high sampling rates in favorable SNR and SF cases. Indeed, SPO and SNR greatly contribute to error dispersion. On the other hand, higher SF values increase correlation robustness at the cost of longer chirps, making SFO a dominant error source; ±10 ppm SFO can induce roughly ±3 μs SFD bias for SF12. CFO largely cancels after up-/down-chirp averaging. As a concluding remark, matched-filter hardware timestamping can ensure sub-μs errors thanks to oversampling but requires SFO compensation for accurate real-world synchronization in practice. Full article
(This article belongs to the Special Issue Edge and Fog Computing for the Internet of Things, 2nd Edition)
28 pages, 61500 KB  
Article
A Low-Cost Energy-Efficient IoT Camera Trap Network for Remote Forest Surveillance
by Piotr Lech, Beata Marciniak and Krzysztof Okarma
Electronics 2025, 14(21), 4266; https://doi.org/10.3390/electronics14214266 - 30 Oct 2025
Viewed by 822
Abstract
The proposed forest monitoring photo trap ecosystem integrates a cost-effective architecture for observation and transmission using Internet of Things (IoT) technologies and long-range digital radio systems such as LoRa (Chirp Spread Spectrum—CSS) and nRF24L01 (Gaussian Frequency Shift Keying—GFSK). To address low-bandwidth links, a [...] Read more.
The proposed forest monitoring photo trap ecosystem integrates a cost-effective architecture for observation and transmission using Internet of Things (IoT) technologies and long-range digital radio systems such as LoRa (Chirp Spread Spectrum—CSS) and nRF24L01 (Gaussian Frequency Shift Keying—GFSK). To address low-bandwidth links, a novel approach based on the Monte Carlo sampling algorithm enables progressive, bandwidth-aware image transfer and its thumbnail’s reconstruction on edge devices. The system transmits only essential data, supports remote image deletion/retrieval, and minimizes site visits, promoting environmentally friendly practices. A key innovation is the integration of no-reference image quality assessment (NR IQA) to determine when thumbnails are ready for operator review. Due to the computational limitations of the Raspberry Pi 3, the PIQE indicator was adopted as the operational metric in the quality stabilization module, whereas deep learning-based metrics (e.g., HyperIQA, ARNIQA) are retained as offline benchmarks only. Although single-pass inference may meet initial timing thresholds, the cumulative time–energy cost in an online pipeline on Raspberry Pi 3 is too high; hence these metrics remain offline. The system was validated through real-world field tests, confirming its practical applicability and robustness in remote forest environments. Full article
Show Figures

Figure 1

37 pages, 1013 KB  
Article
Quantum–Classical Optimization for Efficient Genomic Data Transmission
by Ismael Soto, Verónica García and Pablo Palacios Játiva
Mathematics 2025, 13(17), 2792; https://doi.org/10.3390/math13172792 - 30 Aug 2025
Viewed by 980
Abstract
This paper presents a hybrid computational architecture for efficient and robust digital transmission inspired by helical genetic structures. The proposed system integrates advanced modulation schemes, such as multi-pulse-position modulation (MPPM), high-order quadrature amplitude modulation (QAM), and chirp spread spectrum (CSS), along with Reed–Solomon [...] Read more.
This paper presents a hybrid computational architecture for efficient and robust digital transmission inspired by helical genetic structures. The proposed system integrates advanced modulation schemes, such as multi-pulse-position modulation (MPPM), high-order quadrature amplitude modulation (QAM), and chirp spread spectrum (CSS), along with Reed–Solomon error correction and quantum-assisted search, to optimize performance in noisy and non-line-of-sight (NLOS) optical environments, including VLC channels modeled with log-normal fading. Through mathematical modeling and simulation, we demonstrate that the number of helical transmissions required for genome-scale data can be drastically reduced—up to 95% when using parallel strands and high-order modulation. The trade-off between redundancy, spectral efficiency, and error resilience is quantified across several configurations. Furthermore, we compare classical genetic algorithms and Grover’s quantum search algorithm, highlighting the potential of quantum computing in accelerating decision-making and data encoding. These results contribute to the field of operations research and supply chain communication by offering a scalable, energy-efficient framework for data transmission in distributed systems, such as logistics networks, smart sensing platforms, and industrial monitoring systems. The proposed architecture aligns with the goals of advanced computational modeling and optimization in engineering and operations management. Full article
Show Figures

Figure 1

17 pages, 4455 KB  
Article
Generalized Chirp Spread Spectrum for Underwater Acoustic Communications
by Jinwon Kim, Sangman Han, Boguen Seo, Yongcheol Kim and Hojun Lee
Electronics 2025, 14(5), 964; https://doi.org/10.3390/electronics14050964 - 28 Feb 2025
Viewed by 1816
Abstract
In this paper, we propose a generalized-chirp spread spectrum (G-CSS) that can have various modulation orders and offers superior bit error rate (BER) performance to improve the communication performance of existing chirp-based modulation/demodulation schemes. The proposed G-CSS sets frequency bins with different modulation [...] Read more.
In this paper, we propose a generalized-chirp spread spectrum (G-CSS) that can have various modulation orders and offers superior bit error rate (BER) performance to improve the communication performance of existing chirp-based modulation/demodulation schemes. The proposed G-CSS sets frequency bins with different modulation orders at the start and end points of the symbol and selects frequency bins based on the bits to be transmitted, modulating the signal using corresponding chirps. Therefore, the proposed method allows for independent design of modulation orders at the start and end of the symbol, enabling signal design and flexible transmission tailored to the transmission rate required by the system. Through computer simulations and practical ocean experiments, we compared and analyzed the BER performances of the proposed G-CSS with existing up/down-CSS and long-range CSS (LoRa-CSS). The proposed G-CSS demonstrated a superior BER performance at the same transmission rate. Full article
(This article belongs to the Special Issue Underwater Acoustic Communications: Latest Advances and Prospects)
Show Figures

Figure 1

15 pages, 1310 KB  
Article
M-Ary Direct Modulation Chirp Spread Spectrum for Spectrally Efficient Communications
by Jocelyn Edinio Zacko Gbadoubissa, Ado Adamou Abba Ari, Emanuel Radoi and Abdelhak Mourad Gueroui
Information 2023, 14(6), 323; https://doi.org/10.3390/info14060323 - 6 Jun 2023
Cited by 5 | Viewed by 6468
Abstract
Spread spectrum techniques, such as the Chirp Spread Spectrum (CSS) used by LoRa technology, are important for machine-to-machine communication in the context of the Internet of Things. They offer high processing gain, reliable communication over long ranges, robustness to interference and noise in [...] Read more.
Spread spectrum techniques, such as the Chirp Spread Spectrum (CSS) used by LoRa technology, are important for machine-to-machine communication in the context of the Internet of Things. They offer high processing gain, reliable communication over long ranges, robustness to interference and noise in harsh environments, etc. However, these features are compromised by their poor spectral efficiency, resulting in a very low data transmission rate. This paper deals with a spectrally efficient variant of CSS. The system uses M-ary phase keying to modulate the data and exploits CSS’s properties to transmit the modulated symbols as overlapping chirps. The overlapping of chirp signals may affect the system performance due to inter-symbol interference. Therefore, we analyse the relationship between the number of overlaps and the effect of inter-symbol interference (ISI), and we also determine the BER expression as a function of the number of overlaps. Finally, we derive the optimal number of overlapping symbols that corresponds to the minimum error probability. Full article
(This article belongs to the Special Issue Advances in Wireless Communications Systems)
Show Figures

Figure 1

12 pages, 3936 KB  
Article
The New Era of Long-Range “Zero-Interception” Ambient Backscattering Systems: 130 m with 130 nA Front-End Consumption
by Spyridon Nektarios Daskalakis, Apostolos Georgiadis, Manos M. Tentzeris, George Goussetis and George Deligeorgis
Sensors 2022, 22(11), 4151; https://doi.org/10.3390/s22114151 - 30 May 2022
Cited by 4 | Viewed by 3044
Abstract
Internet of Things applications based on backscatter radio principles have appeared to address the limitations of high cost and high power consumption. While radio-frequency identification (RFID) sensor nodes are among the most commonly utilized state-of-the-art technologies, their range for passive implementations is typically [...] Read more.
Internet of Things applications based on backscatter radio principles have appeared to address the limitations of high cost and high power consumption. While radio-frequency identification (RFID) sensor nodes are among the most commonly utilized state-of-the-art technologies, their range for passive implementations is typically short and well below 10 m being impractical for “rugged” applications where approaching the tag at such proximity, is not convenient or safe. In this work, we propose a long-range “zero interception” ambient backscatter (LoRAB) communication system relying on low power sensor (tag) deployments. Without employing a dedicated radio transmission, our technology enables the “zero interception” communication of the tags with portable receivers over hundreds of meters. This enables low-cost and low-power communications across a wide range of missions by using chirp spread spectrum (CSS) modulation on ambient FM signals. A laboratory prototype exploiting commercial components (laptops, DAQ, software-defined radios (SDR) platform) have demonstrated the potential by achieving 130 m tag-to-reader distance for a low bit rate of 88 bps with the modulator current consumption at around 103 nA. Full article
(This article belongs to the Special Issue Wireless Sensing and Intelligent Reflective Surfaces)
Show Figures

Figure 1

26 pages, 897 KB  
Article
A New LoRa-like Transceiver Suited for LEO Satellite Communications
by Mohamed Amine Ben Temim, Guillaume Ferré and Romain Tajan
Sensors 2022, 22(5), 1830; https://doi.org/10.3390/s22051830 - 25 Feb 2022
Cited by 27 | Viewed by 6018
Abstract
LoRa is based on the chirp spread spectrum (CSS) modulation, which has been developed for low power and long-range wireless Internet of Things (IoT) communications. The structure of LoRa signals makes their decoding performance extremely sensitive to synchronization errors. To alleviate this constraint, [...] Read more.
LoRa is based on the chirp spread spectrum (CSS) modulation, which has been developed for low power and long-range wireless Internet of Things (IoT) communications. The structure of LoRa signals makes their decoding performance extremely sensitive to synchronization errors. To alleviate this constraint, we propose a modification of the LoRa physical layer, which we refer to as differential CSS (DCSS), associated with an original synchronization algorithm. Based on this modification, we are able to demodulate the received signals without performing a complete frequency synchronization and by tolerating some timing synchronization errors. Hence, our receiver can handle ultra narrow band LoRa-like signals since it has no limitation on the maximum carrier frequency offset, as is actually the case in the deployed LoRa receivers. In addition, in the presence of the Doppler shift varying along the packet duration, DCSS shows better performance than CSS, which makes our proposed receiver a good candidate for communication with a low-Earth orbit (LEO) satellite. Full article
(This article belongs to the Special Issue Satellite Networks for Massive IoT Communication)
Show Figures

Figure 1

14 pages, 9384 KB  
Article
Experimental Results of Underwater Acoustic Communication with Nonlinear Frequency Modulation Waveform
by Jeongha An, Hyungin Ra, Changhyun Youn and Kiman Kim
Sensors 2021, 21(21), 7194; https://doi.org/10.3390/s21217194 - 29 Oct 2021
Cited by 10 | Viewed by 4259
Abstract
In this paper, we propose underwater acoustic (UWA) communications using a generalized sinusoidal frequency modulation (GSFM) waveform, which has a distinct ambiguity function (AF) and correlation function characteristic. For these reasons, it is more robust in multipath channels than the conventional chirp spread [...] Read more.
In this paper, we propose underwater acoustic (UWA) communications using a generalized sinusoidal frequency modulation (GSFM) waveform, which has a distinct ambiguity function (AF) and correlation function characteristic. For these reasons, it is more robust in multipath channels than the conventional chirp spread spectrum (CSS) with a linear frequency modulation (LFM) waveform. Four types of GSFM waveforms that are orthogonal to each other are applied for each symbol in the proposed method. To evaluate the performance of the proposed method, we compared the performances of the proposed method and conventional method by conducting diverse experiments: simulations, lake trials and sea trials. In the simulation results, the proposed method shows better performance than the conventional method. The lake trial was conducted with a distance of 300~400 m between the transmitter and receiver. As a result of the experiment, the average bit error rate (BER) of the proposed method is 3.52×102 and that of the conventional method is 3.52×101, which shows that the proposed method is superior to the conventional method. The sea trial was conducted at a distance of approximately 20 km between the transmitter and receiver at a depth of 1500 m, and the receiver was composed of 16 vertical line arrays (VLAs) with a hydrophone. The proposed method had a BER of 0.3×102 in one channel and was error free in the other. Full article
(This article belongs to the Special Issue Underwater Acoustic Sensors and Applications)
Show Figures

Figure 1

14 pages, 11100 KB  
Article
Long-Range Acoustic Communication Using Differential Chirp Spread Spectrum
by Joohyoung Lee, Jeongha An, Hyung-in Ra and Kiman Kim
Appl. Sci. 2020, 10(24), 8835; https://doi.org/10.3390/app10248835 - 10 Dec 2020
Cited by 18 | Viewed by 4433
Abstract
Here, we propose a new modulation method using chirp spread spectrum (CSS) modulation to indicate the result of long-range acoustic communication (LRAC). CSS modulation had outstanding matched filter characteristics even though the channel was complex. The performance of the matched filter depends on [...] Read more.
Here, we propose a new modulation method using chirp spread spectrum (CSS) modulation to indicate the result of long-range acoustic communication (LRAC). CSS modulation had outstanding matched filter characteristics even though the channel was complex. The performance of the matched filter depends on the time–bandwidth product. We studied the method of using the same modulation method while increasing the amount of the time–bandwidth product. When differential encoding is applied, the de-modulation is made using the difference between the current symbol and the previous symbol. If the matched filter is applied using both the current and the previous symbol, such as the use of two symbols, the amount of the time–bandwidth product can be doubled, and this method can make the output of the matched filter larger. The proposed method was verified in lake and sea experiments, in which the experimental environment was analyzed and compared with the result using the channel impulse response (CIR) of the lake and sea. The lake experiment was conducted over a distance of about 100–300 m between the transmitter and receiver and at a depth of ~40 m. As a result of the communication, the conventional method’s bit error rate (BER) was 1.22×101, but the proposed method’s BER was 1.98×102. The sea experiment was conducted over a distance of ~90 km and at a depth of ~1 km, and the conventional method BER in this experiment was 1.83×104, while the proposed method’s BER was 0. Full article
(This article belongs to the Special Issue Underwater Acoustic Communications and Networks)
Show Figures

Figure 1

18 pages, 2754 KB  
Article
Multiuser Chirp Spread Spectrum Transmission in an Underwater Acoustic Channel Applied to an AUV Fleet
by Christophe Bernard, Pierre-Jean Bouvet, Antony Pottier and Philippe Forjonel
Sensors 2020, 20(5), 1527; https://doi.org/10.3390/s20051527 - 10 Mar 2020
Cited by 18 | Viewed by 4544
Abstract
The objective of this paper is to provide a multiuser transmission technique for underwater acoustic communication in the framework of an Autonomous Underwater Vehicle (AUV) fleet. By using a variant of a Hyperbolically Frequency-Modulated (HFM) signal, we describe a new family of transmission [...] Read more.
The objective of this paper is to provide a multiuser transmission technique for underwater acoustic communication in the framework of an Autonomous Underwater Vehicle (AUV) fleet. By using a variant of a Hyperbolically Frequency-Modulated (HFM) signal, we describe a new family of transmission techniques called MultiUser Chirp Spread Spectrum (MU-CSS), which allows a very simple matched-filter-based decoding. These techniques are expected to provide good resilience against multiuser interference while keeping good robustness to Underwater Acoustic (UWA) channel impairments like Doppler shift. Their implementation for the UWA scenario is described, and the performance results over a simulated shallow-water UWA channel are analyzed and compared against conventional Code-Division Multiple Access (CDMA) and Time-Division Multiple Access (TDMA) transmission. Finally, the feasibility and robustness of the proposed methods are verified over the underWater AcousTic channEl Replay benchMARK (Watermark), fed by several channel responses from sounding experiments performed in a lake. Full article
(This article belongs to the Special Issue Underwater Sensor Networks)
Show Figures

Figure 1

Back to TopTop