# M-Ary Direct Modulation Chirp Spread Spectrum for Spectrally Efficient Communications

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

- Design of a modulation scheme that transmits multiple overlapping up-chirp signals;
- Mathematical formulation of the symbol time and the number of overlaps;
- Deriving the mathematical expression for the bit error probability of the proposed scheme as a function of inter-symbol interference and number of overlaps;
- Performance evaluation using various metrics to demonstrate the effectiveness of our approach.

## 2. Direct Modulation CSS

## 3. M-Ary Phase Shift Keying

## 4. Proposed Model

#### 4.1. Modulation Scheme

#### 4.2. Overlapping Chirps

#### 4.3. Inter-Symbol Interference Due to Overlap

#### 4.4. Zero-ISI Transmission

#### 4.5. Probability of Bit Error

## 5. Performance Analysis and Discussion

#### 5.1. Simulation Environment

#### 5.2. Spectral Efficiency Analysis

#### 5.3. BER Performance Analysis

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Abbreviations

AWGN | Additive White Gaussian Noise |

BER | Bit Error Rate |

BOC | Binary Offset Carrier |

BOK | Binary Orthogonal Keying |

CCC | Cross Correlation Coefficients |

CSS | Chirp Spread Spectrum |

DM CSS | Direct Modulation Chirp Spread Spectrum |

ISI | Inter-Symbol Interference |

MPSK | M-ary Phase Shift Keying |

## Appendix A. Expression of the Receiver Output

## Appendix B. Probability of Bit Error

#### Appendix B.1. Euclidean Distance between s_{m} and s_{smi}

## References

- Pickholtz, R.; Schilling, D.; Milstein, L. Theory of spread-spectrum communications-a tutorial. IEEE Trans. Commun.
**1982**, 30, 855–884. [Google Scholar] [CrossRef][Green Version] - Springer, A.; Gugler, W.; Huemer, M.; Reindl, L.; Ruppel, C.; Weigel, R. Spread spectrum communications using chirp signals. In Proceedings of the IEEE/AFCEA EUROCOMM 2000. Information Systems for Enhanced Public Safety and Security (Cat. No. 00EX405), Munich, Germany, 19 May 2000; IEEE: Piscataway, NJ, USA, 2000; pp. 166–170. [Google Scholar]
- Gbadouissa, J.E.Z.; Ari, A.A.A.; Titouna, C.; Gueroui, A.M.; Thiare, O. HGC: HyperGraph based Clustering scheme for power aware wireless sensor networks. Future Gener. Comput. Syst.
**2020**, 105, 175–183. [Google Scholar] [CrossRef] - Ari, A.A.A.; Labraoui, N.; Yenké, B.O.; Gueroui, A. Clustering algorithm for wireless sensor networks: The honeybee swarms nest-sites selection process based approach. Int. J. Sens. Netw.
**2018**, 27, 1–13. [Google Scholar] [CrossRef] - Dixon, R. Why spread spectrum? Commun. Soc.
**1975**, 13, 21–25. [Google Scholar] [CrossRef] - Torrieri, D. Principles of Spread-Spectrum Communication Systems; Springer: Berlin/Heidelberg, Germany, 2005; Volume 1. [Google Scholar]
- Aydin, N.; Arslan, T.; Cumming, D.R. A direct-sequence spread-spectrum communication system for integrated sensor microsystems. IEEE Trans. Inf. Technol. Biomed.
**2005**, 9, 4–12. [Google Scholar] [CrossRef] [PubMed] - Hengstler, S.; Kasilingam, D.P.; Costa, A.H. A novel chirp modulation spread spectrum technique for multiple access. In Proceedings of the IEEE Seventh International Symposium on Spread Spectrum Techniques and Applications, Prague, Czech Republic, 2–5 September 2002; IEEE: Piscataway, NJ, USA, 2002; Volume 1, pp. 73–77. [Google Scholar]
- Ouyang, X.; Dobre, O.A.; Guan, Y.L.; Zhao, J. Chirp spread spectrum toward the Nyquist signaling rate—Orthogonality condition and applications. IEEE Signal Process. Lett.
**2017**, 24, 1488–1492. [Google Scholar] [CrossRef] - Kim, K.Y.; Lee, S.W.; Shin, Y. Spectral Efficiency Improvement of Chirp Spread Spectrum Systems. In Proceedings of the 2019 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 16–18 October 2019. [Google Scholar]
- Qiu, S.; Zhao, D.; Wang, Y.; Tang, X.; Zhao, X.; Zhang, Y. A Linear Chirp Wireless Transmission Method utilizing Doppler Effect. Wirel. Pers. Commun.
**2022**, 124, 2965–2982. [Google Scholar] [CrossRef] - Nguyen, T.T.; Nguyen, H.H.; Barton, R.; Grossetete, P. Efficient Design of Chirp Spread Spectrum Modulation for Low-Power Wide-Area Networks. IEEE Internet Things J.
**2019**, 6, 9503–9515. [Google Scholar] [CrossRef] - Hosseini, N.; Matolak, D.W. Chirp Spread Spectrum Signaling for Future Air-Ground Communications. In Proceedings of the MILCOM 2019-2019 IEEE Military Communications Conference (MILCOM), Norfolk, VA, USA, 12–14 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 153–158. [Google Scholar]
- Yang, Y.; Zhang, Y.; Dai, L.; Li, J.; Mumtaz, S.; Rodriguez, J. Transmission capacity analysis of relay-assisted device-to-device overlay/underlay communication. IEEE Trans. Ind. Inform.
**2016**, 13, 380–389. [Google Scholar] [CrossRef] - Pohl, A.; Ostermayer, G.; Steindl, R.; Seifert, F.; Weigel, R. Fine tuning of data rate enhances performance of a chirp spread spectrum system. In Proceedings of the 1998 IEEE 5th International Symposium on Spread Spectrum Techniques and Applications-Proceedings. Spread Technology to Africa (Cat. No. 98TH8333), Sun City, South Africa, 4 September 1998; IEEE: Piscataway, NJ, USA, 1998; Volume 1, pp. 78–81. [Google Scholar]
- Kim, K.Y.; Shin, Y. Simultaneous Orthogonal Transmission for Direct Modulation Chirp Spread Spectrum Systems. In Proceedings of the 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN), Zagreb, Croatia, 2–5 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 472–474. [Google Scholar]
- Reynders, B.; Pollin, S. Chirp spread spectrum as a modulation technique for long range communication. In Proceedings of the 2016 Symposium on Communications and Vehicular Technologies (SCVT), Mons, Belgium, 22 November 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–5. [Google Scholar]
- Cai, C.; Chen, Z.; Luo, J.; Pu, H.; Hu, M.; Zheng, R. Boosting chirp signal based aerial acoustic communication under dynamic channel conditions. IEEE Trans. Mob. Comput.
**2021**, 21, 3110–3121. [Google Scholar] [CrossRef] - Araújo, D.C.; Ferré, G.; Cavalcante, C.C.; Guerreiro, I.M. A Spectral Efficiency Enhancement for Chirp Spread Spectrum Downlink Communications. In Proceedings of the 2020 IEEE Latin-American Conference on Communications (LATINCOM), Santo Domingo, Dominican Republic, 18–20 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar]
- Azim, A.W.; Bazzi, A.; Shubair, R.; Chafii, M. Dual-Mode Chirp Spread Spectrum Modulation. arXiv
**2022**, arXiv:2205.09421. [Google Scholar] [CrossRef] - Pham, T.M.; Barreto, A.N.; Fettweis, G.P. Efficient Communications for Overlapped Chirp-Based Systems. IEEE Wirel. Commun. Lett.
**2020**, 9, 2202–2206. [Google Scholar] [CrossRef] - Yoon, T.; Lee, Y.; Park, S.R.; Kim, S.C.; Song, I.; Yoon, S. Analysis of Intersymbol Interference due to Overlap in DM-BPSK. IEICE Trans. Commun.
**2010**, 93, 1310–1312. [Google Scholar] [CrossRef] - Yoon, T.; Yoo, S.H.; Kim, S.Y.; Yoon, S. A Closed Form BER expression for an Overlap-based CSS System. In Proceedings of the ITC-CSCC: International Technical Conference on Circuits Systems, Computers and Communications, Shimonoseki City, Japan, 6–9 July 2008; pp. 105–108. [Google Scholar]
- Pinkney, J. Low Complexity Indoor Wireless Data Links Using Chirp Spread Spectrum. Ph.D. Thesis, University of Calgary, Calgary, AB, Canada, 2004. [Google Scholar]
- Mumtaz, S.; Huq, K.M.S.; Radwan, A.; Rodriguez, J.; Aguiar, R.L. Energy efficient interference-aware resource allocation in LTE-D2D communication. In Proceedings of the 2014 IEEE International Conference on Communications (ICC), Sydney, NSW, Australia, 10–14 June 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 282–287. [Google Scholar]
- Yang, Q.; Jiang, T.; Beaulieu, N.C.; Wang, J.; Jiang, C.; Mumtaz, S.; Zhou, Z. Heterogeneous semi-blind interference alignment in finite-SNR networks with fairness consideration. IEEE Trans. Wirel. Commun.
**2020**, 19, 2472–2488. [Google Scholar] [CrossRef] - Grami, A. Passband Digital Transmission; Academic Press: Cambridge, MA, USA, 2015; Chapter 7; pp. 299–355. [Google Scholar]

**Figure 3.**Time–frequency representation of the instantaneous frequency of up-chirp signals with normalized time and frequency axes.

**Figure 6.**Theoretical and measured BER as a function of ${E}_{b}/{N}_{0}$ for MPSK CSS with ${B}_{ch}=200$ kHz.

**Figure 7.**Measured BER as a function of ${E}_{b}/{N}_{0}$ for PSK, QAM, and PSK CSS with $\eta \in \{2,3,4\}$.

$\mathit{\alpha}$ | $\frac{\mathit{\pi}}{6}$ | $\frac{\mathit{\pi}}{5}$ | $\frac{\mathit{\pi}}{4}$ | $\frac{3\mathit{\pi}}{10}$ | $\frac{\mathit{\pi}}{3}$ | $\frac{3\mathit{\pi}}{8}$ | $\frac{2\mathit{\pi}}{5}$ | $\frac{5\mathit{\pi}}{12}$ |
---|---|---|---|---|---|---|---|---|

$tan\alpha $ | $\frac{\sqrt{3}}{3}$ | $\sqrt{5-2\sqrt{5}}$ | 1 | $\frac{\sqrt{25+10\sqrt{5}}}{5}$ | $\sqrt{3}$ | $\sqrt{2}+1$ | $\sqrt{5+2\sqrt{5}}$ | $2+\sqrt{3}$ |

$\eta $ | $1.1547$ | $1.4531$ | $2.0$ | $2.7528$ | $3.4641$ | $4.8284$ | $6.1554$ | $7.4641$ |

$\lfloor \eta \rfloor $ | 1 | 1 | 2 | 2 | 3 | 4 | 6 | 7 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zacko Gbadoubissa, J.E.; Abba Ari, A.A.; Radoi, E.; Gueroui, A.M.
M-Ary Direct Modulation Chirp Spread Spectrum for Spectrally Efficient Communications. *Information* **2023**, *14*, 323.
https://doi.org/10.3390/info14060323

**AMA Style**

Zacko Gbadoubissa JE, Abba Ari AA, Radoi E, Gueroui AM.
M-Ary Direct Modulation Chirp Spread Spectrum for Spectrally Efficient Communications. *Information*. 2023; 14(6):323.
https://doi.org/10.3390/info14060323

**Chicago/Turabian Style**

Zacko Gbadoubissa, Jocelyn Edinio, Ado Adamou Abba Ari, Emanuel Radoi, and Abdelhak Mourad Gueroui.
2023. "M-Ary Direct Modulation Chirp Spread Spectrum for Spectrally Efficient Communications" *Information* 14, no. 6: 323.
https://doi.org/10.3390/info14060323