Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = chemical pest control action

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 250 KiB  
Review
The Influence of Microorganism on Insect-Related Pesticide Resistance
by Qiqi Fan, Hong Sun and Pei Liang
Agriculture 2025, 15(14), 1519; https://doi.org/10.3390/agriculture15141519 - 14 Jul 2025
Viewed by 455
Abstract
Insect pests inflict significant agricultural and economic losses on crops globally. Chemical control refers to the use of agrochemicals, such as insecticides, herbicides, and fungicides, to manage pests and diseases. Chemical control is still the prioritized method, as insecticides are highly effective and [...] Read more.
Insect pests inflict significant agricultural and economic losses on crops globally. Chemical control refers to the use of agrochemicals, such as insecticides, herbicides, and fungicides, to manage pests and diseases. Chemical control is still the prioritized method, as insecticides are highly effective and toxic to insect pests. However, it reduces the quality of the environment, threatens human health, and causes serious 3R (reduce, reuse, and recycle) problems. Current advances in the mining of functional symbiotic bacteria resources provide the potential to assuage the use of insecticides while maintaining an acceptably low level of crop damage. Recent research on insect–microbe symbiosis has uncovered a mechanism labeled “detoxifying symbiosis”, where symbiotic microorganisms increase host insect resistance through the metabolism of toxins. In addition, the physiological compensation effect caused by insect resistance affects the ability of the host to regulate the community composition of symbiotic bacteria. This paper reviews the relationship between symbiotic bacteria, insects, and insecticide resistance, focusing on the effects of insecticide resistance on the composition of symbiotic bacteria and the role of symbiotic bacteria in the formation of resistance. The functional symbiotic bacteria resources and their mechanisms of action need to be further explored in the future so as to provide theoretical support for the development of pest control strategies based on microbial regulation. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
36 pages, 1423 KiB  
Review
Baculoviruses as Microbial Pesticides: Potential, Challenges, and Market Overview
by Maider Martínez-Balerdi, Javier Caballero, Eduardo Aguirre, Primitivo Caballero and Inés Beperet
Viruses 2025, 17(7), 917; https://doi.org/10.3390/v17070917 - 27 Jun 2025
Cited by 1 | Viewed by 625
Abstract
Baculoviruses represent a promising group of microbial insecticides for the biological control of agricultural pests, particularly those within the order Lepidoptera. Their high host specificity and environmental safety make them ideal candidates for inclusion in integrated pest management (IPM) programs. This review presents [...] Read more.
Baculoviruses represent a promising group of microbial insecticides for the biological control of agricultural pests, particularly those within the order Lepidoptera. Their high host specificity and environmental safety make them ideal candidates for inclusion in integrated pest management (IPM) programs. This review presents a comprehensive overview of baculovirus biology, highlighting their infection mechanisms, selectivity, and ecological compatibility. Special attention is given to advances in mass production systems—both in vivo and in vitro—and formulation technologies that improve field efficacy and environmental persistence, including UV protectants and microencapsulation. Regulatory aspects are also discussed, comparing international approval pathways and highlighting the disparity between regions with supportive policies (e.g., Latin America, Asia) and those with more restrictive frameworks (e.g., the European Union). Additionally, the current global market landscape for baculovirus-based products is examined, with emphasis on recent growth, commercialized formulations, and challenges such as host resistance and the limited spectrum of action. By synthesizing findings from the scientific literature and industry reports, this review underscores the role of baculoviruses as effective, sustainable alternatives or complements to chemical insecticides in modern agriculture, contributing to the reduction in pesticide residues and environmental impact. Full article
(This article belongs to the Special Issue Insect Viruses and Pest Management, the Third Edition)
Show Figures

Figure 1

21 pages, 3079 KiB  
Review
Biology, Ecology, and Management of Prevalent Thrips Species (Thysanoptera: Thripidae) Impacting Blueberry Production in the Southeastern United States
by Rosan Adhikari, David G. Riley, Rajagopalbabu Srinivasan, Mark Abney, Cera Jones and Ashfaq A. Sial
Insects 2025, 16(7), 653; https://doi.org/10.3390/insects16070653 - 24 Jun 2025
Viewed by 640
Abstract
Blueberry is a high-value fruit crop in the United States, with Georgia and Florida serving as important early-season production regions. In these areas, several thrips species (Thysanoptera: Thripidae), including Frankliniella tritici (Fitch), Frankliniella bispinosa (Morgan), and Scirtothrips dorsalis (Hood), have emerged as economically [...] Read more.
Blueberry is a high-value fruit crop in the United States, with Georgia and Florida serving as important early-season production regions. In these areas, several thrips species (Thysanoptera: Thripidae), including Frankliniella tritici (Fitch), Frankliniella bispinosa (Morgan), and Scirtothrips dorsalis (Hood), have emerged as economically significant pests. While F. tritici and F. bispinosa primarily damage floral tissues, S. dorsalis targets young foliage. Their rapid reproduction, high mobility, and broad host range contribute to rapid population buildup and complicate the management programs. Species identification is often difficult due to overlapping morphological features and requires the use of molecular diagnostic tools for accurate identification. Although action thresholds, such as 2–6 F. tritici per flower cluster, are used to guide management decisions, robust economic thresholds based on yield loss remain undeveloped. Integrated pest management (IPM) practices include regular monitoring, cultural control (e.g., pruning, reflective mulch), biological control using Orius insidiosus (Say) and predatory mites, and chemical control. Reduced-risk insecticides like spinetoram and spinosad offer effective suppression while minimizing harm to pollinators and beneficial insects. However, the brief flowering period limits the establishment of biological control agents. Developing species-specific economic thresholds and phenology-based IPM strategies is critical for effective and sustainable thrips management in blueberry cropping systems. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

15 pages, 1027 KiB  
Article
Green Solutions for Agriculture: Topical and Oral Effect of Botanical Extracts in the Sustainable Management of Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae)
by Isabella Maria Pompeu Monteiro Padial, Silvana Aparecida de Souza, Claudia Andrea Lima Cardoso, Juliana Rosa Carrijo Mauad, Anelise Samara Nazari Formagio and Rosilda Mara Mussury
Agronomy 2025, 15(6), 1464; https://doi.org/10.3390/agronomy15061464 - 16 Jun 2025
Viewed by 449
Abstract
The growing demand for sustainable phytosanitary products has renewed interest in botanical insecticides as viable pest control tools. Amid rising demand for sustainable crop protection, this study screens Cerrado plants traditionally used in medicine to pinpoint bioactive compounds that could replace synthetic pesticides. [...] Read more.
The growing demand for sustainable phytosanitary products has renewed interest in botanical insecticides as viable pest control tools. Amid rising demand for sustainable crop protection, this study screens Cerrado plants traditionally used in medicine to pinpoint bioactive compounds that could replace synthetic pesticides. These products have complex chemical compositions, with compounds acting synergistically through multiple mechanisms, including oral (ingestion of allelochemicals) and topical (contact of allelochemicals on epidermis) toxicity. This study evaluated the oral and topical toxicity of aqueous leaf extracts from Anemopaegma arvense (AEAa), Coussarea hydrangeifolia (AECh), Tapirira guianensis (AETg), and Duguetia furfuracea (AEDf) on Plutella xylostella. In the oral toxicity test, first-instar larvae were fed treated diets until pupation, with biological parameters monitored until adulthood. The extracts caused an average of 45% larval mortality, reduced pupal duration, and lowered egg production. In the topical toxicity test, only the extract from T. guianensis showed significant effect (p = 0.0171), causing 30% mortality in third-instar larvae. The other extracts showed no significant topical toxicity, and AECh showed no lethal or sublethal effects at all. Phytochemical screening was assessed by quantitative spectrophotometric assays, and semi-quantitative classical colorimetric tests. Major compound classes identified were tannins, flavonoids, triterpenoids, coumarins, and alkaloids. These findings highlight the potential of the evaluated plant extracts for pest control, particularly via ingestion, while also underscoring the need for further studies to better understand their efficacy and mechanisms of action. Full article
Show Figures

Figure 1

12 pages, 1708 KiB  
Article
Preliminary Report of Three Entomopathogenic Fungi as Potential Biocontrol Agents Against the Oak Wilt Vector, Platypus koryoensis
by Jin Heung Lee, Nam Kyu Kim, Keumchul Shin, Jong Kyu Lee and Dong-Hyeon Lee
Forests 2025, 16(6), 1009; https://doi.org/10.3390/f16061009 - 16 Jun 2025
Viewed by 696
Abstract
Entomopathogenic fungi are a group of fungi that infect and kill insects to obtain nutrients, thereby contributing to the natural regulation of insect populations. In recent years, they have been increasingly utilized as biological control agents, particularly in response to the rising prevalence [...] Read more.
Entomopathogenic fungi are a group of fungi that infect and kill insects to obtain nutrients, thereby contributing to the natural regulation of insect populations. In recent years, they have been increasingly utilized as biological control agents, particularly in response to the rising prevalence of pesticide-resistant pests in agricultural systems. Representative examples include Beauveria bassiana and Metarhizium anisopliae, which are regarded as natural enemies of pests in agroecosystems. Since the first report of Korean oak wilt disease in 2004, the disease has continuously spread across the country and causes severe damage to deciduous oak species, especially Quercus mongolica. Although many efforts have been made to effectively control the disease, including chemical treatments, the control efficacy was shown to be low, and given the environmental side effects arising from the use of insecticides, there has been a demand for alternative control strategies. Integrated Pest Management in forests promotes ecological sustainability by reducing chemical pesticide use, conserving biodiversity, and enhancing long-term forest health. In this study, to mitigate issues with disease management strategies, assessments were made on three entomopathogenic fungi, B. bassiana, M. anisopliae, and Purpureocillium lilacinum, as potential biological control agents against oak wilt disease and its insect vector, Platypus koryoensis. In this regard, we investigated the insecticidal efficacy and LT50 of each entomopathogenic fungus, and the results showed that all three entomopathogenic fungal strains exhibited fast insecticidal effects against the insect vector, P. koryoensis, with M. anisopliae showing the fastest action, recording a lethal time to 50% mortality (LT50) of 58.7 h. The spores of M. anisopliae were found to be sensitive to high temperatures, while demonstrating a relatively high germination rate under UV exposure and strong initial germination ability at low temperatures. Full article
(This article belongs to the Special Issue Pathogenic Fungi in Forest)
Show Figures

Figure 1

13 pages, 667 KiB  
Article
Comparative Control of Phyllotreta striolata: Growth-Inhibiting Effects of Chemical Insecticides Versus the Green Advantages of a Biopesticide
by Fuyong Lin, Musa Hassan Muhammad, Yufei Mao, Fan Zhao, Zixuan Wang, Yongcong Hong, Pumo Cai, Xiong Guan and Tianpei Huang
Insects 2025, 16(6), 552; https://doi.org/10.3390/insects16060552 - 23 May 2025
Viewed by 578
Abstract
Phyllotreta striolata is a major pest of Brassica chinensis, with chemical pesticides being the primary method for pest control. However, their negative impact on crop growth and environmental risks have prompted the search for low-toxicity, environmentally friendly alternatives. This study systematically evaluates [...] Read more.
Phyllotreta striolata is a major pest of Brassica chinensis, with chemical pesticides being the primary method for pest control. However, their negative impact on crop growth and environmental risks have prompted the search for low-toxicity, environmentally friendly alternatives. This study systematically evaluates the control effectiveness of two commonly used chemical pesticides, Zu Jia® and Jie Tiao®, along with their impact on the growth characteristics of B. chinensis and compares them to the biopesticide Bacillus thuringiensis (Bt) strain G033A. The control efficacy was assessed by measuring the insect population reduction rate and plant physiological indicators (weight, plant height, chlorophyll content, and root length). The differences between biopesticide and the two chemical pesticide treatments were analyzed. The results indicated that both Bt strain G033A and the chemical pesticides significantly controlled P. striolata. However, chemical pesticides (Zu Jia® and Jie Tiao®) significantly reduced the chlorophyll content, plant height, and weight of B. chinensis (p < 0.05), whereas Bt strain G033A had no significant adverse effects on these plant traits (p > 0.05). The colonization characteristics of the Bt strain suggest potential for sustained pest control, while chemical pesticides exhibited rapid pest suppression effects. The findings highlight a novel IPM strategy that integrates the long-lasting efficacy of Bt biopesticides with the rapid action of chemical pesticides, offering a more sustainable and balanced approach to P. striolata management in B. chinensis cultivation. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

24 pages, 767 KiB  
Review
The Potential of Beneficial Microbes for Sustainable Alternative Approaches to Control Phytopathogenic Diseases
by Ramadan Bakr, Ali Abdelmoteleb, Vianey Mendez-Trujillo, Daniel Gonzalez-Mendoza and Omar Hewedy
Microbiol. Res. 2025, 16(5), 105; https://doi.org/10.3390/microbiolres16050105 - 20 May 2025
Cited by 1 | Viewed by 874
Abstract
Sustainable agricultural practices are essential for eradicating global hunger, especially in light of the growing world population. Utilizing natural antagonists, such as fungi and bacteria, to combat plant diseases, rather than relying solely on synthetic chemical pesticides, which pose significant risks to the [...] Read more.
Sustainable agricultural practices are essential for eradicating global hunger, especially in light of the growing world population. Utilizing natural antagonists, such as fungi and bacteria, to combat plant diseases, rather than relying solely on synthetic chemical pesticides, which pose significant risks to the environment and human health, is known as biocontrol. Microbial biological control agents (MBCAs) have proven effective against phytopathogens and are increasingly embraced in agricultural practices. MBCAs possess several beneficial traits, including antagonistic potential, rhizosphere competence, and the ability to produce lytic enzymes, antibiotics, and toxins. These biocontrol mechanisms directly target soil-borne pathogens or indirectly stimulate a plant-mediated resistance response. The effectiveness of MBCAs in managing plant diseases depends on various mechanisms, such as hyperparasitism, antibiosis, competition for nutrients or space, disruption of quorum-sensing signals, production of siderophores, generation of cell wall-degrading enzymes, and the induction and priming of plant resistance. Formulating effective biopesticides requires optimal conditions, including selecting effective strains, considering biosafety, appropriate storage methods, and ensuring a prolonged shelf life. Therefore, formulation is crucial in developing pesticide products, particularly concerning efficacy and production costs. However, several challenges must be addressed to ensure the successful application of biological control, including the shelf life of biopesticides, slower efficacy in pest management, inadequate awareness and understanding of biocontrol methods, regulatory registration for commercialization, and suitable agricultural applications. This review clarifies the principles of plant disease biocontrol, highlighting the mechanisms of action and functionality of MBCAs in biocontrol activities, the formulation of biopesticides derived from microorganisms, and the challenges and barriers associated with the development, registration, commercialization, and application of biopesticides. Full article
Show Figures

Figure 1

12 pages, 1446 KiB  
Article
Effect of Pyrethroids on the Colony Growth and Metabolic Activity of Entomopathogenic Fungi of the Beauveria Genus
by Anna Majchrowska-Safaryan, Sylwia Różalska, Cezary Tkaczuk and Monika Nowak
Insects 2025, 16(5), 533; https://doi.org/10.3390/insects16050533 - 18 May 2025
Viewed by 664
Abstract
Pyrethroids are chemical insecticides used on a large scale in agriculture, horticulture, and forest protection. In order to reduce their use in IPM, alternative methods of controlling insect pests are introduced, such as the use of biopesticides based on entomopathogenic fungi (EPF). Species [...] Read more.
Pyrethroids are chemical insecticides used on a large scale in agriculture, horticulture, and forest protection. In order to reduce their use in IPM, alternative methods of controlling insect pests are introduced, such as the use of biopesticides based on entomopathogenic fungi (EPF). Species of the Beauveria genus are characterized by a very broad spectrum of action, which is why they are often used to produce preparations based on EPF. The aim of the study was to determine the effect of different doses of tested pyrethroids on the colony growth and metabolic activity of EPF from the Beauveria genus. In vitro, the effect of three pyrethroids (deltamethrin, λ-cyhalothrin, and α-cypermethrin) added to SDA medium at a dose 10 times lower than the recommended field dose (A), the recommended field dose (B), and 10 times higher than the recommended field dose (C) on colony growth and metabolic activity of B. bassiana and B. brongniartii was tested. The research carried out showed that pyrethroid insecticides used in the experiment showed various toxic effects towards the tested EPF of the genus Beauveria. The studies conducted showed that on the 20th day of the observation, λ-cyhalothrin used in the recommended field dose limited the growth of B. bassiana to the least extent in relation to the other tested pyrethroids. However, with respect to the fungus B. brongniartii, no toxic effect of this pyrethroid was found. Based on the results obtained, it was found that λ-cyhalothrin used in the recommended field dose and 10 times lower than recommended significantly increased the metabolic activity of B. bassiana. In relation to the B. brongniartii strain, detlamethrin used in each of the tested concentrations significantly affected its viability. Full article
(This article belongs to the Special Issue Sustainable Management of Arthropod Pests in Agroecosystems)
Show Figures

Figure 1

12 pages, 1247 KiB  
Article
Insecticide Resistance and Plant Virus Status of Bemisia tabaci on Soybean in Suzhou
by Qi Li, Yao Ji, He Du, Shufang Ma, Jifei Zhu, Dehui Zhu, Natalia A. Belyakova, Youjun Zhang and Xin Yang
Agriculture 2025, 15(10), 1071; https://doi.org/10.3390/agriculture15101071 - 15 May 2025
Viewed by 599
Abstract
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a super pest that seriously endangers the development of the agricultural economy worldwide. To prevent and control B. tabaci, insecticides have been used for many years, which has inevitably led to increased tolerance to chemical agents. To [...] Read more.
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a super pest that seriously endangers the development of the agricultural economy worldwide. To prevent and control B. tabaci, insecticides have been used for many years, which has inevitably led to increased tolerance to chemical agents. To elucidate the development of field resistance and more scientifically and efficiently control B. tabaci, in December 2024, we conducted bioassays on B. tabaci on soybeans in Suzhou, Anhui Province, using 14 insecticides. These fourteen insecticides, namely, abamectin, spinetoram, thiamethoxam, flupyradifurone, imidacloprid, dinotefuran, acetamiprid, thiacloprid, nitenpyram, bifenthrin, deltamethrin, pyridaben, flonicamid, and emamectin benzoate, have multiple action sites and have all shown good control effects on B. tabaci. The results revealed that B. tabaci has developed high resistance to many insecticides and that some insecticides have even tended to fail, but B. tabaci is still sensitive to a small number of insecticides. Different biotypes of B. tabaci differ significantly in terms of insecticide resistance. We determined that the population of B. tabaci on soybean in Suzhou was the MED (Q) biotype. It carried the TYLCV virus, with a virus carrying rate of 60%, but did not carry ToCV or CCYV. Full article
(This article belongs to the Special Issue Sustainable Use of Pesticides—2nd Edition)
Show Figures

Figure 1

27 pages, 1679 KiB  
Review
Insect Pest Control from Chemical to Biotechnological Approach: Constrains and Challenges
by Stefano Civolani, Massimo Bariselli, Riccardo Osti and Giovanni Bernacchia
Insects 2025, 16(5), 528; https://doi.org/10.3390/insects16050528 - 15 May 2025
Cited by 1 | Viewed by 1422
Abstract
The large growth in the global population requires new solutions for the control of harmful insects that compete for our food. Changing regulatory requirements and public perception, together with the continuous evolution of resistance to conventional insecticides, also require, in addition to innovative [...] Read more.
The large growth in the global population requires new solutions for the control of harmful insects that compete for our food. Changing regulatory requirements and public perception, together with the continuous evolution of resistance to conventional insecticides, also require, in addition to innovative molecules with different modes of action, new non-chemical control strategies that can help maintain efficient integrated pest management programs. The last 30 years have inaugurated a new era characterised by the discovery of new mechanisms of action and new chemical families. Although European programs also promote a green deal in the crop protection sector, the existing thorough regulations slow down its spread and the adoption of new products. In light of these changes, this review will describe in more detail the dynamics of discovery and registration of new conventional insecticides and the difficulties that the agrochemical industries encounter. Subsequently, the different innovative control strategies alternative to conventional insecticides based on natural substances of different origin, entomopathogenic microorganisms, semiochemical and semiophysical compounds, and classical and augmentative biological control will be described. The advantages of these green strategies will be illustrated and also the constrains to their diffusion and commercialisation. Finally, the main biotechnological discoveries will be described, from transgenic plants to symbiotic control, classical genetic control, and, more recently, control based on insect genomic transformation or on RNAi. These new biotechnologies can revolutionise the sector despite some constrains related to the regulatory restrictions present in different countries. Full article
(This article belongs to the Special Issue Chemical Toxicology and Insecticide Resistance on Insect Pests)
Show Figures

Figure 1

35 pages, 520 KiB  
Review
Biocontrol in Integrated Pest Management in Fruit and Vegetable Field Production
by Maria Pobożniak and Marta Olczyk
Horticulturae 2025, 11(5), 522; https://doi.org/10.3390/horticulturae11050522 - 13 May 2025
Viewed by 1855
Abstract
The Farm-to-Fork strategy, an essential component of the European Green Deal, aims to establish a sustainable and healthy food system. A crucial aspect of this strategy is reducing synthetic pesticide use by 50% by 2030. In this context, biocontrol is seen as a [...] Read more.
The Farm-to-Fork strategy, an essential component of the European Green Deal, aims to establish a sustainable and healthy food system. A crucial aspect of this strategy is reducing synthetic pesticide use by 50% by 2030. In this context, biocontrol is seen as a vital tool for achieving this goal. However, the upscaling of biocontrol faces several challenges, including technical and socio-economic issues and concerns regarding the legal status of biocontrol products. This article focuses on the Positive List, which includes indigenous and introduced species that have been established for use in EPPO countries and approved biological agents in some OECD countries. This article discusses microbial control agents and active substances derived from microbial metabolites, macro-agents, semi-chemicals, and plant-based compounds. It covers their origins, active substances, mechanisms of action against target pests, application methods, market availability, benefits, and potential environmental side effects. Additionally, it discusses the role of beneficial insects and mites as natural enemies in Integrated Pest Management (IPM) within the context of conservation methods. This article addresses the future of biological control, which largely relies on advancements in science to tackle two critical challenges: enhancing the reliability and effectiveness of biopreparations in field conditions and developing suitable formulations of biopesticides tailored to large-scale cultivation technologies for key crops. Full article
14 pages, 1352 KiB  
Review
The Baluchistan Melon Fly, Myiopardalis pardalina Bigot: Biology, Ecology, and Management Strategies
by Junyan Liu, Yidie Xu, Mengbo Guo, Kaiyun Fu, Xinhua Ding, Sijia Yu, Xinyi Gu, Wenchao Guo and Jianyu Deng
Insects 2025, 16(5), 514; https://doi.org/10.3390/insects16050514 - 11 May 2025
Viewed by 1473
Abstract
The Baluchistan melon fly (Myiopardalis pardalina) is a highly invasive tephritid pest. It poses a critical threat to global cucurbit production, with crop losses exceeding 90% during outbreaks. This review synthesises current research on the pest’s biology, ecology, and management, focusing [...] Read more.
The Baluchistan melon fly (Myiopardalis pardalina) is a highly invasive tephritid pest. It poses a critical threat to global cucurbit production, with crop losses exceeding 90% during outbreaks. This review synthesises current research on the pest’s biology, ecology, and management, focusing on its severe economic repercussions for key crops—including melon, watermelon, and cucumber—across Africa, Asia, and Europe. M. pardalina has a four-stage life cycle (egg, larva, pupa, and adult) and distinct morphological adaptations. The species’ geographic range continues to expand, driven by global trade networks and its adaptability to shifting climatic conditions. Infestations by this pest severely reduce fruit yields, undermining food security and destabilising rural economies reliant on cucurbit cultivation. We evaluate diverse control strategies, including monitoring and quarantine methods, cultural practices, physical controls, chemical management, biological agents, and emerging genetic tools. This review emphasises the urgency of adopting integrated pest management (IPM) to strategically balance efficacy, ecological sustainability, and operational scalability. By consolidating fragmented knowledge and identifying critical research gaps, this work provides a framework for mitigating M. pardalina’s impacts, offering actionable insights to safeguard agricultural productivity and enhance resilience in vulnerable regions. Full article
(This article belongs to the Special Issue Surveillance and Management of Invasive Insects)
Show Figures

Figure 1

28 pages, 1129 KiB  
Review
Metal-Based Nanoparticles as Nanopesticides: Opportunities and Challenges for Sustainable Crop Protection
by Puji Shandila, Tunjung Mahatmanto and Jue-Liang Hsu
Processes 2025, 13(5), 1278; https://doi.org/10.3390/pr13051278 - 23 Apr 2025
Cited by 2 | Viewed by 1221
Abstract
Metal-based nanoparticles (MNPs) are gaining attention as promising components of nanopesticides, offering innovative solutions to enhance agricultural pest management while addressing environmental concerns associated with traditional pesticides. MNPs, such as silver, copper, zinc, nickel, gold, iron, aluminum, and titanium, exhibit unique nanoscale properties. [...] Read more.
Metal-based nanoparticles (MNPs) are gaining attention as promising components of nanopesticides, offering innovative solutions to enhance agricultural pest management while addressing environmental concerns associated with traditional pesticides. MNPs, such as silver, copper, zinc, nickel, gold, iron, aluminum, and titanium, exhibit unique nanoscale properties. These properties enable the formulation of MNPs for controlled and sustained release, thereby reducing application frequency and minimizing environmental runoff. This controlled release mechanism not only improves pest management efficacy but also reduces risks to non-target organisms and beneficial species, aligning with the principles of sustainable crop protection. This review examines nanopesticides based on their specific targets, such as nanoinsecticide, nanobactericide, nanofungicide, nanonematicide, and nanoviricide. It also explores the mechanisms of action of metal-based nanoparticles, including physical disruption, chemical interactions, and biological processes. Additionally, the review details how MNPs compromise cellular integrity through mechanisms such as membrane damage, DNA disruption, mitochondrial impairment, and protein denaturation. Despite these advantages, significant challenges remain, particularly concerning the environmental impact of MNPs, their long-term effects on soil health and ecosystem dynamics, and potential risks to human safety. Addressing these challenges is crucial for realizing the full potential of MNPs in sustainable agriculture. Full article
(This article belongs to the Special Issue Feature Review Papers in Section "Environmental and Green Processes")
Show Figures

Graphical abstract

24 pages, 1201 KiB  
Article
Insecticidal Activity of Monoterpenoids Against Sitophilus zeamais Motschulsky and Tribolium castaneum Herbst: Preliminary Structure–Activity Relationship Study
by Andrés G. Sierra-Quitian, Juliet A. Prieto-Rodríguez and Oscar J. Patiño-Ladino
Int. J. Mol. Sci. 2025, 26(7), 3407; https://doi.org/10.3390/ijms26073407 - 5 Apr 2025
Cited by 2 | Viewed by 697
Abstract
To contribute to the search for effective substances in pest control, this study describes the fumigant and contact toxicity against Tribolium castaneum and Sitophilus zeamais of four essential oils (EOs) and some of their major chemical constituents. The EOs from Tagetes zypaquirensis, [...] Read more.
To contribute to the search for effective substances in pest control, this study describes the fumigant and contact toxicity against Tribolium castaneum and Sitophilus zeamais of four essential oils (EOs) and some of their major chemical constituents. The EOs from Tagetes zypaquirensis, Anethum graveolens, Satureja viminea and Minthostachys mollis were obtained by steam distillation and chemically characterized using GC–MS. In the development of research, some monoterpenoids were isolated from the EOs, others were purchased commercially, and some were synthesized from the most active monoterpenoids present in EOs. The main components in the EOs were dill ether (28.56%), α-phellandrene (25.78%) and carvone (23.67%) for A. graveolens, piperitone oxide (30.40%) and pulegone (25.91%) in M. mollis, pulegone (37.40%) and p-menth-3-en-8-ol (11.83%) for S. viminea, and dihydrotagetone (32.13%), myrcene epoxide (19.64%) and β-myrcene (5.30%) for T. zypaquirensis. The results highlight the fumigant action (LC50) and contact toxicity (LD50) of EO from M. mollis against T. castaneum (LC50 of 4.8 µL/L air and LD50 of 6.5 µg/insect) and S. zeamais (LC50 of 7.0 µL/L air and LD50 of 5.81 µg/insect). Among the chemical constituents evaluated, R-carvone 2, piperitone oxide 5 and R-pulegone 6 stand out for their insecticidal potential against S. zeamais (LC50 between 3.0 and 42.4 µL/L, while LD50 between 14.9 and 24.6 µg/insect) and T. castaneum (LC50 between 2.2 and 4.8 µL/L, while LD50 between 4.8 and 13.1 µg/insect). Preliminary structure–activity analysis suggests that the presence of the carbonyl group with conjugated double bonds in cyclic monoterpenes is important for the insecticidal potential exhibited. Full article
Show Figures

Figure 1

31 pages, 531 KiB  
Review
Investigating the Biology of Leaf-Cutting Ants to Support the Development of Alternative Methods for the Control and Management of These Agricultural Pests
by Virginia Elena Masiulionis and Richard Ian Samuels
Agriculture 2025, 15(6), 642; https://doi.org/10.3390/agriculture15060642 - 18 Mar 2025
Viewed by 1717
Abstract
Concerns about the environmental and health risks of synthetic insecticides are driving the search for alternative pest control methods. Leaf-cutting ants (LCAs), one of the most significant pests in the neotropics, cause substantial economic damage to agriculture and present challenges for control due [...] Read more.
Concerns about the environmental and health risks of synthetic insecticides are driving the search for alternative pest control methods. Leaf-cutting ants (LCAs), one of the most significant pests in the neotropics, cause substantial economic damage to agriculture and present challenges for control due to their complex biology and ecology. While chemical control remains the primary strategy, its intensive use has negative environmental impacts, promotes pest resistance, and endangers non-target species, including plants, animals, and humans. This review describes the biology of LCAs, examines traditional control methods and suggests alternative strategies such as the use of entomopathogenic fungi (EPFs) combined with sublethal doses of insecticides, plant essential oils (EOs), and RNAi techniques. Here, we emphasize the need to address LCA management sustainably by investigating the biology and ecology at both the “colony” and “individual” levels. Colony-level factors include morphology, life cycle, behavior, division of labor, and nest structure, while individual-level mechanisms involve sensory, biochemical, and behavioral adaptations for garden sterilization and decontamination. This review also highlights the potential of sublethal insecticide doses combined with EPFs to induce behavioral changes and worker mortality, and it details the mode of action of EOs and the use of RNAi as promising control strategies. The integration of biological and chemical approaches could offer sustainable alternatives to synthetic insecticides. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Back to TopTop