Biocontrol in Integrated Pest Management in Fruit and Vegetable Field Production
Abstract
1. Introduction
1.1. Biopesticide Legislation in the European Union (EU)
1.2. Biopesticide Legislation in the United States (US)
2. Biological Control
3. Types of Biopesticides
3.1. Microbial Biopesticides and Their Metabolites
3.1.1. Bacterial Biopesticides
3.1.2. Viral Biopesticides
3.1.3. Mycobiopesticides
3.1.4. Entomophagous Nematodes as Biopesticides
3.1.5. Microbe Metabolites as Biopesticides
3.2. Macroorganisms as Biocontrol Agents (Insects and Mites)
3.2.1. Conservation Biocontrol
3.2.2. Classical Biocontrol (Introducing Macro-Agents)
3.3. Semiochemicals: Pheromones and Kairomones
3.3.1. Pheromones
3.3.2. Kairomones
3.4. Plant-Origin Biopesticides
3.4.1. Plant Extracts
3.4.2. Essential Oils
3.5. Nanobiopesticides
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stern, V.M.; Smith, R.F.; van den Bosch, R.; Hagen, K.S. The Integrated Control Concept. Hilgardia 1959, 29, 81–101. [Google Scholar] [CrossRef]
- Carson, R. Silent Spring; Houghton Mifflin Harcourt: Boston, MA, USA, 1962; Available online: https://library.uniteddiversity.coop/More_Books_and_Reports/Silent_Spring-Rachel_Carson-1962.pdf (accessed on 14 March 2025).
- Pruszyński, S. Stan Obecny i Przewidywane Kierunki Zmian w Ochronie Roślin do Roku 2020. Stud. Rap. IUNG-PIB 2009, 14, 207–242. [Google Scholar] [CrossRef]
- Balog, A.; Hartel, T.; Loxdale, H.D.; Wilson, K. Differences in the Progress of the Biopesticide Revolution Between the EU and Other Major Crop-Growing Regions. Pest Manag. Sci. 2017, 73, 2203–2208. [Google Scholar] [CrossRef] [PubMed]
- European Commission. EU Pesticides Database. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/active-substances (accessed on 8 March 2025).
- European Parliament and Council. Regulation of the European Parliament and of the Council on the Sustainable Use of Plant Protection Products and Amending Regulation (EU) 2021/2115. COM 2022, 26. Available online: https://food.ec.europa.eu/system/files/2022-06/pesticides_sud_eval_2022_reg_2022-305_en.pdf (accessed on 24 March 2025).
- European Union. Biodiversity: How the EU Protects Nature. EU Council. 2023. Available online: https://europa.eu/ (accessed on 28 January 2023).
- Ligeti, K. The structure of the EPPO: Features and challenges. Croatian Ann. Crim. Sci. Prac. 2021, 27, 33. [Google Scholar]
- Borges, S.; Alkassab, A.T.; Collison, E.; Hinarejos, S.; Jones, B.; McVey, E.; Roessink, I.; Steeger, T.; Sultan, M.; Wassenberg, J. Overview of the testing and assessment of effects of microbial pesticides on bees: Strengths, challenges and perspectives. Apidologie 2021, 52, 1256–1277. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and Federal Facilities. Available online: https://www.epa.gov/enforcement/federal-insecticide-fungicide-and-rodenticide-act-fifra-and-federal-facilities (accessed on 1 May 2025).
- Lacey, L.A.; Shapiro-Ilan, D.I. Microbial Control of Insect Pests in Temperate Orchard Systems: Potential for Incorporation into IPM. Annu. Rev. Entomol. 2008, 53, 121–144. [Google Scholar] [CrossRef]
- Baratange, M.; Cardoso, J.; Robin, D.C.; Marchand, P.A. Implementation of Biocontrol Macro-Organisms in France. Ecologies 2023, 4, 478–498. [Google Scholar] [CrossRef]
- Kumar, J.; Ramlal, A.; Mallick, D.; Mishra, V. An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants 2021, 10, 1185. [Google Scholar] [CrossRef]
- Khursheed, A.; Rather, M.A.; Jain, V.; Rasool, S.; Nazir, R.; Malik, N.A.; Majid, S.A. Plant-Based Natural Products as Potential Ecofriendly and Safer Biopesticides: A Comprehensive Overview of Their Advantages over Conventional Pesticides, Limitations, and Regulatory Aspects. Microbiol. Pathog. 2022, 173, 105854. [Google Scholar] [CrossRef]
- Šunjka, D.; Mechora, Š. An Alternative Source of Biopesticides and Improvement in Their Formulation—Recent Advances. Plants 2022, 11, 3172. [Google Scholar] [CrossRef] [PubMed]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current Status of Pesticide Effects on Environment, Human Health, and Its Eco-Friendly Management as Bioremediation: A Comprehensive Review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef]
- Hu, X.L.; Niu, J.J.; Meng, Q.; Chai, Y.H.; Chu, K.H.; Chan, K.M. Effects of Two Juvenile Hormone Analogue Insecticides, Fenoxycarb and Methoprene, on Neocaridina davidi. Environ. Pollut. 2019, 253, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, Y. Nonsteroidal Ecdysone Agonists. In Vitamins & Hormones; Academic Press: Cambridge, MA, USA, 2005; Volume 73, pp. 131–173. [Google Scholar] [CrossRef]
- Liu, X.; Cao, A.; Yan, D.; Ouyang, C.; Wang, Q.; Li, Y. Overview of Mechanisms and Uses of Biopesticides. Int. J. Pest Manag. 2019, 67, 65–72. [Google Scholar] [CrossRef]
- Souto, A.L.; Sylvestre, M.; Tölke, E.D.; Tavares, J.F.; Barbosa-Filho, J.M.; Cebrián-Torrejón, G. Plant-Derived Pesticides as an Alternative to Pest Management and Sustainable Agricultural Production: Prospects, Applications, and Challenges. Molecules 2021, 26, 4835. [Google Scholar] [CrossRef]
- Frederiks, C.; Wesseler, J.H. A Comparison of the EU and US Regulatory Frameworks for the Active Substance Registration of Microbial Biological Control Agents. Pest Manag. Sci. 2019, 75, 87–103. [Google Scholar] [CrossRef]
- Palma, L.; Muñoz, D.; Berry, C.; Murillo, J.; Caballero, P. Bacillus thuringiensis Toxins: An Overview of Their Biocidal Activity. Toxins 2014, 6, 3296–3325. [Google Scholar] [CrossRef] [PubMed]
- Gelaye, Y.; Negash, B. The Role of Baculoviruses in Controlling Insect Pests: A Review. Cogent Food Agric. 2023, 9, 2254139. [Google Scholar] [CrossRef]
- Sharma, M.P.; Sharma, A.N.; Hussaini, S.S. Entomopathogenic nematodes, a potential microbial biopesticide: Mass production and commercialization status—A mini review. Arch. Phytopathol. Plant Prot. 2011, 44, 855–870. [Google Scholar] [CrossRef]
- Silva, G.C.; Kitano, I.T.; Ribeiro, I.A.F.; Lacava, P.T. The Potential Use of Actinomycetes as Microbial Inoculants and Biopesticides in Agriculture. Front. Soil Sci. 2022, 2, 833181. [Google Scholar] [CrossRef]
- Bravo, A.; Gill, S.S.; Soberón, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 2007, 49, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Sanahuja, G.; Banakar, R.; Twyman, R.M.; Capell, T.; Christou, P. Bacillus thuringiensis: A Century of Research, Development, and Commercial Applications. Plant Biotechnol. J. 2011, 9, 283–300. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Gassman, A.J.; Crowder, D.W.; Carrière, Y. Insect Resistance to Bt Crops: Evidence Versus Theory. Nat. Biotechnol. 2008, 26, 199–202. [Google Scholar] [CrossRef]
- Pardo-López, L.; Muñoz-Garay, C.; Porta, H.; Rodríguez-Almazán, C.; Soberón, M.; Bravo, A. Strategies to Improve the Insecticidal Activity of Cry Toxins from Bacillus thuringiensis. Peptides 2009, 30, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lei, C.; Sun, X. Control efficacy of Bacillus thuringiensis and a new granulovirus isolate against Cydia pomonella in orchards. Biocontrol Sci. Technol. 2013, 23, 691–700. [Google Scholar] [CrossRef]
- Damos, P.; Colomar, L.A.E.; Ioriatti, C. Integrated Fruit Production and Pest Management in Europe: The Apple Case Study and How Far We Are from the Original Concept? Insects 2015, 6, 626–657. [Google Scholar] [CrossRef]
- Smirle, M.J.; Lowery, D.T.; Zurowski, C.L. Susceptibility of Leafrollers (Lepidoptera: Tortricidae) from Organic and Conventional Orchards to Azinphosmethyl, Spinosad, and Bacillus thuringiensis. J. Econ. Entomol. 2003, 96, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Boselli, M.; Dimock, M.; Myrta, A. Use of Bacillus thuringiensis in integrated control programmes. Inf. Agrar. 2007, 63, 67–70. [Google Scholar]
- Ricciardi, R.; Benelli, G.; Di Giovanni, F.; Lucchi, A. The European Grape Berry Moth, Eupoecilia ambiguella (Lepidoptera: Tortricidae): Current Knowledge and Management Challenges. Crop Prot. 2024, 180, 106641. [Google Scholar] [CrossRef]
- Shahini, S.; Kullaj, E.; Çakalli, A.; Çakalli, M.; Lazarevska, S.; Pfeiffer, D.G.; Gumeni, F. Population Dynamics and Biological Control of European Grapevine Moth (Lobesia botrana: Lepidoptera: Tortricidae) in Albania Using Different Strains of Bacillus thuringiensis. Int. J. Pest Manag. 2010, 56, 281–286. [Google Scholar] [CrossRef]
- Öztemiz, S.; Küden, A.; Nas, S.; Lavkor, I. Efficacy of Trichogramma evanescens and Bacillus thuringiensis var. kurstaki in Control of Cydia pomonella (L.) in Turkey. Turk. J. Agric. For. 2017, 41, 201–207. [Google Scholar] [CrossRef]
- Damianov, S.; Stef, R.; Grozea, I.; Virteiu, A.M.; Carabet, A. Research concerning the biological control of codling moth (Cydia pomonella) using the entomophagous wasp Trichogramma sp. in the Caransebes Pomicultural Basin. Res. J. Agric. Sci. 2014, 46, 189–193. [Google Scholar]
- Arakere, U.C.; Jagannath, S.; Krishnamurthy, S.; Chowdappa, S.; Konappa, N. Microbial Bio-Pesticide as Sustainable Solution for Management of Pests: Achievements and Prospects. Biopesticides 2022, 183, 183–200. [Google Scholar] [CrossRef]
- Legwaila, M.M.; Munthali, D.C.; Kwerepe, B.C.; Obopile, M. Efficacy of Bacillus thuringiensis (var. kurstaki) against Diamondback Moth (Plutella xylostella L.) Eggs and Larvae on Cabbage Under Semi-Controlled Greenhouse Conditions. Int. J. Insect Sci. 2015, 7, 39–45. [Google Scholar] [CrossRef]
- Singh, L.S.; Singh, M.K.R.; Singh, V.B. Field efficacy of certain bio-rational insecticides and Bacillus thuringiensis based bio-insecticides against cabbage butterfly, Pieris brassicae. Veg. Sci. 2010, 37, 72–74. [Google Scholar]
- Szafranek, P.; Rybczynski, D. Zwalczanie pachówki strąkóweczki (Cydia nigricana F.) w uprawie grochu (Pisum sativum L.) w oparciu o sygnalizację pojawienia się szkodnika. Zesz. Nauk. Inst. Ogrod. 2014, 22, 129–134. [Google Scholar]
- OECD Environment Directorate Chemicals and Biotechnology Committee. Guidance Document on Baculoviruses as Plant Protection Products, Series on Pesticides No. 11. 2023. Available online: https://www.oecd.org/content/dam/oecd/en/publications/reports/2023/10/guidance-document-on-baculoviruses-as-plant-protection-products_1893107e/8f0dc501-en.pdf (accessed on 24 March 2025).
- U.S. Environmental Protection Agency. Biopesticide Active Ingredients. Available online: https://www.epa.gov/ingredients-used-pesticide-products/biopesticide-active-ingredients (accessed on 11 March 2025).
- Open Government Portal, Government of Canada. Trade Name for Biopesticide. Available online: https://open.canada.ca/data/en/dataset/54d59686-7b5f-4a90-ba1e-33cc41837577 (accessed on 17 March 2025).
- Jo, Y.H.; Patnaik, B.B.; Kang, S.W.; Chae, S.-H.; Oh, S.; Kim, D.H.; Noh, M.Y.; Seo, G.W.; Jeong, H.C.; Noh, J.Y.; et al. Analysis of the genome of a Korean isolate of the Pieris rapae granulovirus enabled by its separation from total host genomic DNA by pulse-field electrophoresis. PLoS ONE 2013, 8, e84183. [Google Scholar] [CrossRef]
- Keyun NPV. Keyun PlxyGV. Available online: http://www.keyunnpv.com/KeyunPlxyGV/56.html (accessed on 14 March 2025).
- U.S. Environmental Protection Agency. Reregistration Eligibility Decision (RED) Bacillus thuringiensis. Posted on March 1998. Available online: https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/red_PC-006400_30-Mar-98.pdf (accessed on 6 May 2025).
- Reid, S.; De Malmanche, H.; Chan, L.; Popham, H.; Van Oers, M.M. Invertebrates and Entomopathogens. In Mass Production of Beneficial Organisms, 2nd ed.; Morales-Ramos, J.A., Rojas, M.G., Shapiro-Ilan, D.I., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 375–406. [Google Scholar] [CrossRef]
- Hunter-Fujita, F.R.; Entwistle, P.F.; Evans, H.F.; Crook, N.E. Insect Viruses and Pest Management; John Wiley & Sons: New York, NY, USA, 1998; p. xii+620. [Google Scholar]
- Raj, M.N.; Samal, I.; Paschapur, A.; Subbanna, A.R.N.S. Chapter 3—Entomopathogenic Viruses and Their Potential Role in Sustainable Pest Management. In New and Future Developments in Microbial Biotechnology and Bioengineering; Singh, H.B., Vaishnav, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 47–72. [Google Scholar] [CrossRef]
- Stará, J.; Kocourek, F. Evaluation of efficacy of Cydia pomonella granulovirus (CpGV) to control the codling moth (Cydia pomonella L., Lep. Tortricidae) in field trials. Plant Protect. Sci. 2003, 39, 117–125. [Google Scholar] [CrossRef]
- Tsygichko, A.A.; Asaturova, A.M.; Lakhova, T.N.; Klimenko, A.I.; Lashin, S.A.; Vasiliev, G.V. Biocontrol Potential of the New Codling Moth Granulovirus (CpGV) Strains. Microorganisms 2024, 12, 1991. [Google Scholar] [CrossRef]
- Asser-Kaiser, S.; Fritsch, E.; Undorf-Spahn, K.; Kienzle, J.; Eberle, K.E.; Gund, N.A.; Reineke, A.; Zebitz, C.P.; Heckel, D.G.; Huber, J.; et al. Rapid emergence of baculovirus resistance in codling moth due to dominant, sex-linked inheritance. Science 2007, 317, 1916–1918. [Google Scholar] [CrossRef]
- Kumpanian, S.K. Strategien zur Regulierung des Fruchtschalenwicklers Adoxophyes orana F.v.R. (Lepidoptera: Tortricidae) mit Kombinationen des Neem-Präparates NeemAzal-T/S und Entomopathogene. Doctoral Dissertation, Institut für Phytomedizin, Fakultät Agrarwissenschaften, Universität Hohehmmein München, Stuttgart, Germany, 2002. [Google Scholar]
- Stará, J.; Bohdanecká, D.; Kocourek, F.; Pultar, O.; Kundu, J.K. Evaluation of Biological Efficacy of Adoxophyes orana Granulovirus on the Reduction of Adoxophyes orana Population by PCR Detection. OILB/WPRS Bull. 2007, 30, 177–180. [Google Scholar]
- Farrar, R.R.; Shapiro, M.; Shepard, M. Relative Activity of Baculoviruses of the Diamondback Moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae). BioControl 2007, 52, 657–667. [Google Scholar] [CrossRef]
- Arrizubieta, M.; Simón, O.; Ricarte-Bermejo, A.; López-Ferber, M.; Williams, T.; Caballero, P. Conclusion of Helicoverpa armigera Single Nucleopolyhedrovirus (HearSNPV) and Helicoverpa armigera Multiple Nucleopolyhedrovirus (HearMNPV): Pathogenicity and Stability in Homologous and Heterologous Hosts. Viruses 2022, 14, 687. [Google Scholar] [CrossRef]
- Pathania, S.S.; Mushtaq, T.; Bano, P.; Sofi, M.A.; Kumar, S.; Nisa, B.U.; Zahoor, S.; Mushtaq, H. Baculoviruses: A Novel Approach in Integrated Pest Management. Biol. Forum Int. J. 2023, 15, 77–82. [Google Scholar]
- Altinok, H.H.; Altinok, M.A.; Koca, A.S. Modes of Action of Entomopathogenic Fungi. Curr. Trends Nat. Sci. 2019, 8, 117–124. [Google Scholar]
- Khan, S.; Guo, L.; Maimaiti, Y.; Mijit, M.; Qiu, D. Entomopathogenic Fungi as Microbial Biocontrol Agents. Mol. Plant Breed. 2012, 3, 7. [Google Scholar] [CrossRef]
- Khun, K.K.; Wilson, B.A.L.; Stevens, M.M.; Huwer, R.K.; Ash, G.J. Integration of Entomopathogenic Fungi into IPM Programs: Studies Involving Weevils (Coleoptera: Curculionoidea) Affecting Horticultural Crops. Insects 2020, 11, 659. [Google Scholar] [CrossRef]
- Cossentine, J.E.; Judd, G.J.R.; Bissett, J.D.; Lacey, L.A. Susceptibility of apple clearwing moth larvae, Synanthedon myopaeformis (Lepidoptera: Sesiidae) to Beauveria bassiana and Metarhizium brunneum. Biocontrol Sci. Technol. 2010, 20, 703–707. [Google Scholar] [CrossRef]
- Sullivan, C.F.; Parker, B.L.; Skinner, M. A Review of Commercial Metarhizium- and Beauveria-Based Biopesticides for the Biological Control of Ticks in the USA. Insects 2022, 13, 260. [Google Scholar] [CrossRef]
- Godonou, I.; Atcha-Ahowe, J.B.; Vodouhè, S.; Kooyman, C.; Ahanchédé, A.; Korie, S. Potential of Beauveria bassiana and Metarhizium anisopliae Isolates from Benin to Control Plutella xylostella L. (Lepidoptera: Plutellidae). Crop Prot. 2009, 28, 220–224. [Google Scholar] [CrossRef]
- Aynalem, B.; Muleta, D.; Jida, M.; Shemekite, F.; Aseffa, F. Biocontrol competence of Beauveria bassiana, Metarhizium anisopliae and Bacillus thuringiensis against tomato leafminer, Tuta absoluta Meyrick 1917 under greenhouse and field conditions. Heliyon 2022, 8, e09694. [Google Scholar] [CrossRef] [PubMed]
- Knodel, J.J.; Shrestha, G. Pulse Crops: Pest Management of Wireworms and Cutworms in the Northern Great Plains of United States and Canada. Ann. Entomol. Soc. Am. 2018, 111, 195–204. [Google Scholar] [CrossRef]
- Asi, M.; Bashir, M.; Afzal, M.; Imran, S. Effect of conidial concentration of entomopathogenic fungi on mortality of cabbage aphid, Brevicoryne brassicae L. Pak. J. Life Soc. Sci. 2009, 2, 175–180. [Google Scholar]
- Michereff Filho, M.; Oliveira, S.; Liz, R.D.; Faria, M. Cage and field assessments of Beauveria bassiana-based Mycoinsecticides for Myzus persicae Sulzer (Hemiptera: Aphididae) control in cabbage. Neotrop. Entomol. 2011, 40, 470–476. [Google Scholar]
- Seye, F.; Bawin, T.; Boukraa, S.; Zimmer, J.-Y.; Ndiaye, M.; Delvigne, F.; Francis, F. Effect of Entomopathogenic Aspergillus Strains Against the Pea Aphid, Acythrosiphon pisum (Hemiptera: Aphididae). Appl. Entomol. Zool. 2014, 49, 453–458. [Google Scholar] [CrossRef]
- Bhat, A.H.; Chaubey, A.K.; Askary, T.H. Global Distribution of Entomopathogenic Nematodes, Steinernema and Heterorhabditis. Egypt. J. Biol. Pest Control 2020, 30, 31. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, B.M.; Lee, H.C.; Choi, I.S.; Koo, K.B.; Son, K.H. Antagonistic Efficacy of Symbiotic Bacterium Xenorhabdus sp. SCG Against Meloidogyne spp. J. Microbiol. Biotechnol. 2024, 34, 1627–1635. [Google Scholar] [CrossRef]
- Koppenhöfer, A.M.; Fuzy, E.M. Effect of Soil Type on Infectivity and Persistence of the Entomopathogenic Nematodes Steinernema scarabaei, Steinernema glaseri, Heterorhabditis zealandica, and Heterorhabditis bacteriophora. J. Invertebr. Pathol. 2006, 92, 11–22. [Google Scholar] [CrossRef]
- Tarasco, E.; Fanelli, E.; Salvemini, C.; El-Khoury, Y.; Troccoli, A.; Vovlas, A.; De Luca, F. Entomopathogenic Nematodes and Their Symbiotic Bacteria: From Genes to Field Uses. Front. Insect Sci. 2023, 3, 1195254. [Google Scholar] [CrossRef]
- Lacey, L.A.; Granatstein, D.; Arthurs, S.P.; Headrick, H.; Fritts, R., Jr. Use of Entomopathogenic Nematodes (Steinernematidae) in Conjunction with Mulches for Control of Overwintering Codling Moth (Lepidoptera: Tortricidae). J. Entomol. Sci. 2006, 41, 107–119. [Google Scholar] [CrossRef]
- Njezic, B.; Ehlers, R.U. Entomopathogenic Nematodes Control Plum Sawflies (Hoplocampa minuta and H. flava). J. Appl. Entomol. 2020, 144, 491–499. [Google Scholar] [CrossRef]
- Vincent, C.; Belair, G. Biocontrol of the Apple Sawfly, Hoplocampa testudinea, with Entomogenous Nematodes. Entomophaga 1992, 37, 575–582. [Google Scholar] [CrossRef]
- Belair, G.; Vincent, C.; Chouinard, G. Foliar sprays with Steinernema carpocapsae against early-season apple pests. J. Nematol. 1998, 30, 599–606. [Google Scholar]
- Gozel, U.; Gunes, C. Effect of entomopathogenic nematode species on the corn stalk borer (Sesamia cretica Led. Lepidoptera: Noctuidae) at different temperatures. Turk. J. Entomol. 2013, 37, 65–72. [Google Scholar]
- Haukeland, S.; Lola-Luz, T. Efficacy of the Entomopathogenic Nematodes Steinernema kraussei and Heterorhabditis megidis Against the Black Vine Weevil Otiorhynchus sulcatus in Open Field-Grown Strawberry Plants. Agric. For. Entomol. 2010, 12, 363–369. [Google Scholar] [CrossRef]
- Garcia-del-Pino, F.; Alabern, X.; Morton, A. Efficacy of Soil Treatments of Entomopathogenic Nematodes Against the Larvae, Pupae, and Adults of Tuta absoluta and Their Interaction with the Insecticides Used Against This Insect. BioControl 2013, 58, 723–731. [Google Scholar] [CrossRef]
- Glazer, I.; Navon, A. Activity and Persistence of Entomoparasitic Nematodes Tested Against Heliothis armigera (Lepidoptera: Noctuidae). J. Econ. Entomol. 1990, 83, 1795–1800. [Google Scholar] [CrossRef]
- Horowitz, A.R.; Ishaaya, I. Biorational Insecticides: Mechanisms, Selectivity, and Importance in Pest Management. In Insect Pest Management: Field and Protected Crops; Horowitz, A.R., Ishaaya, I., Eds.; Springer: Berlin, Germany, 2004; pp. 1–20. [Google Scholar]
- Bacci, L.; Lupi, D.; Savoldelli, S.; Rossaro, B. A Review of Spinosyns, a Derivative of Biological Acting Substances as a Class of Insecticides with a Broad Range of Action Against Many Insect Pests. J. Entomol. Acarol. Res. 2016, 48, 40–52. [Google Scholar] [CrossRef]
- Lukehart, R.M. Assessment of Granulovirus, Spinosad, and Mating Disruption for Controlling Cydia pomonella L. (Lepidoptera: Tortricidae) in Organic Coastal California Apple Orchards. Master’s Thesis, California Polytechnic State University, San Luis Obispo, CA, USA, 2018. [Google Scholar] [CrossRef]
- Sparks, T.C.; Crouse, G.D.; Benko, Z.; Demeter, D.; Giampietro, N.C.; Lambert, W.; Brown, A.V. The Spinosyns, Spinosad, Spinetoram, and Synthetic Spinosyn Mimics—Discovery, Exploration, and Evolution of a Natural Product Chemistry and the Impact of Computational Tools. Pest Manag. Sci. 2020, 77, 3637–3649. [Google Scholar] [CrossRef]
- Depalo, L.; Masetti, A.; Avilla, J.; Bosch, D.; Pasqualini, E. Toxicity and residual activity of spinetoram to neonate larvae of Grapholita molesta (Busck) and Cydia pomonella (L.) (Lepidoptera: Tortricidae): Semi-field and laboratory trials. Crop Protect. 2016, 89, 32–37. [Google Scholar] [CrossRef]
- Sikorska, K.; Wędzisz, A. Nowoczesne Pesticydy—Spinosad. Bromat. Chem. Toksykol. 2009, 42, 203–212. [Google Scholar]
- Landis, D.A.; Wratten, S.D.; Gurr, G.M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 2000, 45, 175–201. [Google Scholar] [CrossRef]
- Lu, Z.X.; Zhu, P.Y.; Gurr, G.M.; Zheng, X.S.; Read, D.M.; Heong, K.L.; Yang, Y.J.; Xu, H.X. Mechanisms for flowering plants to benefit arthropod natural enemies of insect pests: Prospects for enhanced use in agriculture. Insect Sci. 2014, 21, 1–12. [Google Scholar] [CrossRef]
- Sarwar, M. Food habits or preferences and protecting or encouraging native ladybugs (Coleoptera: Coccinellidae). Int. J. Zool. Stud. 2016, 1, 13–18. [Google Scholar]
- De Clercq, P. Plants in the Rearing of Arthropod Predators and Parasitoids: Benefits, Constraints, and Alternatives. Curr. Opin. Insect Sci. 2024, 61, 101139. [Google Scholar] [CrossRef]
- Wright, B. Know Your Friends: Minute Pirate Bugs; University of Nebraska-Lincoln: Lincoln, NE, USA, 1994. [Google Scholar]
- Kalyanasundaram, M.; Kamala, I.M. Chapter 4—Parasitoids. In Ecofriendly Pest Management for Food Security; Omkar, Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 109–138. [Google Scholar] [CrossRef]
- Gardiner, M.M.; Landis, D.A.; Gratton, C.; DiFonzo, C.D.; O’Neal, M.; Chacon, J.M.; Wayo, M.T.; Schmidt, N.P.; Mueller, E.E.; Heimpel, G.E. Ecological application of biological control in agriculture: Effects of landscape diversification on natural enemies of arthropod pests. Ecol. Appl. 2009, 19, 143–154. [Google Scholar] [CrossRef]
- Rusch, A.; Chaplin-Kramer, R.; Gardiner, M.M.; Hawro, V.; Holland, J.; Landis, D.; Thies, C.; Weisser, W.W.; Winqvist, C.; Woltz, M.; et al. Agricultural landscape simplification reduces natural pest control: A quantitative synthesis. Agric. Ecosyst. Environ. 2016, 221, 198–204. [Google Scholar] [CrossRef]
- Balzan, M.V.; Bocci, G.; Moonen, A.C. Augmenting Flower Trait Diversity in Wildflower Strips to Optimise the Conservation of Arthropod Functional Groups for Multiple Agroecosystem Services. J. Insect Conserv. 2014, 18, 713–728. [Google Scholar] [CrossRef]
- Markó, V.; Jenser, G.; Mihályi, K.; Hegyi, T.; Balázs, K. Flowers for better pest control? Effects of apple orchard groundcover management on mites (Acari), leafminers (Lepidoptera, Scitellidae), and fruit pests. Biocontrol Sci. Technol. 2012, 221, 39–60. [Google Scholar] [CrossRef]
- Beizhou, S.; Zhang, J.; Wiggins, N.; Yao, Y.; Tang, G.; Sang, X. Intercropping with Aromatic Plants Decreases Herbivore Abundance, Species Richness, and Shifts Arthropod Community Trophic Structure. Environ. Entomol. 2012, 41, 872. [Google Scholar] [CrossRef]
- Song, B.; Jiao, H.; Tang, G.; Yao, Y. Combining Repellent and Attractive Aromatic Plants to Enhance Biological Control of Three Tortricid Species (Lepidoptera: Tortricidae) in an Apple Orchard. Fla. Entomol. 2014, 97, 1679–1689. [Google Scholar] [CrossRef]
- Riddick, E.W.; Mills, N.J. Potential of Adult Carabids (Coleoptera: Carabidae) as Predators of Fifth-Instar Codling Moth (Lepidoptera: Tortricidae) in Apple Orchards in California. Environ. Entomol. 1994, 23, 1338–1345. [Google Scholar] [CrossRef]
- Happe, A.; Beni, L.R.; Bosch, J.; Alins, G.; Mody, K. Earwigs and Aphids in Apple Orchards—Influence of Agri-Environmental Measures and Landscape Factors. In Proceedings of the 18th International Conference on Organic Fruit-Growing, Hohenheim, Germany, 19–21 February 2018; pp. 243–244. [Google Scholar]
- McGrath, H. Bespoke Field Margins Delivering Multiple Benefits to Fresh Produce; University of Reading: Reading, UK, 2022. [Google Scholar]
- Hatt, S.; Mouchon, P.; Lopes, T.; Francis, F. Effects of Wildflower Strips and an Adjacent Forest on Aphids and Their Natural Enemies in a Pea Field. Insects 2017, 8, 99. [Google Scholar] [CrossRef]
- Biddinger, D.J.; Weber, D.C.; Hull, L.A. Coccinellidae as Predators of Mites: Stethorini in Biological Control. Biol. Control 2009, 51, 268–283. [Google Scholar] [CrossRef]
- Raudonis, L.; Survilienė, E.; Valiuškaitė, A. Toxicity of pesticides to predatory mites and insects in apple-tree site under field conditions. Environ. Toxicol. 2004, 19, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Möth, S.; Richart-Cervera, S.; Comsa, M.; Herrera, R.A.; Hoffmann, C.; Kolb, S.; Popescu, D.; Reiff, J.M.; Rusch, A.; Tolle, P.; et al. Local Management and Landscape Composition Affect Predatory Mites in European Wine-Growing Regions. Agric. Ecosyst. Environ. 2023, 344, 108292. [Google Scholar] [CrossRef]
- Tixier, M.-S.; Lopes, I.; Blanc, G.; Dedieu, J.-L.; Kreiter, S. Phytoseiid Mite Diversity (Acari: Mesostigmata) and Assessment of Their Spatial Distribution in French Apple Orchards. Acarologia 2014, 54, 97–111. [Google Scholar] [CrossRef]
- Praslička, J.; Barteková, A. Occurrence of Predatory Mites of the Phytoseiidae Family on Apple-Trees in Integrated and Ecological Orchards. Plant Protect. Sci. 2008, 44, 57–60. [Google Scholar] [CrossRef]
- Loughner, R.; Wentworth, K.; Loeb, G.; Nyrop, J. Influence of Leaf Trichomes on Predatory Mite Density and Distribution in Plant Assemblages and Implications for Biological Control. Biol. Control 2010, 54, 255–262. [Google Scholar] [CrossRef]
- Marshall, D.B.; Lester, P.J. The Transfer of Typhlodromus pyri on Grape Leaves for Biological Control of Panonychus ulmi (Acari: Phytoseiidae, Tetranychidae) in Vineyards in Ontario, Canada. Biol. Control 2001, 20, 228–235. [Google Scholar] [CrossRef]
- Sentenac, G.; Bonafos, R.; Ruelle, B.; Coulon, T.; Escaffre, P.; Auger, P.; Kreiter, S. Effects Non-Intentionnels de Certains Produits Phyopharmaceutiques sur Typhlodromus pyri, Kampimodromus aberrans et Phytoseius plumifer. Phytoma 2002, 555, 50–55. [Google Scholar]
- Navajas, M.; Thistlewood, H.; Lagnel, J.; Marshall, D.; Tsagkarakou, A.; Pasteur, N. Field releases of the predatory mite Neoseiulus fallacis (Acari: Phytoseiidae) in Canada, monitored by pyrethroid resistance and allozyme markers. Biol. Control 2001, 20, 191–198. [Google Scholar] [CrossRef]
- Blommers, L.H.M. Integrated Pest Management in European Apple Orchards. Annu. Rev. Entomol. 1994, 39, 213–241. [Google Scholar] [CrossRef]
- Sekrecka, M.; Niemczyk, E. Introducing Typhlodromus pyri (Phytoseiidae) into Apple Orchards in Poland. J. Fruit Orn. Plant Res. 2006, 14, 203–207. [Google Scholar]
- Szabó, Á.; Pénzes, B.A. New Method for the Release of Amblyseius andersoni (Acari: Phytoseiidae) in Young Apple Orchards. Eur. J. Entomol. 2013, 110, 477–482. [Google Scholar] [CrossRef]
- Raworth, D.A.; Robertson, M.C. Occurrence of the Spider Mite Predator Stethorus punctillum (Coleoptera: Coccinellidae) in the Pacific Northwest. J. Entomol. Soc. Brit. Columbia 2002, 99, 81–82. [Google Scholar]
- Wyss, E.; Villier, M.; Hemptinne, J.L.; Muller-Scharer, H. Effects of Augmentative Releases of Eggs and Larvae of the Ladybird Beetle, Adalia bipunctata, on the Abundance of the Rosy Apple Aphid, Dysaphis plantaginea, in Organic Apple Orchards. Entomol. Exp. Appl. 1999, 90, 167–173. [Google Scholar] [CrossRef]
- Kindlmann, P.; Yasuda, H.; Kajita, Y.; Sato, S.; Dixon, A.F. Predator efficiency reconsidered for a ladybird-aphid system. Front. Ecol. Evol. 2015, 3, 133830. [Google Scholar] [CrossRef]
- Lemanski, K.; Herz, A. Commercial availability of invertebrate biological control agents targeting plant pests in Germany. J. Plant Dis. Prot. 2025, 132, 67. [Google Scholar] [CrossRef]
- Trdan, S.; Laznik, Ž.; Bohinc, T. Native Natural Enemies of Plant Pests in Slovenia with an Emphasis on Species Suitable for Mass Rearing. J. Insect Sci. 2023, 23, 3. [Google Scholar] [CrossRef]
- Sigsgaard, L.; Esbjerg, P.; Philipsen, H. Controlling pear psyllids by mass releasing Anthocoris nemoralis and A. nemorum (Heteroptera: Anthocoridae). J. Fruit Ornam. Plant Res. 2006, 14, 89–97. [Google Scholar]
- Shaw, B.; Nagy, C.; Fountain, M.T. Organic Control Strategies for Use in IPM of Invertebrate Pests in Apple and Pear Orchards. Insects 2021, 12, 1106. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, A.H.; Spooner-Hart, R.N.; Vickers, R.A. Abundance and Natural Control of the Woolly Aphid Eriosoma lanigerum in an Australian Apple Orchard IPM Program. BioControl 2005, 50, 271–291. [Google Scholar] [CrossRef]
- Ateyyat, M.; Al-Awamleh, M.; El-Osofi, H. Rearing and release of Aphelinus mali (Hald) (Hymenoptera: Aphelinidae), the sole parasitoid of woolly apple Eriosoma lanigerum (Hausmann) (Homoptera: Eriosomatidae) on apple orchards in Ash-Shoubak. Acad. J. Entomol. 2011, 4, 108–113. [Google Scholar]
- Hetebrügge, K.; Fieger-Metag, N.; Kienzle, J.; Bathon, H.; Zebitz, C.P.W.; Zimmer, J. Biological Control of Woolly Apple Aphid (Eriosoma lanigerum HAUSM.) with Aphelinus mali HALD. In Ecofruit—12th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing, Weinsberg, Germany, 31 January–2 February 2006; Boos, M., Ed.; Markus Boos: Weinsberg, Germany, 2006; pp. 36–42. [Google Scholar]
- Alins, G.; Lordan, J.; Rodríguez-Gasol, N.; Arnó, J.; Peñalver-Cruz, A. Earwig Releases Provide Accumulative Biological Control of the Woolly Apple Aphid over the Years. Insects 2023, 14, 890. [Google Scholar] [CrossRef]
- Dodiya, R.D.; Barad, A.H.; Pathan, N.P.; Raghunandan, B.L. Trichogramma: A Promising Biocontrol Agent. Int. J. Econ. Plants 2023, 10, 192–199. [Google Scholar] [CrossRef]
- European and Mediterranean Plant Protection Organization (EPPO). PM 6/3 (5) Biological control agents safely used in the EPPO region. EPPO Bull. 2021, 51, 452–454. [Google Scholar] [CrossRef]
- Hagley, E.A.C. Release of Chrysoperla carnea Stephens (Neuroptera: Chrysopidae) for Control of the Green Apple Aphid, Aphis pomi DeGeer (Homoptera: Aphididae). Can. Entomol. 1989, 121, 309–314. [Google Scholar] [CrossRef]
- Ahmad, S.; Pozzebon, A.; Duso, C. Augmentative Releases of the Predatory Mite Kampimodromus aberrans in Organic and Conventional Apple Orchards. Crop Prot. 2013, 52, 47–56. [Google Scholar] [CrossRef]
- Lorenzon, M.; Pozzebon, A.; Duso, C. Biological Control of Spider Mites in North-Italian Vineyards Using Pesticide-Resistant Predatory Mites. Acarologia 2018, 58, 1–10. [Google Scholar] [CrossRef]
- Volkov, O.G.; Meshovk, Y.L.; Yakovleva, I.N. Development and predation of Picromerus bidens (Hemiptera: Pentatomeidae) on Leptonotarsia declimeata (Coleoptera: Chrysomelidae). Russ. Entomol. J. 2013, 22, 43–50. [Google Scholar]
- Clercq, P.D. Spined Soldier Bug, Podisus maculiventris (Hemiptera: Pentatomidae). In Encyclopedia of Entomology; Springer: Dordrecht, The Netherlands, 2004. [Google Scholar] [CrossRef]
- Jalali, S.K.; Venkatesan, T.; Wahab, S. Parasitoids and Predators in Pest Management with Special Reference to Trichogrammatids. In Bio Pest Management; Agro-Tech Publishing Academy: Udaipur, India, 2010; pp. 39–61. [Google Scholar]
- Martel, V.; Johns, R.C.; Jochems-Tanguay, L.; Jean, F.; Maltais, A.; Trudeau, S.; St-Onge, M.; Cormier, D.; Smith, S.M.; Boisclair, J. The Use of UAS to Release the Egg Parasitoid Trichogramma spp. (Hymenoptera: Trichogrammatidae) Against an Agricultural and a Forest Pest in Canada. J. Econ. Entomol. 2021, 114, 1867–1881. [Google Scholar] [CrossRef]
- Cossentine, J.E.; Jensen, L.B.M. Releases of Trichogramma platneri (Hymenoptera: Trichogrammatidae) in Apple Orchards under a Sterile Codling Moth Release Program. Biol. Control 2000, 18, 179–186. [Google Scholar] [CrossRef]
- Botto, E.; Glaz, P. Potential for controlling codling moth Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae) in Argentina using the sterile insect technique and egg parasitoids. J. Appl. Entomol. 2010, 134, 251–260. [Google Scholar] [CrossRef]
- Sigsgaard, L.; Herz, A.; Korsgaard, M.; Wührer, B. Mass Release of Trichogramma evanescens and T. cacoeciae Can Reduce Damage by the Apple Codling Moth Cydia pomonella in Organic Orchards under Pheromone Disruption. Insects 2017, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, O. Der Einsatz von Trichogramma-Schlupfwespen in Deutschland. Gesunde Pflanz. 2004, 56, 157–166. [Google Scholar] [CrossRef]
- Mills, N.J. Augmentation in orchards: Improving the efficacy of Trichogramma inundation. In Proceedings of the 1st International Symposium on the Biological Control of Arthropods, Honolulu, Hawaii, USA, 14–18 January 2002; FHTET-03-05. USDA Forest Service Publishing: Washington, DC, USA, 2003; pp. 130–135. [Google Scholar]
- Klug, T.; Meyhöfer, R. Performance of two Trichogramma brassicae strains under greenhouse and field conditions for biocontrol of the silver Y moth in spinach cultures. J. Pest Sci. 2009, 82, 73–79. [Google Scholar] [CrossRef]
- Rost, W.M.; Hassan, S.A. Auftreten von Schadlepidopteren an Kohl und deren Eiparasiten aus der Gattung Trichogramma (Chalcidoidea, Hym.). Ges. PX 1985, 37, 388–391. [Google Scholar]
- Hu, G.Y.; Mitchell, E.R.; Sieglaff, D.H.; Okine, J.S. Field Production of Two Species of Parasitoids of the Diamondback Moth (Lepidoptera: Plutellidae). Florida Entomol. 1998, 81, 526–534. [Google Scholar] [CrossRef]
- Frank, J.H.; McCoy, E.D. The Risk of Classical Biological Control in Florida. Biol. Control 2007, 41, 151–174. [Google Scholar] [CrossRef]
- Xu, J.; Shelton, A.M.; Cheng, X. Comparison of Diadegma insulare (Hymenoptera: Ichneumonidae) and Microplitis plutellae (Hymenoptera: Braconidae) as Biological Control Agents of Plutella xylostella (Lepidoptera: Plutellidae): Field Parasitism, Insecticide Susceptibility, and Host-Searching. J. Econ. Entomol. 2001, 94, 14–20. [Google Scholar] [CrossRef]
- Haye, T.; Dancau, T.; Bennett, A.M.R.; Mason, P.G. The Impact of Parasitoids on Diamondback Moth in Europe: A Life Table Approach. Can. Entomol. 2021, 153, 741–756. [Google Scholar] [CrossRef]
- Collier, T.; Van Steenwyk, R. A critical evaluation of augmentative biological control. Biol. Control 2004, 31, 245–256. [Google Scholar] [CrossRef]
- Suckling, D.M. Issues Affecting the Use of Pheromones and Other Semiochemicals in Orchards. Crop Prot. 2000, 19, 677–683. [Google Scholar] [CrossRef]
- Srinivasan, R.; Lin, M.Y.; Su, F.C.; Yule, S.; Khumsuwan, C.; Hien, T.; Bhanu, K.R.M. Use of Insect Pheromones in Vegetable Pest Management: Successes and Struggles. In New Horizons in Insect Science: Towards Sustainable Pest Management; Chakravarthy, A., Ed.; Springer: New Delhi, India, 2015; pp. 231–237. [Google Scholar] [CrossRef]
- Reddy, G.V.P.; Guerrero, A. Chapter Twenty—New Pheromones and Insect Control Strategies. In Vitamins & Hormones; Litwack, G., Ed.; Academic Press: Cambridge, MA, USA, 2010; Volume 83, pp. 493–519. [Google Scholar] [CrossRef]
- Rizvi, S.A.H.; George, J.; Reddy, G.V.P.; Lybrand, X.; Guerrero, A. Latest Developments in Insect Sex Pheromone Research and Its Application in Agricultural Pest Management. Insects 2021, 12, 484. [Google Scholar] [CrossRef]
- Angeli, G.; Anfora, G.; Baldessari, M.; Germinara, G.S.; Rama, F.; De Cristofaro, A.; Ioriatti, C. Mating Disruption of Codling Moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae) with High Density of Ecodian Sex Pheromone Dispensers. J. Appl. Entomol. 2007, 131, 311–318. [Google Scholar] [CrossRef]
- Byers, J.A.; Levi-Zada, A. Modelling push-pull management of pest insects using repellents and attractive traps in fruit tree orchards. Pest Manag. Sci. 2022, 78, 3630–3637. [Google Scholar] [CrossRef]
- Campos, M.; Phillips, T.W. Attract-and-Kill and Other Pheromone-Based Methods to Suppress Populations of the Indianmeal Moth (Lepidoptera: Pyralidae). J. Econ. Entomol. 2014, 107, 473–480. [Google Scholar] [CrossRef]
- Cook, S.M.; Khan, Z.R.; Pickett, J.A. The use of push-pull strategies in integrated pest management. Annu. Rev. Entomol. 2007, 52, 375–400. [Google Scholar] [CrossRef]
- Alkema, J.T.; Dicke, M.; Wertheim, B. Context-Dependence and the Development of Push-Pull Approaches for Integrated Management of Drosophila suzukii. Insects 2019, 10, 454. [Google Scholar] [CrossRef]
- Cardé, R.T.; Baker, T.C. Sexual communication with pheromones. In Chemical Ecology of Insects; Bell, W.J., Cardé, R.T., Eds.; Chapman and Hall Ltd.: Oxford, UK, 1984; pp. 355–386. [Google Scholar]
- Wertheim, B.; van Baalen, E.J.A.; Dicke, M.; Vet, L.E.M. Pheromone-Mediated Aggregation in Nonsocial Arthropods: An Evolutionary Ecological Perspective. Annu. Rev. Entomol. 2005, 50, 321–346. [Google Scholar] [CrossRef] [PubMed]
- Nufio, C.R.; Papaj, D.R. Host Marking Behavior in Phytophagous Insects and Parasitoids. Entomol. Exp. Appl. 2001, 99, 273–293. [Google Scholar] [CrossRef]
- Gibson, R.W.; Pickett, J.A. Wild Potato Repels Aphids by Release of Aphid Alarm Pheromone. Nature 1983, 302, 608–609. [Google Scholar] [CrossRef]
- Bartelt, R.J.; Schaner, A.M.; Jackson, L.L. cis-Vaccenyl Acetate as an Aggregation Pheromone in Drosophila melanogaster. J. Chem. Ecol. 1985, 11, 1747–1756. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.A.; Bezerra-Silva, G.C.D.; Mastrangelo, T. The Host Marking Pheromone Application on the Management of Fruit Flies—A Review. Braz. Arch. Biol. Technol. 2012, 55, 835–842. [Google Scholar] [CrossRef]
- Mancardi, P.; Alma, A. Pheromone-Mediated Mating Disruption as Management Option for Cydia spp. in Chestnut Orchard. Insects 2021, 12, 905. [Google Scholar] [CrossRef] [PubMed]
- Hallett, R.H.; Sears, M.K. Pheromone-Based Action Thresholds for Control of the Swede Midge, Contarinia nasturtii (Diptera: Cecidomyiidae), and Residual Insecticide Efficacy in Cole Crops. J. Econ. Entomol. 2013, 106, 267–276. [Google Scholar] [CrossRef]
- Beers, E.H.; Stuckling, D.M.; Prokopy, R.J.; Avila, J. Ecology and Management of Apple Arthropod Pests. In Apples: Botany, Production and Uses; Ferree, D.C., Warrington, I.J., Eds.; CABI Publishing: Wallingford, UK, 2003; pp. 489–514. [Google Scholar]
- Benelli, G.; Lucchi, A.; Thomson, D.; Ioriatti, C. Sex Pheromone Aerosol Devices for Mating Disruption: Challenges for a Brighter Future. Insects 2019, 10, 308. [Google Scholar] [CrossRef]
- Thiery, D. Mating disruption in French vineyards: Success, difficulties, and prospects. In Proceedings of the Applied Use of Semiochemicals to Control Insect Pests in Field Situations. 2021 Entomology Society of America annual Meeting, Denver, CO, USA, 31 October–3 November 2021. [Google Scholar]
- Adams, C.; Schenker, J.; McGhee, P.; Gut, L.; Brunner, J.; Miller, J. Maximizing Information Yield from Pheromone-Baited Monitoring Traps: Estimating Plume Reach, Trapping Radius, and Absolute Density of Cydia pomonella (Lepidoptera: Tortricidae) in Michigan Apple. J. Econ. Entomol. 2017, 110, tow258. [Google Scholar] [CrossRef]
- Ioriatti, C.; Lucchi, A. Semiochemical Strategies for Tortricid Moth Control in Apple Orchards and Vineyards in Italy. J. Chem. Ecol. 2016, 42, 571–583. [Google Scholar] [CrossRef]
- Liu, W.; Xu, J.; Zhang, R. The optimal sex pheromone release rate for trapping the codling moth Cydia pomonella (Lepidoptera: Tortricidae) in the field. Sci. Rep. 2016, 6, 21081. [Google Scholar] [CrossRef]
- Balaško, M.K.; Bažok, R.; Mikac, K.M.; Lemic, D.; Živković, I.P. Pest Management Challenges and Control Practices in Codling Moth: A Review. Insects 2020, 11, 38. [Google Scholar] [CrossRef]
- Pitcairn, M.J.; Zalom, F.G.; Bentley, W.J. Weather factors influencing capture of Cydia pomonella (Lepidoptera: Tortricidae) in pheromone traps during overwintering flight in California. Environ. Entomol. 1990, 19, 1253–1258. [Google Scholar] [CrossRef]
- Mansour, M. Attract and kill for codling moth Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae) control in Syria. J. Appl. Entomol. 2010, 134, 234–242. [Google Scholar] [CrossRef]
- Płuciennik, Z. Control of codling moth (Cydia pomonella L.) population using mating disruption method. J. Hort. Res. 2013, 21, 65–70. [Google Scholar] [CrossRef]
- Isci, M.; Atasay, A.; Kaymak, S. The Efficacy of Mating Disruption Against Codling Moth (Cydia pomonella (L.) Lep.: Tortricidae) under Isparta Conditions. Fruit Sci. 2016, 3, 17–21. [Google Scholar]
- Barić, B.; Pajač Živković, I. The Efficacy of Mating Disruption in the Control of Codling Moth in Croatia, with Special Reference to the Costs. Pomol. Croat. 2017, 21, 125–132. [Google Scholar] [CrossRef]
- Witzgall, P.; Stelinski, L.; Gut, L.; Thomson, G. Codling Moth Management and Chemical Ecology. Annu. Rev. Entomol. 2008. 53, 503–522. [CrossRef]
- Whitfield, E.C.; Fountain, M.T. Future Semiochemical Control of Codling Moth, Cydia pomonella. Front. Hortic. 2024, 3, 1446806. [Google Scholar] [CrossRef]
- Horner, R.M.; Lo, P.L.; Rogers, D.J.; Walker, J.T.S.; Suckling, D.M. Combined Effects of Mating Disruption, Insecticides, and the Sterile Insect Technique on Cydia pomonella in New Zealand. Insects 2020, 11, 837. [Google Scholar] [CrossRef]
- Ciglar, I.; Baric, B.; Tomsic, T.; Subic, M. Control of grape berry moths (Eupoecilia ambiguella Hb., Lobesia botrana Den. & Schiff; Lepidoptera: Tortricidae) by mating disruption technique. Frag. Phytomed. Herb. 2002, 27, 31–37. [Google Scholar]
- Gambon, N.; Barro, P.; Pavan, F.; Zandigiacomo, P. Mating disruption of the small fruit tortrix (Grapholita lobarzewskii) in organic apple orchards of northeastern Italy. Bull. Insectol. 2009, 62, 125–129. [Google Scholar]
- Judd, G.J.R.; Eby, C. Spectral Discrimination by Synanthedon myopaeformis (Lepidoptera: Sesiidae) When Orienting to Traps Baited with Sex Pheromone or Feeding Attractants. Can. Entomol. 2014, 146, 8–25. [Google Scholar] [CrossRef]
- Ma, A.; Zhang, H.; Ran, H.; Yang, X.; Hao, J.; Zhang, J.; Li, H.; Yu, Z.; Wang, X.; He, X.Z.; et al. Prediction of Seasonal Population Dynamics of Grapholita molesta (Busck) and Adoxophyes orana (Fischer von Röslerstamm) in Peach Orchards Using Sex Pheromone Trap and Degree-Days and Its Implications in Pest Management. Front. Agron. 2023, 5, 1269977. [Google Scholar] [CrossRef]
- Corbetta, M.; Bricchi, L.; Rossi, V.; Fedele, G. The dynamics of pheromone release in two passive dispensers commonly used for mating disruption in the control of Lobesia botrana and Eupoecilia ambiguella in vineyards. Insects 2024, 15, 962. [Google Scholar] [CrossRef]
- Light, D.; Knight, A.; Cross, J.; Ioriatti, C. Kairomone-augmented mating disruption control for codling moth in Californian walnuts and apples. Bull. OILB/SROP 2005, 28, 341–344. [Google Scholar]
- Landolt, P.J.; Suckling, D.M.; Judd, G.J.R. Positive Interaction of a Feeding Attractant and a Host Kairomone for Trapping the Codling Moth, Cydia pomonella (L.). J. Chem. Ecol. 2007, 33, 2236–2244. [Google Scholar] [CrossRef]
- Knight, A.L.; Stelinski, L.L.; Hebert, V.; Gut, L.; Light, D.; Brunner, J. Evaluation of novel semiochemical dispensers simultaneously releasing pear ester and sex pheromone for mating disruption of codling moth. J. Appl. Entomol. 2012, 136, 79–86. [Google Scholar] [CrossRef]
- Knight, A.L.; Light, D.M.; Chebny, V. Monitoring Codling Moth (Lepidoptera: Tortricidae) with Multi-Component Lures in Sex Pheromone-Treated Orchards. J. Econ. Entomol. 2019, 112, 2203–2211. [Google Scholar] [CrossRef]
- Knight, A.L.; Preti, M.; Basoalto, E.; Mujica, V.M.; Favaro, R.; Angeli, S. Combining Female Removal with Mating Disruption for Management of Cydia pomonella in Apple. Entomol. Gen. 2022, 42, 309–321. [Google Scholar] [CrossRef]
- Hołdaj, M.; Sobieszek, B.; Soika, G. Wykaz Środków Owadobójczych, Roztoczobójczych, Gryzonioobójczych oraz Zabezpieczających Rośliny przed Zwierzyną Łowną Rekomendowanych do Zintegrowanej Produkcji Roślin Sadowniczych. Instytut Ogrodnictwa Skierniewice. 2024. Available online: https://www.inhort.pl/files/sor/wykaz_srodkow_ip/Wykaz_zoocydow_IP_w_uprawach_sadowniczych.pdf (accessed on 4 March 2025).
- Whitfield, E.C.; Lobos, E.; Cork, A.; Hall, D.R. Comparison of Different Trap Designs for Capture of Noctuid Moths (Lepidoptera: Noctuidae) with Pheromone and Floral Odor Attractants. J. Econ. Entomol. 2019, 112, 2199–2206. [Google Scholar] [CrossRef] [PubMed]
- Călin, M.; Feneșan, M.; Ambăruș, S.; Cristea, T.O.; Avasiloaiei, D.I.; Ripan, R. The study of sexual pheromone traps for pest monitoring, cabbage moth—Mamestra brassicae L. Lucr. Științifice Univ. Științe Agric. Med. Vet. “Ion Ionescu Brad” Iași Seria Hortic. 2009, 52, 1115–1118. [Google Scholar]
- Nguyen, T.-D.; Nguyen, C.-H.; Im, C.; Dang, C.-H. A Facile Synthesis of the Sex Pheromone of the Cabbage Looper Trichoplusia ni. Chem. Nat. Compd. 2016, 52, 877–879. [Google Scholar] [CrossRef]
- Schroeder, P.C.; Shelton, A.M.; Ferguson, C.S.; Hoffmann, M.P.; Petzoldt, C.H. Application of Synthetic Sex Pheromone for Management of Diamondback Moth, Plutella xylostella, in Cabbage. Entomol. Exp. Appl. 2003, 94, 243–248. [Google Scholar] [CrossRef]
- Hodgdon, E.A.; Hallett, R.H.; Heal, J.D.; Swan, A.E.M.; Chen, Y.H. Synthetic Pheromone Exposure Increases Calling and Reduces Subsequent Mating in Female Contarinia nasturtii (Diptera: Cecidomyiidae). Pest Manag. Sci. 2021, 77, 548–556. [Google Scholar] [CrossRef]
- Saucke, H.; Balasus, A.; Finckh, M.R.; Formowitz, B.; Schmidt, R.; Kratt, A. Mating disruption of pea moth (Cydia nigricana) in organic peas (Pisum sativum). Entomol. Exp. Appl. 2014, 150, 199–207. [Google Scholar] [CrossRef]
- Soti, A.; Regmi, R.; Shrestha, A.K.; Thapa, R.B. Effect of Net House on Tomato Leafminer (Tuta absoluta) (Meyrick) (Lepidoptera: Gelechiidae) Population in Tomato Cultivated in Chitwan, Nepal. Turk. J. Agric. Food Sci. Technol. 2020, 8, 2368–2371. [Google Scholar] [CrossRef]
- Jayanthi, P.D.K.; Aurade, R.M.; Kempraj, V.; Chakravarthy, A.K.; Verghese, A. Glimpses of Semiochemical Research Applications in Indian Horticulture: Present Status and Future Perspectives. In New Horizons in Insect Science: Towards Sustainable Pest Management; Springer: Singapore, 2015; pp. 239–257. [Google Scholar] [CrossRef]
- Beran, F.; Jiménez-Alemán, G.H.; Lin, M.Y.; Hsu, Y.C.; Mewis, I.; Srinivasan, R.; Reinecke, A. The Aggregation Pheromone of Phyllotreta striolata (Coleoptera: Chrysomelidae) Revisited. J. Chem. Ecol. 2016, 42, 748–755. [Google Scholar] [CrossRef]
- Epsky, N.D.; Hendrichs, J.; Katsoyannos, B.I.; Vásquez, L.A.; Ros, J.P.; Zümreoglu, A.; Pereira, R.; Bakri, A.; Seewooruthun, S.I.; Heath, R.R. Field Evaluation of Female-Targeted Trapping Systems for Ceratitis capitata (Diptera: Tephritidae) in Seven Countries. J. Econ. Entomol. 1999, 92, 156–164. [Google Scholar] [CrossRef]
- Kiju, P.; Wanner, K.W.; Reddy, G.V.P. Field efficacy of pea leaf weevil aggregation pheromone combined with contact insecticide as an attract-and-kill method. Arthropod Manag. Tests 2020, 47, 53–54. [Google Scholar]
- Klassen, D.; Lennox, M.D.; Dumont, M.J.; Chouinard, G.; Tavares, J.R. Dispensers for Pheromonal Pest Control. J. Environ. Manag. 2023, 325, 116590. [Google Scholar] [CrossRef] [PubMed]
- Stipanovic, A.J.; Hennessy, P.J.; Webster, F.X.; Takahashi, Y. Microparticle Dispensers for the Controlled Release of Insect Pheromones. J. Agric. Food Chem. 2004, 52, 2301–2308. [Google Scholar] [CrossRef]
- Welter, S.C.; Pickel, C.; Millar, J.; Cave, F.; Van Steenwyk, R.A.; Dunley, J. Pheromone Mating Disruption Offers Selective Management Options for Key Pests. Calif. Agric. 2005, 59, 16–22. [Google Scholar] [CrossRef]
- Mahanta, D.K.; Katta, J.; Teja, S.S. Different Types of Insect Traps for Different Insects. Agric. Food E-Newslett. 2022, 4, 642–645. [Google Scholar]
- El-Sayed, A.M.; Ganji, S.; Gross, J.; Giesen, N.; Rid, M.; Lo, P.L.; Kokeny, A.; Unelius, C.R. Climate change risk to pheromone application in pest management. Sci. Nat. 2021, 108, 47. [Google Scholar] [CrossRef]
- Castellano, P.; Pigini, D.; Lancia, A.; D’Ovidio, M.C. Semiochemicals: A tool addressed to mitigate environmental chemical pollution, especially in greenhouses. IJOEHY 2023, 14, 39–86. [Google Scholar] [CrossRef]
- Afsheen, S.; Wang, X.; Li, R.; Zhu, C.S.; Lou, Y.G. Differential attraction of parasitoids in relation to specificity of kairomones from herbivores and their by-products. Insect Sci. 2008, 15, 381–397. [Google Scholar] [CrossRef]
- Pervez, A.; Yadav, M. Foraging Behavior of Predaceous Ladybird Beetles: A Review. Eur. J. Environ. Sci. 2018, 8, 102–108. [Google Scholar] [CrossRef]
- James, D.G. Methyl Salicylate Is a Field Attractant for the Goldeneyed Lacewing, Chrysopa oculata. Biocontrol Sci. Technol. 2006, 16, 107–110. [Google Scholar] [CrossRef]
- James, D.G.; Price, T.S. Field-Testing of Methyl Salicylate for Recruitment and Retention of Beneficial Insects in Grapes and Hops. J. Chem. Ecol. 2004, 30, 1613–1628. [Google Scholar] [CrossRef]
- Jones, V.P.; Steffan, S.A.; Wiman, N.G.; Horton, D.R.; Miliczky, E.; Zhang, Q.-H.; Baker, C.C. Evaluation of Herbivore-Induced Plant Volatiles for Monitoring Green Lacewings in Washington Apple Orchards. Biol. Control 2011, 56, 98–105. [Google Scholar] [CrossRef]
- Ferry, A.; Tron, L.E.; Dugravot, S.; Cortesero, A.M. Field Evaluation of the Combined Deterrent and Attractive Effects of Dimethyl Disulfide on Delia radicum and Its Natural Enemies. Biol. Control 2009, 49, 219–226. [Google Scholar] [CrossRef]
- Scutareanu, P.; Drukker, B.; Bruin, J.; Posthumus, M.A.; Sabelis, M.W. Volatiles from Psylla Infested Pear Trees and Their Possible Involvement in Attraction of Anthocorid Predators. J. Chem. Ecol. 1997, 23, 2241–2261. [Google Scholar] [CrossRef]
- Tóth, M.; Szentkirályi, F.; Vuts, J.; Letardi, A.; Tabilio, M.R.; Jaastad, G.; Knudsen, G.K. Optimization of a Phenylacetaldehyde-Based Attractant for Common Green Lacewings (Chrysoperla carnea s.l.). J. Chem. Ecol. 2009, 35, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.C. Effect of methyl salicylate-based lures on beneficial and pest arthropods in strawberry. Environ. Entomol. 2010, 39, 653–660. [Google Scholar] [CrossRef]
- Watanabe, H.; Yano, E.; Higashida, K.; Hasegawa, S.; Takabayashi, J.; Ozawa, R. An Attractant of the Aphidophagous Gall Midge Aphidoletes aphidimyza From Honeydew of Aphis gossypii. J. Chem. Ecol. 2016, 42, 149–155. [Google Scholar] [CrossRef]
- Leroy, P.D.; Almohamad, R.; Attia, S.; Capella, Q.; Verheggen, F.J.; Aubruge, E.; Francis, F. Aphid Honeydew: An Arrestant and a Contact Kairomone for Episyrphus balteatus (Diptera: Syrphidae) Larvae and Adults. Eur. J. Entomol. 2014, 111, 237–242. [Google Scholar] [CrossRef]
- Salamanca, J.; Souza, B.; Rodriguez-Saona, C. Cascading Effects of Combining Synthetic Herbivore-Induced Plant Volatiles with Companion Plants to Manipulate Natural Enemies in Agro-Ecosystem. Pest Manag. Sci. 2018, 74, 2133–2145. [Google Scholar] [CrossRef]
- Isman, M.B. Problems and Opportunities for the Commercialization of Botanical Insecticides. In Biopesticides of Plant Origin; Regnault-Roger, C., Philogène, B.J.R., Vincent, C., Eds.; Faculty of Agricultural Sciences, University of British Columbia: Vancouver, BC, Canada, 2005; pp. 283–291. [Google Scholar]
- Wang, M.; Wei, Y.; Gao, J. Analysis of fatty acid and unsaponifiable matter from tartary buckwheat oil and buckwheat oil by GC/MS. In Advances in Buckwheat Research, Proceedings of the 9th International Symposium on Buckwheat, Prague, Czech Republic, 18–22 August 2004; Faberová, I., Dvořáček, V., Čepková, P., Hon, I., Holubec, V., Stehno, Z., Eds.; Research Institute of Crop Production Prague—Ruzyně: Prague, Czech Republic, 2004; pp. 723–729. [Google Scholar]
- Li, S.; Zhihui, C. Allium sativum extract as a biopesticide affecting pepper blight. Int. J. Veg. Sci. 2009, 1, 13–23. [Google Scholar] [CrossRef]
- Jang, S.J.; Kuk, Y.I. Growth promotion effects of plant extracts on various leafy vegetable crops. Korean J. Hortic. Sci. Technol. 2019, 6, 322–336. [Google Scholar] [CrossRef]
- Zuleta-Castro, C.; Rios, D.; Hoyos, R.; Rozco-Sanchez, F. First formulation of a botanical active substance extracted from neem cell culture for controlling the armyworm. Agron. Sustain. Dev. 2017, 37, 40. [Google Scholar] [CrossRef]
- Godlewska, K.; Ronga, D.; Izabela Michalak, D. Plant extracts—Importance in sustainable agriculture. Ital. J. Agron. 2021, 16, 185. [Google Scholar] [CrossRef]
- Batool, A.; Wahid, A.; Farooq, M. Evaluation of aqueous extracts of moringa leaf and flower applied through medium supplementation for reducing heat stress-induced oxidative damage in maize. Int. J. Agric. Biol. 2016, 18, 757–764. [Google Scholar] [CrossRef]
- Tembo, Y.; Mkindi, A.G.; Mkenda, P.A.; Mpumi, N.; Mwanauta, R.; Stevenson, P.C.; Ndakidemi, P.A.; Belmain, S.R. Pesticidal plant extracts improve yield and reduce insect pests on legume crops without harming beneficial arthropods. Front. Plant Sci. 2018, 9, 1425. [Google Scholar] [CrossRef] [PubMed]
- d’Errico, G.; Sasanelli, N.; Guastamacchia, F.; Stillittano, V.; D’Addabbo, T. Efficacy of Azadirachtin in the Integrated Management of the Root Knot Nematode Meloidogyne incognita on Short- and Long-Cycle Crops. Plants 2023, 12, 1362. [Google Scholar] [CrossRef]
- Salma, M.; Ratul, C.R.; Jogen, C.K. A Review on the Use of Biopesticides in Insect Pest Management. Int. J. Sci. Adv. Technol. 2011, 1, 169–178. [Google Scholar]
- Trumm, P.; Dorn, A. Effects of Azadirachtin on the Regulation of Midgut Peristalsis by the Stomatogastric Nervous System in Locusta migratoria. Phytoparasitica 2000, 28, 7–26. [Google Scholar] [CrossRef]
- Qin, D.; Zhang, P.; Zhou, Y.; Liu, B.; Xiao, C.; Chen, W.; Zhang, Z. Antifeeding Effects of Azadirachtin on the Fifth Instar Spodoptera litura Larvae and the Analysis of Azadirachtin on Target Sensilla around Mouthparts. Arch. Insect Biochem. Physiol. 2020, 103, e21646. [Google Scholar] [CrossRef]
- Trisyono, A.; Whalon, M.E. Toxicity of Neem Applied Alone and in Combinations with Bacillus thuringiensis to Colorado Potato Beetle (Coleoptera: Chrysomelidae). J. Econ. Entomol. 1999, 92, 1281–1288. [Google Scholar] [CrossRef]
- Zhao, T.; Lai, D.; Zhou, Y.; Xu, H.; Zhang, Z.; Kuang, S.; Shao, X. Azadirachtin A Inhibits the Growth and Development of Bactrocera dorsalis Larvae by Releasing Cathepsin in the Midgut. Ecotoxicol. Environ. Saf. 2019, 183, 109512. [Google Scholar] [CrossRef]
- Bezzar-Bendjazia, R.; Kilani-Morakchi, S.; Aribi, N. Larval Exposure to Azadirachtin Affects Fitness and Oviposition Site Preference of Drosophila melanogaster. Pestic. Biochem. Physiol. 2016, 133, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Mordue Luntz, A.J.; Nisbet, A.J. Azadirachtin from the neem tree (Azadirachta indica): Its actions against insects. Ann. Soc. Entomol. Bras. 2000, 29, 615–632. [Google Scholar] [CrossRef]
- Parkman, P.; Pienkowski, R.L. Sublethal Effects of Neem Seed Extract on Adults of Liriomyza trifolii (Diptera, Agromyzidae). J. Econ. Entomol. 1990, 83, 1246–1249. [Google Scholar] [CrossRef]
- Stark, J.D.; Vargas, R.I.; Thalman, R.K. Azadirachtin: Effects on Metamorphosis, Longevity, and Reproduction of Three Tephritid Fruit-Fly Species (Diptera: Tephritidae). J. Econ. Entomol. 1990, 83, 2168–2174. [Google Scholar] [CrossRef]
- Nisbet, A.J.; Woodford, J.A.T.; Strang, R.H.C. The Effects of Azadirachtin-Treated Diets on the Feeding Behavior and Fecundity of the Peach Potato Aphid, Myzus persicae. Entomol. Exp. Appl. 1994, 71, 65–72. [Google Scholar] [CrossRef]
- Shimizu, T. Suppressive Effects of Azadirachtin on Spermiogenesis of the Diapausing Cabbage Armyworm, Mamestra brassicae, in Vitro. Entomol. Exp. Appl. 1988, 46, 197–199. [Google Scholar] [CrossRef]
- Tomé, H.V.V.; Martins, J.C.; Correea, S.; Galdino, T.V.S.; Picançon, M.C.; Guedes, R.N.C. Azadirachtin Avoidance by Larvae and Adult Females of the Tomato Leafminer Tuta absoluta. Crop Prot. 2013, 46, 63–69. [Google Scholar] [CrossRef]
- Ikeura, H.; Sakura, A.; Tamaki, M. Repellent Effect of Neem Against the Cabbage Armyworm on Leaf Vegetables. J. Agric. Sustain. 2013, 4, 1–15. [Google Scholar]
- Mordue, A.J.; Morgan, E.D.; Nisbet, A.J. Azadirachtin, a natural product in insect control. In Insect Control: Biological and Synthetic Agents; Gilbert, L.I., Gill, S.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 185–203. [Google Scholar]
- Isman, M.B. Botanical Insecticides, Deterrents, and Repellents in Modern Agriculture and an Increasingly Regulated World. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef]
- Haryuni, T.; Koernia Dewi, T.; Suprapti, E.; Rahman, S.F.; Gozan, M. The Effect of Beauveria bassiana on the Effectiveness of Nicotiana tabacum Extract as Biopesticide Against Hypothenemus hampei to Robusta Coffee. Int. J. Technol. 2019, 10, 159–166. [Google Scholar] [CrossRef]
- Shivanandappa, T.; Rajashekar, Y. Mode of Action of Plant-Derived Natural Insecticidal Compounds. In Natural Insecticides; Springer: New Delhi, India, 2014. [Google Scholar] [CrossRef]
- Mahmud, F.; Mahedi, R.A.; Afrin, S.; Haque, R.; Hasan, M.S.; Sumi, F.A.; Bary, M.A.; Syrmos, N.; Kuri, O.C. Biological & Insecticidal Effect of Citronella Oil: A Short Review. Clin. Med. Health Res. J. 2022, 2, 261–265. [Google Scholar]
- Gostin, I.N.; Popescu, I.E. Evaluation of the Essential Oils Used in the Production of Biopesticides: Assessing Their Toxicity Toward Both Arthropod Target Species and Beneficial Pollinators. Agriculture 2024, 14, 81. [Google Scholar] [CrossRef]
- Coelho, J.R.A.; Vieira, T.F.; Pereira, R.B.; Pereira, D.M.; Castanheira, E.M.S.; Fortes, A.G.; Sousa, S.F.; Fernandes, M.J.G.; Gonçalves, M.S.T. Eugenol ester derivatives: Synthesis, insecticidal activity, and computational studies. Chem. Proc. 2022, 8, 83. [Google Scholar] [CrossRef]
- Dhaouadi, F.; Bargougui, A.; Maamer, S.; Amri, I.; Msaad Guerfali, M.; Hamrouni, L.; Flamini, G.; Mejri, N. Chemical Composition and Insecticidal Activity of Two Eucalyptus Essential Oils against the Mediterranean Fruit Fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). J. Plant Dis. Prot. 2023, 130, 483–493. [Google Scholar] [CrossRef]
- Moustafa, M.A.M.; Awad, M.; Amer, A.; Hassan, N.N.; Ibrahim, E.D.S.; Ali, H.M.; Akrami, M.; Salem, M.Z.M. Insecticidal Activity of Lemongrass Essential Oil as an Eco-Friendly Agent against the Black Cutworm Agrotis ipsilon (Lepidoptera: Noctuidae). Insects 2021, 12, 737. [Google Scholar] [CrossRef]
- Papulwar, P.P.; Rathod, B.U.; Dattagonde, N.R. Studies on Insecticidal Properties of Citronella Grass (Lemon Grass) Essential Oils Against Gram Pod Borer (Helicoverpa armigera). Int. J. Chem. Stud. 2018, 2, 44–46. [Google Scholar]
- Ibrahim, S.S.; Abou-Elseoud, W.S.; Elbehery, H.H.; Hassan, M.L. Chitosan-Cellulose Nanoencapsulation Systems for Enhancing the Insecticidal Activity of Citronella Essential Oil against the Cotton Leafworm Spodoptera littoralis. Ind. Crops Prod. 2022, 184, 115089. [Google Scholar] [CrossRef]
- Kalemba, D.; Synowiec, A. Agrobiological Interactions of Essential Oils of Two Menthol Mints: Mentha piperita and Mentha arvensis. Molecules 2020, 25, 59. [Google Scholar] [CrossRef]
- Prasannakumar, N.R.; Jyothi, N.; Saroja, S.; Lokesha, A.N. Insecticidal Properties of Ocimum basilicum and Mentha piperita Essential Oils against South American Tomato Moth, Phthorimaea absoluta (Meyrick) (Lepidoptera: Gelechiidae). Pestic. Biochem. Physiol. 2023, 190, 105329. [Google Scholar] [CrossRef]
- Sciortino, M.; Scurria, A.; Lino, C.; Pagliaro, M.; D’Agostino, F.; Tortorici, S.; Ricupero, M.; Biondi, A.; Zappalà, L.; Ciriminna, R. Green Pesticides Handbook: Essential Oils for Pest Control; CRC Press: Boca Raton, FL, USA, 2021; Chapter 15; pp. 291–302. [Google Scholar]
- Isman, M.B.; Wilson, J.A.; Bradbury, R. Insecticidal activities of commercial rosemary oils (Rosmarinus officinalis) against larvae of Pseudaletia unipuncta and Trichoplusia ni in relation to their chemical compositions. Pharm. Biol. 2008, 46, 82–87. [Google Scholar] [CrossRef]
- Ngongang, M.D.T.; Eke, P.; Sameza, M.L.; Mback, M.N.L.N.; Lordon, C.D.; Boyom, F.F. Chemical Constituents of Essential Oils from Thymus vulgaris and Cymbopogon citratus and Their Insecticidal Potential Against the Tomato Borer, Tuta absoluta (Lepidoptera: Gelechiidae). Int. J. Trop. Insect. Sci. 2022, 42, 31–43. [Google Scholar] [CrossRef]
- Wu, L.; Huo, X.; Zhou, X.; Zhao, D.; He, W.; Liu, S.; Liu, H.; Feng, T.; Wang, C. Acaricidal Activity and Synergistic Effect of Thyme Oil Constituents Against Carmine Spider Mite (Tetranychus cinnabarinus (Boisduval)). Molecules 2017, 22, 1873. [Google Scholar] [CrossRef]
- Zada, H.; Ahmad, B.; Hassan, E.; Saljoqi, A.U.R.; Naheed, H.; Salim, M. Toxicity Potential of Different Azadirachtin Against Plutella xylostella (Lepidoptera; Plutellidae) and Its Natural Enemy, Diadegma Species. J. Agron. Agri. Sci. 2018, 1, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Irigaray, F.J.; Moreno-Grijalba, F.; Marco, V.; Pérez-Moreno, I. Acute and Reproductive Effects of Align®, an Insecticide Containing Azadirachtin, on the Grape Berry Moth, Lobesia botrana. J. Insect. Sci. 2010, 10, 33. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Li, Y.; Zhu, J.; Ge, L.Q.; Yang, G.Q.; Liu, F. Selectivity and Sublethal Effects of Some Frequently Used Biopesticides on the Predator Cyrtorhinus lividipennis Reuter (Hemiptera: Miridae). J. Integr. Agric. 2019, 18, 124–133. [Google Scholar] [CrossRef]
- Medina, P.; Budia, F.; Estal, P.D.; Viñuela, E. Influence of azadirachtin, a botanical insecticide, on Chrysoperla carnea (Stephens) reproduction: Toxicity and ultrastructural approach. J. Econ. Entomol. 2004, 97, 43–50. [Google Scholar] [CrossRef]
- Akol, A.M.; Sithanantham, S.; Njagi, P.G.N.; Varela, A.; Mueke, J.M. Relative safety of sprays of two neem insecticides to Diadegma mollipla (Holmgren), a parasitoid of the diamondback moth: Effects on adult longevity and foraging behaviour. Crop Prot. 2002, 21, 853–859. [Google Scholar] [CrossRef]
- Barbosa, W.F.; De Meyer, L.; Guedes, R.N.; Smagghe, G. Lethal and Sublethal Effects of Azadirachtin on the Bumblebee Bombus terrestris (Hymenoptera: Apidae). Ecotoxicology 2015, 24, 130–142. [Google Scholar] [CrossRef]
- Chang, P.F.Z.; Walter, J.F.; Hartis, J.R. Word Intellectual Property Organization; WO1996039034A1; WIPO: Geneva, Switzerland, 1996. [Google Scholar]
- Konecka, E.; Kaznowski, A.; Tomkowiak, D. Insecticidal activity of mixtures of Bacillus thuringiensis crystals with plant oils of Sinapis alba and Azadirachta indica. Ann. Appl. Biol. 2019, 174, 364–371. [Google Scholar] [CrossRef]
- Pineda, S.; Pérez-Robledo, C.A.; Hernández, R.E.; Figueroa de la Rosa, J.I.; Chavarrieta, J.M.; Martínez, A.M. Combined and Individual Effects of a Nucleopolyhedrovirus and Azadirachtin on the Mortality and Maize-Leaf Consumption of Spodoptera frugiperda. Phytoparasitica 2014, 42, 571–578. [Google Scholar] [CrossRef]
- Hirose, E.; Neves, P.M.; Zequi, J.A.; Martins, L.H.; Peralta, C.H.; Moino, A., Jr. Effect of Biofertilizers and Neem Oil on the Entomopathogenic Fungi Beauveria bassiana (Bals.) Vuill. and Metarhizium anisopliae (Metsch.) Sorok. Braz. Arch. Biol. Technol. 2001, 44, 419–423. [Google Scholar] [CrossRef]
- Singh, B.; Singh, N.; Singh, S. Efficacy of Neem-Based Biopesticide and Chemical Insecticide Against Spodoptera litura on Cauliflower Under Field Conditions in Gurugram District of Haryana. Plant Arch. 2019, 19, 30339–30342. [Google Scholar]
- Kumari, P.; Singh, M. The Biochemical Wonders of Azadirachta indica A. Juss: A Comprehensive Review of Its Properties and Potential Benefits. J. Stress Physiol. Biochem. 2024, 20, 90–98. [Google Scholar]
- Khan, A.A. Bio-efficacy of Botanical Pesticides against Green Apple Aphid (Aphis pomi) and Biosafety against Its Natural Enemies in Apple Orchard of Kashmir. J. Entomol. Zool. Stud. 2020, 8, 1445–1448. [Google Scholar]
- Thoeming, G.; Draeger, G.; Poehling, H.M. Soil Application of Azadirachtin and 3-Tigloyl-Azadirachtol to Control Western Flower Thrips, Frankliniella occidentalis (Thysanoptera: Thripidae): Translocation and Persistence in Bean Plants. Pest Manag. Sci. 2006, 62, 759–767. [Google Scholar] [CrossRef]
- Veera Pereira, V.; Kumar, D.; Agiwal, M.; Prasad, T.G. Stability of Azadirachtin: A Tetranortriterpenoid from Neem Tree. Int. J. Chem. Stud. 2019, 7, 412–419. [Google Scholar]
- Mordue, A.J. Present Concepts of the Mode of Action of Azadirachtin from Neem. In Neem: Today and in the New Millennium; Koul, O., Wahab, S., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 229–242. [Google Scholar] [CrossRef]
- Lybrand, D.B.; Xu, H.; Last, R.L.; Pichersky, E. How Plants Synthesize Pyrethrins: Safe and Biodegradable Insecticides. Trends Plant Sci. 2020, 25, 1240–1251. [Google Scholar] [CrossRef]
- Zeng, T.; Li, J.; Li, J.; Hu, H.; Zhu, L.; Shu, S. Pyrethrins in Tanacetum cinerariifolium: Biosynthesis, Regulation, and Agricultural Application. Ornam. Plant Res. 2024, 4, e015. [Google Scholar] [CrossRef]
- Grasswitz, T.R. Field Evaluation of Organically Acceptable Foliar Insecticides for Control of Green Peach Aphid. Arthropod Manag. Tests 2014, 39, 7. [Google Scholar] [CrossRef]
- Andersen, C.L.; Hazzard, R.; Van Driesche, R.; Mangan, F.X. Alternative Management Tactics for Control of Phyllotreta cruciferae and Phyllotreta striolata (Coleoptera: Chrysomelidae) on Brassica rapa in Massachusetts. J. Econ. Entomol. 2006, 99, 803–810. [Google Scholar] [CrossRef]
- Seaman, A.J.; Lange, H.W. Evaluation of Insecticides Allowed for Organic Production Against Crucifer Flea Beetle. Arthropod Manag. Tests 2017, 42, 126. [Google Scholar] [CrossRef]
- Hollingworth, R.; Ahammadsahib, K.; Gadelhak, G.; McLaughlin, J.L. New Inhibitors of Complex I of the Mitochondrial Electron Transport Chain with Activity as Pesticides. Biochem. Soc. Trans. 1994, 22, 230–233. [Google Scholar] [CrossRef]
- Fairbrother, A.; Purdy, J.; Anderson, T.; Fell, R. Risks of neonicotinoid insecticides to honeybees. Environ. Toxicol. Chem. 2014, 33, 719–731. [Google Scholar] [CrossRef]
- Dively, G.P.; Patton, T.; Barranco, L.; Kulhanek, K. Comparative efficacy of common active ingredients in organic insecticides against difficult to control insect pests. Insects 2020, 11, 614. [Google Scholar] [CrossRef]
- Li, P.; Tian, Y.; Du, M.; Xie, Q.; Chen, Y.; Ma, L.; Huang, Y.; Yin, Z.; Xu, H.; Wu, X. Mechanism of Rotenone Toxicity against Plutella xylostella: New Perspective from a Spatial Metabolomics and Lipidomics Study. J. Agric. Food Chem. 2023, 71, 211–222. [Google Scholar] [CrossRef]
- Weinzeirl, R. Botanicals, Insecticides, Soaps, and Oils. In Biological, Biotechnological Control of Insect Pest; Rechcigl, J.E., Rechcigl, N.A., Eds.; Lewis Publ.: Boca Raton, FL, USA, 1998; pp. 101–121. [Google Scholar]
- Castagnoli, M.; Liguori, M.; Simoni, S.; Duso, C. Toxicity of some insecticides to Tetranychus urticae, Neoseiulus californicus, and Tydeus californicus. Biocontrol 2005, 50, 611–622. [Google Scholar] [CrossRef]
- Sidi, M.M.; Islam, M.D.T.; Yusof, I.; Omar, D. Effect of insecticide residue and spray volume application of azadirachtin and rotenone on Trichogramma papilionis (Hymenoptera: Trichogrammatidae). Int. J. Agric. Biol. 2012, 14, 805–810. [Google Scholar]
- Zubairi, S.I.; Othman, Z.S.; Sarmidi, M.R.; Abdul Aziz, R. Environmental Friendly Bio-Pesticide Rotenone Extracted from Derris sp.: A Review on the Extraction Method, Toxicity and Field Effectiveness. J. Teknol. 2016, 78, 47–69. [Google Scholar] [CrossRef]
- Ling, N. Rotenone: A review of its toxicity and use for fisheries management. Sci. Conserv. 2003, 211, 1–40. [Google Scholar]
- Ranasinghe, T.; Seo, Y.; Park, H.C.; Choe, S.K.; Cha, S.H. Rotenone exposure causes features of Parkinson’s disease pathology linked with muscle atrophy in developing zebrafish embryo. J. Hazard Mater. 2024, 5, 136215. [Google Scholar] [CrossRef]
- Green, B.T.; Welch, K.D.; Panter, K.E.; Lee, S.T. Plant toxins that affect nicotinic acetylcholine receptors: A review. Chem. Res. Toxicol. 2013, 26, 1129–1138. [Google Scholar] [CrossRef]
- Trandafirescu, M.; Septar, L. Researches Regarding Some Vegetal Extracts Efficacy in Control of Peach Moths. In Proceedings of the ISHS Acta Horticulturae 981: II Balkan Symposium on Fruit Growing, Pitesti, Romania, 31 March 2013; Volume 981, pp. 533–538. [Google Scholar]
- Pradinata, R.; Ginting, T.Y.; Amrul, H.M.Z.N. Effectiveness of Biopesticides Nicotiana tabacum L. and Ageratum conyzoides L. As Controlling Spodoptera exigua in Red Onion (Allium ascalonicum L.). J. Pembel. Biol. Nukl. 2024, 10, 219–229. [Google Scholar] [CrossRef]
- Stjernberg, L.; Berglund, J. Garlic as an Insect Repellent. JAMA 2000, 284, 831. [Google Scholar] [CrossRef]
- Wenda-Piesik, A.; Piesik, D. Skuteczność Wyciągu z Czosnku w Ograniczaniu Oprzędzików (Sitona sp.) w Uprawie Grochu Siewnego. Prog. Plant Prot. 2009, 49, 2038–2043. [Google Scholar]
- Reuben, S.N.; Yahya, R.N.; Misangu, L.S.; Mulungu, L.S. Field Evaluation of Effects of Common Spices in the Control of Diamondback Moth (Plutella xylostella L.) Pest of Chinese Cabbage (Brassica campestris L.) Commercial Cultivar. Asian J. Plant Sci. 2006, 5, 85–90. [Google Scholar]
- Baser, K.; Buchbauer, G. Handbook of Essential Oils: Science, Technology, and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Bathal, S.S.; Singh, D.; Dhillon, R.S. Effect of Crude Root Oils of Inula racemosa and Saussurea lappa on Feeding, Survival, and Development of Spodoptera litura (Lepidoptera: Noctuidae) Larvae. Eur. J. Entomol. 1993, 90, 239–240. [Google Scholar]
- Larocque, N.; Vincent, C.; Belanger, A.; Bourassa, J.P. Effects of tansy essential oil from Tanacetum vulgare on biology of oblique-banded leafroller, Choristoneura rosaceana. J. Chem. Ecol. 1999, 25, 1319–1330. [Google Scholar] [CrossRef]
- Pemonge, J.; Pascual-Villalobos, M.J.; Regnault-Roger, C. Effects of Material and Extracts of Trigonella foenum-graecum L. Against the Stored Product Pests Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) and Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). J. Stored Prod. Res. 1997, 33, 51–56. [Google Scholar] [CrossRef]
- Marimuth, S.; Gurusubramanian, G.; Krishna, S.S. Effect of exposure of eggs to vapours from essential oils on egg mortality, development and adult emergence in Earias vittella (F.) (Lepidoptera: Noctuidae). Biol. Agric. Hortic. 1997, 14, 303–307. [Google Scholar] [CrossRef]
- Oparaeke, A.M.; Dike, M.C.; Amatobi, C.I. The Potential for Controlling Megalurothrips sjostedti (Thysanoptera: Thripidae) on Cowpea, Vigna unguiculata (L.) Walp Flowers Using Extracts of Cashew (Anacardium occidentale L.) Products. Arch. Phytopathol. Plant Prot. 2007, 40, 252–256. [Google Scholar] [CrossRef]
- Laudani, F.; Campolo, O.; Caridi, R.; Latella, I.; Modafferi, A.; Palmeri, V.; Sorgonà, A.; Zoccali, P.; Giunti, G. Aphicidal Activity and Phytotoxicity of Citrus sinensis Essential-Oil-Based Nano-Insecticide. Insects 2022, 13, 1150. [Google Scholar] [CrossRef] [PubMed]
- Hori, M. Repellency of Rosemary Oil Against Myzus persicae in a Laboratory and in a Screenhouse. J. Chem. Ecol. 1998, 24, 1425–1432. [Google Scholar] [CrossRef]
- Sombra, K.E.S. Selectivity of Essential Oils to the Egg Parasitoid Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae). RCA 2022, 53, e20207789. [Google Scholar] [CrossRef]
- Abd-Elnabi, A.D.; El-Sawy, E.A.F.; Badawy, M.E. Plant Oil Nano-Emulsions as a Potential Solution for Pest Control in Sustainable Agriculture. Neotrop. Entomol. 2025, 54, 35. [Google Scholar] [CrossRef] [PubMed]
- Ayllón-Gutiérrez, R.; Díaz-Rubio, L.; Montaño-Soto, M.; Haro-Vázquez, M.D.P.; Córdova-Guerrero, I. Applications of Plant Essential Oils in Pest Control and Their Encapsulation for Controlled Release: A Review. Agriculture 2024, 14, 1766. [Google Scholar] [CrossRef]
- Nile, A.S.; Kwon, Y.D.; Nile, S.H. Horticultural Oils: Possible Alternatives to Chemical Pesticides and Insecticides. Environ. Sci. Pollut. Res. 2019, 26, 21127–21139. [Google Scholar] [CrossRef]
- Anandhi, S.; Saminathan, V.R.; Yasotha, P.; Saravanan, P.T.; Rajanbabu, V. Nano-Pesticides in Pest Management. J. Entomol. Zool. Stud. 2020, 8, 685–690. [Google Scholar]
- Perlatti, B.; Bergo, P.; Silva, M.; Batista, J.; Forim, M. Polymeric Nanoparticle-Based Insecticides: A Controlled Release Purpose for Agrochemicals. In Insecticides—Development of Safer and More Effective Technologies; Nanomaterials and Nanotechnology for Agrochemicals Applications; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef]
- Oliveira, J.; Fraceto, L.; Bravo, A.; Polanczyk, R. Encapsulation Strategies for Bacillus thuringiensis: From Now to the Future. J. Agric. Food Chem. 2021, 69, 4564–4577. [Google Scholar] [CrossRef]
- Ayilara, M.S.; Adeleke, B.S.; Akinola, S.A.; Fayose, C.A.; Adeyemi, U.T.; Gbadegesin, L.A.; Omole, R.K.; Johnson, R.M.; Uthman, Q.O.; Babalola, O.O. Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides. Front. Microbiol. 2023, 14, 1040901. [Google Scholar] [CrossRef]
- Priya, S.; Sarvendra, K.; Vinod, K.S.; Kapil, A.C. Nanopesticides: Manage Food Security and Environmental Pollution. 2018. Available online: https://www.biotecharticles.com/Agriculture-Article/Nanopesticides-Manage-Food-Security-and-Environmental-Pollution-4391.html (accessed on 16 April 2025).
- Tamez-Guerra, P.; McGuire, M.R.; Behle, R.W.; Shasha, B.S.; Galán-Wong, L.J. Assessment of Microencapsulated Formulations for Improved Residual Activity of Bacillus thuringiensis. J. Econ. Entomol. 2000, 93, 219–225. [Google Scholar] [CrossRef]
- Puente-Massaguer, E.; Lecina, M.; Gòdia, F. Application of Advanced Quantification Techniques in Nanoparticle-Based Vaccine Development with the Sf9 Cell Baculovirus Expression System. Vaccine 2020, 38, 1849–1859. [Google Scholar] [CrossRef] [PubMed]
- Wilson, K.; Grzywacz, D.; Curcic, I.; Scoates, F.; Harper, K.; Rice, A.; Paul, N.; Dillon, A. A Novel Formulation Technology for Baculoviruses Protects Biopesticide from Degradation by Ultraviolet Radiation. Sci. Rep. 2020, 10, 13301. [Google Scholar] [CrossRef] [PubMed]
- Varona, S.; Kareth, S.; Martín, Á.; Cocero, M.J. Formulation of Lavandin Essential Oil with Biopolymers by PGSS for Application as Biocide in Ecological Agriculture. J. Supercrit. Fluids 2010, 54, 369–377. [Google Scholar] [CrossRef]
- Khoshraftar, Z.; Safekordi, A.; Shamel, A.; Zaefizadeh, M. Synthesis of Natural Nanopesticides with the Origin of Eucalyptus globulus Extract for Pest Control. Green Chem. Lett. Rev. 2019, 12, 286–298. [Google Scholar] [CrossRef]
Microorganism | Target Pests | Crops | Trade Name | References |
---|---|---|---|---|
Baculoviruses | ||||
Adoxophyes orana granulowirus AoGV | Lepidopteran larvae: Adoxophyes orana | Pome and stone fruit trees | Capex Plus | [42,43,44,45] |
Anagrapha falcifera multinucleopolyhedrovirus AfMNPV | Lepidopteran larvae: Anagrapha falcifera, Chloridea virescens, and Helicoverpa armigera | Celery, tomatoes, pepper, and vegetables | Unknown name (registered in US) | [43,44] |
Autographa californica multinucleopolyhedrovirus AcMNPV strain FV 11 | Lepidopteran larvae: Trichoplusia ni | Vegetables | Loopex | [43,44,45] |
Cryptophlebia peltastica nucleopolyhedrovirus CrpeNPV strain South Africa | Lepidopteran larvae: Cydia pomonella and Grapholita molesta | Pome and stone fruits and walnuts | CodlMax and MultiMax | [42,43] |
Cydia pomnella granulovirus CpGV isolate CpGV-R5 | Lepidopteran larvae: Cydia pomonella | Apple and pear trees, quince, and walnut | Carpovirusine, Carpovirusine Plus, Carpovirusine Super, Grandex Max, Granupom, Madex Max, Pavois, and Pomonellix | [39,40,41] |
Cydia pomonella granulovirus Mexican isolate CpGV-M | Lepidopteran larvae: Cydia pomonella | Apple and pear trees | Carpostop | [42,43,44] |
Cydia pomnella granulovirus CpGV strain CMGv4 | Lepidopteran larvae: Cydia pomonella and Grapholita molesta | Apple and pear trees, peaches, nectarines, and apricots | Virosoft CP4 and Virgo | [40,41] |
Helicoverpa armigera nucleopolyhedrovirus HearNPV | Lepidopteran larvae: Helicoverpa armigera, Helicoverpa zea, Mamestra brassicae, and Spodoptera frugiperda | Cabbage and other vegetables, lettuce, onion, sweet corn, and tomatoes | Biovirus-H, Biokill-H, Helicowex, and Helistop | [43] |
Helicoverpa zea nucleopolyhedrovirus HearNPV | Lepidopteran larvae: Helicoverpa zea | Tomatoes, lettuce, cabbage vegetables, onion, sweet corn, and strawberries | Gemstar | [42,43,44] |
Mamestra brassicae multinucleopolyhedrovirus MbMNPV | Lepidopteran larvae: Mamestra brassicae | Cabbage vegetables | Unknown name (registered in China | [43] |
Pieris rapae granulovirus PiraGV | Lepidopteran larvae: Pieris rapae | Cabbage vegetables | Unknown name (registered in Korea) | [45,46] |
Plutella xylostella granulovirus (PxGV) | Lepidopteran larvae: Plutella xylostella | Cabbage vegetables | Plutellavex (registered in Korea) | [46] |
Spodoptera exigua multicapsid nucleopolyhedrovirus SeMNPV, isolate BV-0004 | Lepidopteran larvae: Spodoptera exigua | Cabbage and other vegetables | Spod-X | [43,46] |
Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV) strain 3AP2 | Lepidopteran larvae: Spodoptera exigua and Spodoptera frugiperda | Carrots, celery, legume vegetables, lettuce, and sweet corn | Fawligen | [43,44] |
Spodoptera littoralis nucleopolyhedrovirus (SpliNPV) | Lepidopteran larvae: Spodoptera littoralis | Cabbage vegetables, peas, and tomatoes | Multiplex Spodomar and Spodopterin | [43] |
Bacteria | ||||
Bacillus thuringiensis spp. aizawai strain GC-91 | Lepidopteran larvae: Epiphyas postvittana, Platyptilia carduidactyla, Pierris rapae, Plutella xylostella, and Trichoplusia ni | Pome and stone fruit trees, berry bushes, grapes, and cabbage vegetables | Agree | [39,40,44] |
Bacillus thuringiensis spp. aizawai strain ABTS-1857 | Hymenopteran larvae: Hoplocampa flavum and Hoplocampa minuta Lepidopteran larvae: Adoxoyphyes orana, Agrotis sp., Cydia pomonella, Helicoverpa armigera, Mamestra brassicae, Pieris brassicae, Pieris rapae, Plutella xylostella, and Tuta absoluta | Pome and stone fruit trees, berry bushes, grapes, cabbage, other vegetables, and tomatoes | Florbac and XenTari | [42,43,47] |
Bacillus thuringiensis spp. aizawai strain GC-91 | Lepidopteran larvae: Spodoptera sp. | Vegetables | Bactercide | [47] |
Bacillus thuringiensis spp. kurtsaki strain ABTS 351 | Lepidopteran larvae: Autographa gamma, Cydia pomonella, Mamestra brassicae, Pieris brassicae, Pieris rapae, Plutella xylostella, Trichoplusia ni, and Tortricidae leaflorells | Cabbage vegetables, stone and pome fruit trees, grapes, and berries | Biobit, Bonide, Britz Bt, Caterpillar Killer, Dipel, Foray 48F, Ringer Vegetable Insect Attack, and Safer B.T. | [42,43,44,47] |
Bacillus thuringiensis spp. kurtsaki strain EG 2348 | Lepidopteran larvae: Agrotis sp., Eupoecilia ambiguella, Mamestra brassica, Lobesia botrana, Pieris brassicae, Pieris rapae, Plutella xylostella, and Tuta absoluta | Pome and stone fruit trees, grapes, and cabbage vegetables | Condor, Lepinox Plus, and Rapax AS | [42,44,47] |
Bacillus thuringiensis spp. kurtsaki strain SA-11 | Lepidopteran larvae: Agrotis sp., Cydia pomonella, and Plutella xylostella | Apple and pear trees and vegetables | Javelin | [47] |
Bacillus thuringiensis, spp. kurstaki strain SA-12 | Lepidopteran larvae: Duponchelia fovealis, Epiphyas postvittana, Lobesia botrana, Platyptilia carduidactyla, Tortricidae, leafrollers, and Trichplusia ni | Pome and stone fruit trees, grapes, pepper, and vegetables | Btk32, Bt Worm Killer, Deliver, Green Light, San 420 I, and Thuricide | [42,44,47] |
Bacillus thuringiensis spp. kurtsaki strain BMP-123 | Lepidopteran larvae: Agrotis sp., Eupoecilia ambiguella, Mamestra brassicae, Lobesia botrana, Plutella xylostella, Tortricidae leafrollers, and Tuta absoluta | Pome and stone fruit trees, grapes, and cabbage vegetables | BMP-123 | [42,44,47] |
Bacillus thuringiensis spp. kurtsaki strain EVB-113-19 | Lepidopteran larvae: Agrotis sp., Cydia pomonella, Plutella xylostella, Spodoptera sp., Tortricidae leafrollers, and Trichoplusia ni | Pome and stone fruit trees and cabbage vegetables | Leprotec | [43,44] |
Bacillus thuringiensis spp. kurtsaki strain EG7841 | Lepidopteran larvae: Agrotis sp. Grafolita molesta, Grapholita packardi, Lobesia botrana, Spodoptera sp., Tortricidae leafrollers, and Trichoplusia ni | Vegetables, pome and stone fruit trees, and grapes | Crymax OG | [43,44] |
Bacillus thuringiensis spp. kurtsaki strains EG7826, M-200, VPTS-2546, EG2348, PMP 123EG7826, EG7841, M 200 | Lepidopteran larvae: unknown names | Vegetables and pome and stone fruit trees | Registered in US (unknown names) | [44] |
Bacillus thuringiensis spp. tenebrionis ATCC-1252 strain NB 176 | Coleopteran larvae: Leptinotarsa decemlineata | Potatoes | Novodor | [42,43,47] |
Bacillus thuringiensis spp. tenebrionis strain SA-10 | Coleopteran larvae: Leptinotarsa decemlineata | Potatoes | Trident | [44] |
Streptomyces avermitilis | Dipteran larvae: Liriomyza sp. Thrips: Frankliniella occidentalis Mites: Tetranynchus urticae | Tomatoes, pepper, eggplant, and cucumber | Abamax, Acaramik, Agri-Mek S.Ci, Grot, Vertigo, and Vertimec (only under-cover crops in EU) | [42,44] |
Saccharopolyspora spinosa | Coleopteran larvae: Leptinotarsa decemlineata Lepidopteran larvae: Cydia pomonella, Mamestra brassicae, Pieris brassicae, Pieris rapae, and Tortricidae leafrollers Dipteran larvae: Drosophila suzukii Thrips: Thrips tabaci | Cabbage vegetables, onion, potatoes, pome and stone fruits, and berries | Biospin, Blackhawk, Conserve, Entrust, GF-120, Naturalyte, Spinosad, SpinTor, and Seduce Insect Bait Teracer | [42] |
Fungi | ||||
Beauveria bassiana strain GHA | Coleopteran: Otiorhynchus ovatus, Otiorhynchus sulcatus, and Leptinotarsa decemlineata Lepidopteran larvae: Autographa gamma, Mamestra brassicae, Pieris brassicae, Pieris rapae, Plutella xylostella, and Trichoplusia ni Hemipteran: Erythroneura elegantula | Cabbage vegetables, potatoes, strawberries, and grapes | Botanigard and Mycotrol | [42,44] |
Beauveria bassiana strain ATCC 74040 | Hymenopteran: Aphididae Coleopteran larvae: Elateridae Thrips: Thrips tabaci Mites: Tetranynchus urticae | Vegetables and strawberries | Naturalis and Naturalis Biogard | [42,44] |
Beauveria bassiana strain IM 138521 | Lepidopteran larvae: Heliothis armigera and Spodoptera litura Coleopteran: Anthonomus grandis and Listroderes costirostris Hemipteran: Empoasca fabae | Vegetables and fruit crops | Beauveria bassiana | [42] |
Beauveria bassiana strain PPRI 5339 | Lepidopteran larvae: Plutella xylostella and Thaumatotibia leucotreta Thrips: Thrips tabaci and other spp. Mites: Tetranynchus urticae | Cabbage vegetables, pepper, tomatoes, garlic, leeks, onions, peas, apricots, nectarines, peaches, plums, berries, and strawberries | Broadband OD | [44] |
Beauveria bassiana strain 147 | Coleopteran: Cosmopolites sordidus and Rhynchophorus ferrugineus | Bananas and palms | Ostrinil and Serenisim | [42,44] |
Beauveria bassiana strain 203 | Coleopteran: Rhynchophorus ferrugineus | Palms | Phoemyc+ | [44] |
Beauveria bassiana strain BB1 | Hemipteran: Aphididae, Aleyrodidae, and Cicadellidae Lepidopteran larvae: Agrotis sp. and Spodoptera sp. Coleopteran: Scarabaeidae Thrips: Thrips tabaci and other spp. | Vegetables | Biopower | [45] |
Beauveria bassiana strain ANT 003 | Coleopteran: Leptinotarsa decemlineata and Holotrichia mindanaona | Potatoes, tomatoes, peppers, strawberries, and blackberries | Biotita and Bioceres | [45] |
Isaria fumosorosea Apopka strain 97 (formerly Paecilomyces fumosoroseus) | Hemipteran: Aphididae and Aleyrodidae Thrips: Thrips tabaci and other spp. | Vegetables | Preferal | [42] |
* Metarhizium brunneum strain F52 | Coleopteran: Otiorhynchus sulcatus | Berry bushes and strawberry | Met 52 | [45] |
* Metarhizium brunneum Ma43 * | Coleopteran: Otiorhynchus sulcatus | Berry bushes and strawberry | Lalguard M 52 | [44] |
* Metarhizium brunneum strain FI-1045 | Coleopteran: Scarabaeidae | Fruits and vegetables | Biocane | [44] |
Heterorhabditis bacteriophora | Coleopteran: Chrysomelidae, Melolontha melolontha, Phyllopertha horticola, and Otiorhynchus sulcatus | Strawberries, grapes, and vegetables | Larvanem, NemaTrident–H, and NemaTrident−B | [42] |
Steinernema feltiae | Lepidopteran larvae: Agrotis sp., Cydia pomonella, Tuta absoluta, and Spodoptera sp. Hymenopteran larvae: Hoplocampa minuta and Hoplocampa flavum Coleopteran: Elateridae, Otiorhynchus sulcatus, Otiorhynchus ovatus, and Scarabidea Dipteran larvae: Delia antiqua, Delia platura, Liriomyza sp., and Psila rosae | Pome and stone fruit trees, grapes, strawberries, berries, cabbage, and other vegetables | Entonem, Capriel, Sciarid, Biosafe -N, Scanmask, and NemaShield | [42,44] |
Steinernema kraussei | Coleopteran: Otiorhynchus sulcatus | Strawberries | Nemasys L | [42,44] |
Species | Target Pests | Crops | References |
---|---|---|---|
* Adalia bipunctata: Coleoptera, Coccinalidae | Aphids: Toxoptera aurantia, Dysaphis plantaginea, and many others | Citron and fruit trees | [117,128] |
* Aeolothrips intermedius: Thysanoptera, Aeolothripidae | Thrips: Frankliniella occidentalis and Thrips tabaci | Vegetables (onion, leek, tomatoes) | [119] |
Aleochara bilineata: Coleoptera, Staphylinidae | Root flies: Delia antiqua and Delia radicum | Vegetables | [128] |
* Amblyseius andersoni: Acari, Phytoseiidae | Mites: Aculops lycopersicae, Panonychus ulmi, Polyphagotarsonemus latus, Phytonemus pallidus, Tetranynchus cinnabarinus, and Tetranychus urticae | Apple and other fruit trees and vegetables | [115,128] |
Anastatus bifasciatus: Hymenoptera, Eupelinidae | Sting (true) bugs: Halyomorpha halsy | Olive trees | [128] |
Anthocoris nemoralis: Hemiptera, Anthocoridae | Psylids: Cacopsylla melanoneura and Cacopsylla pyri | Fruit trees | [120] |
Anthocoris nemorum: Hemiptera, Anthocoridae | Psylids: Cacopsylla pyri | Pear trees and others | [120] |
* Aphidius ervi: Hymenoptera, Braconidae | Aphids: Aulacorthum solani and Macrosiphum euphorbiae | Vegetables | [128] |
Aphelinus mali: Hymenoptera, Aphelinidae | Aphids: Eriosoma lanigerum | Fruit trees | [119,120] |
* Aphidoletes aphidimyza: Diptera, Cecidomyiidae | Aphids: Aphis gossypii, Aulacorthum sp., Macrosiphum sp., and Myzus persicae | Vegetables | [128] |
* Aphytis lingnanensis: Hymenoptera, Aphelinidae | Scale: Aonidiella aurantii | Citrus trees | [128] |
* Aphytis melinus: Hymenoptera, Aphelinidae | Scale: Aonidiella aurantii | Citrus trees | [128] |
Chilocorus bipustulatus: Coleoptera, Coccinalidae | Scale: Saissetia oleae | Olive trees | [128] |
Coccinella septempunctata: Coleoptera, Coccinalidae | Aphids | Fruit trees and vegetables | [119,120,128] |
* Comperiella bifasciata: Hymenoptera, Encyrtidae | Scale: Aonidiella aurantii and Chrysomphalus aonidum | Citrus trees | [128] |
* Cryptolaemus montrouzieri: Coleoptera, Coccinalidae | Scale: Planococcus citri | Citrus trees | [128] |
* Chrysoperla carnea: Neuroptera, Chrysopidae | Aphids: Aphis pomi and many others | Apple trees and others | [120,128,129] |
* Dacnusa sibirica: Diptera, Braconidae | Flies, leafminers: Liriomyza sp. | Celery, lettuce, and tomatoes | [128] |
* Diglyphus isaea: Diptera, Eulophidae | Flies, leafminers: Liriomyza sp. | Celery, lettuce, and tomatoes | [128] |
* Episyrphus balteatus: Diptera, Syrphidae | Aphids | Fruit trees and vegetables | [128] |
* Eupeodes corollae: Diptera, Syrphidae | Aphids | Fruit trees and vegetables | [128] |
Kampimodromus aberrans: Acari, Phytoseiidae | Mites: Panonychus ulmi | Fruit trees and grapes | [130,131] |
* Leptomastix dactylopii: Hymenoptera, Encyrtidae | Scale: Planococcus citri | Citrus trees | [128] |
* Leptomastix dactylopii: Hymenoptera, Encyrtidae | Scale: Planococcus citri | Citrus trees | [128] |
* Metaphycus helvolus: Hymenoptera, Encyrtidae | Scale: Coccus hesperidum and Saissetia oleae | Olive trees | [128] |
Metaphycus lounsburyi: Hymenoptera, Encyrtidae | Scale: Saissetia oleae | Olive trees | [128] |
* Microterys nietneri: Hymenoptera, Encyrtidae | Scale: Saissetia oleae | Olive trees | [128] |
* Phytoseiulus persimilis: Acari, Phytoseidaee | Mites: Tetranychus urticae | Tomatoes, cucumbers, and peppers | [128] |
Picromerus bidens: Hemiptera, Pentatomidae | Coleopteran: Leptinotarsa decemlineata | Potatoes | [128,132] |
Podisus maculiventris: Hemiptera, Pentatomidae | Coleopteran: Leptinotarsa decemlineata | Potatoes | [128,132,133] |
* Propylea quatuordecimpunctata: Coleoptera, Coccinalidae | Aphids | Vegetables | [120] |
* Sphaerophoria rueppellii: Diptera, Syrphidae | Aphids, whiteflies, thrips, and mites | Fruit trees and vegetables | [128] |
* Trichogramma brassicae: Hymenoptera, Trichogrammatidae | Lepidopteran eggs: mainly Ostrinia nubilalis | Sweet corn and cabbage vegetables | [119,128] |
Trichogramma cacoeciae: Hymenoptera, Trichogrammatidae | Lepidopteran eggs: Cydia pomonella and Grapholita funebrana | Apple and plum trees and tomatoes | [119,128] |
Trichogramma cordubensis: Hymenoptera, Trichogrammatidae | Lepidopteran eggs: Lobesia botrana and Eupoecilia ambiguella | Grapes | [128] |
Trichogramma dendrolimi: Hymenoptera, Trichogrammatidae | Lepidopteran eggs: Cydia pomonella | Apple and pear trees | [119,128] |
* Trichogramma evanescens: Hymenoptera, Trichogrammatidae | Lepidopteran eggs: Cydia pomonella and other species | Sweet corn and cabbage vegetables | [119,128] |
* Trichogramma pintoi: Hymenoptera, Trichogrammatidae | Lepidopteran eggs: Cydia nigricana, Cydia pomonella, Grapholita funebrana, Helicoverpa armigera, Lacanobia oleracea, Mamestra brassicae, Plutella xylostella, and Ostrinia nubilalis | Sweet corn, peas, vegetables, and apple and pear trees | [128] |
* Trichopria drosophilae: Hymenoptera, Diapriidae | Flies: Drosophila suzukii | Grapes and soft fruits | [128] |
Typhlodromus pyri: Acari, Phytoseiidae | Mites: Epitrimerus vitis, Panonychus ulmi, and Tetranychus urticae | Apples and pear trees and grapes | [119,120,128] |
Plant Product Used as Biopesticide | Origin | Target Pests | Mechanism of Action |
---|---|---|---|
Azadirachtin | Neem tree Azadirachta indica, Meliaceae | Aphis pomi, Dysaphis plantaginea, and other aphids, psyllids Psylinae sp., and a variety of sucking and chewing insects in vegetable and fruit crops | Antifeedant and disruptor of insect growth by blocking the release of the morphogenic peptide hormone [242] |
* Nicotine | Tobacco Nicotiana tabacum, Solanaceae | Aphids, whiteflies, leafhoppers, Hypothenemus hampei, thrips, and mites | Neurotoxic, acetylcholine mimic, and agonist of nicotinic acetylcholine receptor [243,244] |
Pyrethrins | Dalmatian pyrethrum Tanacetum cinerariifolium, Asteraceae | Aphids, whiteflies, Trichoplusia ni, flea beetles, Ceratitis capitata, leafhoppers, and thrips | Neurotoxic and disruptor of the sodium and potassium ion exchange process in insect nerves [245] |
* Rotenone | Derris sp. and Lonchocarpus sp., Fabaceae | Aphids, Crioceris asparagi, Cerotoma trifurcata, Leptinotarsa decemlineata, Diabrotica undecimpunctata, flea beetles, and Galerucella tenella | Mitochondrial complex I electron transport inhibitor [245] |
Citronella oil | Cochin grass Cymbopogon nardus and Java citronella Cymbopogon winterianu, Poaceae | Aphids, Helicoverpa armigera, Spodoptera littoralis, Tetranychus turkestani, and thrips | Repellent, oviposition deterrent, and inhibitor of AChE and glutathione-S-transferase [246,247] |
*Cynamon oil | Cinnamon Cinnamomum sp., Lauraceae | Spodoptera littoralis, Plutella xylostella, and storage pests: weevils | Repellent, reducing the fecundity, fertility, and vitality of insects [245] |
Clove oil | Clove Syzygium aromaticum, Myrtaceae | Phyllotetranychus egypticus, psyllids, and pests of stored peas and beans | Repellent, neurotoxic, and inhibitor of acetylcholinesterase [247,248] |
* Eucalyptus oil | Eucalyptus globulus, Myrtaceae | Ascia monuste, Ceratitis capitata, and pests of stored products | Repellent, toxic, and activator of enzymes of intermediary metabolism [245,249] |
* Lemongrass oil | Cochin grass Cymbopogon flexuosus, Poaceae | Agrotis ipsilon, Spodoptera frugiperda, Trichoplusia ni, and Tuta absoluta | Repellent, neurotoxic, and inhibitor of acetylcholinesterase (AChE) [250,251,252] |
Mint oil | Spearmint Mentha spicata, Lamiaceae | Bactrocera oleae, Drosophila suzuki, and Tuta absoluta | Repellent, neurotoxic, and inhibitor of acetylcholinesterase (AChE) [245,253] |
* Oregano oil | Oregano Origanum vulgare, Lamiaceae | Spodoptera littoralis and storage pests: weevils | Repellent, toxic, and reduces the fecundity, fertility, and vitality of insects [254] |
Orange oil | Seville oranges (bitter oranges) Citrus × aurantium f. aurantium, Rutaceae | Trichoplusia ni, Aphis gossypii, Spodoptera frugiperda, Spodoptera littoralis, psyllids, leafhoppers, whiteflies, thrips, and mites | Physical mode of action, toxic, repellent, and neurotoxic [245,255] |
* Rosemary oil | Rosemary Salvia Rosmarinus, Lamiaceae | Callosobruchus maculatus and Tetranychus urticae | Repellent, neurotoxic, and inhibitor of cetylcholinesterase (AChE) [245,256] |
* Tea tree oil | Tea tree Melaleuca alternifolia (Myrtaceae) | Cotton leafworm Spodoptera littoralis and Ceratitis capitata | Repellent and toxic [245] |
* Thyme oil | Thyme Thymus vulgaris and Thymus pulegioides, Lamiaceae | Tetranychus cinnabarinus, Glyphodes pyloalis, and storage pests | Repellent, toxic, and oviposition deterrent [245,257,258] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pobożniak, M.; Olczyk, M. Biocontrol in Integrated Pest Management in Fruit and Vegetable Field Production. Horticulturae 2025, 11, 522. https://doi.org/10.3390/horticulturae11050522
Pobożniak M, Olczyk M. Biocontrol in Integrated Pest Management in Fruit and Vegetable Field Production. Horticulturae. 2025; 11(5):522. https://doi.org/10.3390/horticulturae11050522
Chicago/Turabian StylePobożniak, Maria, and Marta Olczyk. 2025. "Biocontrol in Integrated Pest Management in Fruit and Vegetable Field Production" Horticulturae 11, no. 5: 522. https://doi.org/10.3390/horticulturae11050522
APA StylePobożniak, M., & Olczyk, M. (2025). Biocontrol in Integrated Pest Management in Fruit and Vegetable Field Production. Horticulturae, 11(5), 522. https://doi.org/10.3390/horticulturae11050522