Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = charged bosons

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1438 KiB  
Article
The Transcription Machinery and the Driving Force of the Transcriptional Molecular Condensate: The Role of Phosphates
by Raúl Riera Aroche, Esli C. Sánchez Moreno, Yveth M. Ortiz García, Andrea C. Machado Sulbarán, Lizbeth Riera Leal, Luis R. Olivas Román and Annie Riera Leal
Curr. Issues Mol. Biol. 2025, 47(7), 571; https://doi.org/10.3390/cimb47070571 - 20 Jul 2025
Viewed by 366
Abstract
The dynamic phosphorylation of the human RNA Pol II CTD establishes a code applicable to all eukaryotic transcription processes. However, the ability of these specific post-translational modifications to convey molecular signals through structural changes remains unclear. We previously explained that each gene can [...] Read more.
The dynamic phosphorylation of the human RNA Pol II CTD establishes a code applicable to all eukaryotic transcription processes. However, the ability of these specific post-translational modifications to convey molecular signals through structural changes remains unclear. We previously explained that each gene can be modeled as a combination of n circuits connected in parallel. RNA Pol II accesses these circuits and, through a series of pulses, matches the resonance frequency of the DNA qubits, enabling it to extract genetic information and quantum teleport it. Negatively charged phosphates react under RNA Pol II catalysis, which increases the electron density on the deoxyribose acceptor carbon (2’C in the DNA sugar backbone). The phosphorylation effect on the stability of a carbon radical connects tyrosine to the nitrogenous base, while the subsequent pulses link the protein to molecular water through hydrogen bonds. The selective activation of inert C(sp3)–H bonds begins by reading the quantum information stored in the nitrogenous bases. The coupling of hydrogen proton transfer with electron transfer in water generates a supercurrent, which is explained by the correlation of pairs of the same type of fermions exchanging a boson. All these changes lead to the formation of a molecular protein–DNA–water transcriptional condensate. Full article
Show Figures

Figure 1

63 pages, 988 KiB  
Article
Effective Lagrangian for the Macroscopic Motion of Weyl Fermions in 3He-A
by Maik Selch and Mikhail Zubkov
Symmetry 2025, 17(7), 1045; https://doi.org/10.3390/sym17071045 - 2 Jul 2025
Viewed by 174
Abstract
We consider the macroscopic motion of the normal component of superfluid 3He-A in global thermodynamic equilibrium within the context of the Zubarev statistical operator method. We formulate the corresponding effective theory in the language of the functional integral. The effective Lagrangian comprising [...] Read more.
We consider the macroscopic motion of the normal component of superfluid 3He-A in global thermodynamic equilibrium within the context of the Zubarev statistical operator method. We formulate the corresponding effective theory in the language of the functional integral. The effective Lagrangian comprising macroscopic motion of fermionic excitations is calculated explicitly for the emergent relativistic fermions of the superfluid 3He-A phase immersed in a non-trivial bosonic background due to a space- and time-dependent matrix-valued vierbein featuring nonzero torsion as well as the Nieh–Yan anomaly. We do not consider the dynamics of the superfluid component itself and thereby its backreaction effects due to normal component macroscopic flow. It is treated as an external background within which the emergent relativistic fermions of the normal component move. The matrix-valued vierbein formulation comprises an additional two-dimensional internal spin space for the two axially charged Weyl fermions living at the Fermi points, which may be replaced by one featuring a Dirac fermion doublet with a real-valued vierbein, an axial Abelian gauge field, and a spin connection gauge field mixing the Dirac and internal spin spaces. We carry out this change of description in detail and determine the constraints on the superfluid background as well as the the normal component motion as determined from the Zubarev statistical operator formalism in global thermodynamic equilibrium. As an application of the developed theory, we consider macroscopic rotation around the axis of pure integer mass vortices. The corresponding thermodynamic quantities of the normal component are analyzed. Our formulation incorporates both superfluid background flow and macroscopic motion flow of the normal component and thereby enables an analysis of their interrelation. Full article
(This article belongs to the Special Issue Topological Aspects of Quantum Gravity and Quantum Information Theory)
Show Figures

Figure 1

18 pages, 823 KiB  
Article
Charged Scalar Boson in Melvin Universe
by Leonardo G. Barbosa, Luis C. N. Santos, João V. Zamperlini, Franciele M. da Silva and Celso C. Barros
Universe 2025, 11(6), 193; https://doi.org/10.3390/universe11060193 - 18 Jun 2025
Viewed by 277
Abstract
This work investigates the dynamics of a charged scalar boson in the Melvin universe by solving the Klein–Gordon equation with minimal coupling in both inertial and non-inertial frames. Non-inertial effects are introduced through a rotating reference frame, resulting in a modified spacetime geometry [...] Read more.
This work investigates the dynamics of a charged scalar boson in the Melvin universe by solving the Klein–Gordon equation with minimal coupling in both inertial and non-inertial frames. Non-inertial effects are introduced through a rotating reference frame, resulting in a modified spacetime geometry and the appearance of a critical radius that limits the radial domain of the field. Analytical solutions are obtained under appropriate approximations, and the corresponding energy spectra are derived. The results indicate that both the magnetic field and non-inertial effects modify the energy levels, with additional contributions depending on the coupling between the rotation parameter and the quantum numbers. A numerical analysis is also presented, illustrating the behavior of the solutions for two characteristic magnetic field scales: one that may be considered extreme, of the order of the ones proposed to be produced in heavy-ion collisions, and another near the Planck scale. Full article
Show Figures

Figure 1

12 pages, 532 KiB  
Article
g-Factor Isotopic Shifts: Theoretical Limits on New Physics Search
by Dmitry S. Akulov, Rinat R. Abdullin, Dmitry V. Chubukov, Dmitry A. Glazov and Andrey V. Volotka
Atoms 2025, 13(6), 52; https://doi.org/10.3390/atoms13060052 - 13 Jun 2025
Viewed by 626
Abstract
The isotopic shift of the bound-electron g factor in highly charged ions (HCI) provides a sensitive probe for testing physics beyond the Standard Model, particularly through interactions mediated by a hypothetical scalar boson. In this study, we analyze the sensitivity of this method [...] Read more.
The isotopic shift of the bound-electron g factor in highly charged ions (HCI) provides a sensitive probe for testing physics beyond the Standard Model, particularly through interactions mediated by a hypothetical scalar boson. In this study, we analyze the sensitivity of this method within the Higgs portal framework, focusing on the uncertainties introduced by quantum electrodynamics corrections, including finite nuclear size, nuclear recoil, and nuclear polarization effects. All calculations are performed for the ground-state 1s configuration of hydrogen-like HCI, where theoretical predictions are most accurate. Using selected isotope pairs (e.g., He4/6, Ne20/22, Ca40/48, Sn120/132, Th230/232), we demonstrate that the dominant source of uncertainty arises from finite nuclear size corrections, which currently limit the precision of new physics searches. Our results indicate that the sensitivity of this method decreases with increasing atomic number. These findings highlight the necessity of improved nuclear radius measurements and the development of alternative approaches, such as the special differences method, to enable virtually the detection of fifth-force interactions. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

14 pages, 3424 KiB  
Article
Nonholomorphic Higgsino Mass Term Effects on Muon g − 2 and Dark Matter Relic Density in Flavor Symmetry-Based Minimal Supersymmetric Standard Model
by Sajid Israr, Mario E. Gómez and Muhammad Rehman
Particles 2025, 8(1), 30; https://doi.org/10.3390/particles8010030 - 6 Mar 2025
Cited by 1 | Viewed by 1404
Abstract
We investigate the phenomenological effects of the nonholomorphic (NH) higgsino mass term, μ, within the minimal supersymmetric standard model (MSSM) extended by a non-abelian flavor symmetry, referred to as the sNHSSM. This flavor symmetry enables a substantial reduction in the number [...] Read more.
We investigate the phenomenological effects of the nonholomorphic (NH) higgsino mass term, μ, within the minimal supersymmetric standard model (MSSM) extended by a non-abelian flavor symmetry, referred to as the sNHSSM. This flavor symmetry enables a substantial reduction in the number of free parameters inherent to the MSSM, streamlining them from a large set to just eight. Our study explores the interplay between cold dark matter (CDM) relic density (ΩCDMh2) and the anomalous magnetic moment of the muon, (g2)μ. We study correlations among the theoretical parameters that emerge from this interplay and are further constrained by experimental data such as the Higgs boson mass, B-physics observables, and the charge and color breaking minima constraints. Moreover, our findings reveal that incorporating the NH higgsino mass term opens up new regions of parameter space that were previously inaccessible. Full article
Show Figures

Figure 1

23 pages, 909 KiB  
Article
Extending the QMM Framework to the Strong and Weak Interactions
by Florian Neukart, Eike Marx and Valerii Vinokur
Entropy 2025, 27(2), 153; https://doi.org/10.3390/e27020153 - 2 Feb 2025
Cited by 1 | Viewed by 1107
Abstract
We extend the Quantum Memory Matrix (QMM) framework, originally developed to reconcile quantum mechanics and general relativity by treating space–time as a dynamic information reservoir, to incorporate the full suite of Standard Model gauge interactions. In this discretized, Planck-scale formulation, each space–time cell [...] Read more.
We extend the Quantum Memory Matrix (QMM) framework, originally developed to reconcile quantum mechanics and general relativity by treating space–time as a dynamic information reservoir, to incorporate the full suite of Standard Model gauge interactions. In this discretized, Planck-scale formulation, each space–time cell possesses a finite-dimensional Hilbert space that acts as a local memory, or quantum imprint, for matter and gauge field configurations. We focus on embedding non-Abelian SU(3)c (quantum chromodynamics) and SU(2)L × U(1)Y (electroweak interactions) into QMM by constructing gauge-invariant imprint operators for quarks, gluons, electroweak bosons, and the Higgs mechanism. This unified approach naturally enforces unitarity by allowing black hole horizons, or any high-curvature region, to store and later retrieve quantum information about color and electroweak charges, thereby preserving subtle non-thermal correlations in evaporation processes. Moreover, the discretized nature of QMM imposes a Planck-scale cutoff, potentially taming UV divergences and modifying running couplings at trans-Planckian energies. We outline major challenges, such as the precise formulation of non-Abelian imprint operators and the integration of QMM with loop quantum gravity, as well as possible observational strategies—ranging from rare decay channels to primordial black hole evaporation spectra—that could provide indirect probes of this discrete, memory-based view of quantum gravity and the Standard Model. Full article
(This article belongs to the Section Astrophysics, Cosmology, and Black Holes)
Show Figures

Figure 1

20 pages, 419 KiB  
Article
Current Density Induced by a Cosmic String in de Sitter Spacetime in the Presence of Two Flat Boundaries
by Wagner Oliveira dos Santos, Herondy F. Santana Mota and Eugênio R. Bezerra de Mello
Universe 2024, 10(11), 428; https://doi.org/10.3390/universe10110428 - 17 Nov 2024
Cited by 1 | Viewed by 800
Abstract
In this paper, we investigate the vacuum bosonic current density induced by a carrying-magnetic-flux cosmic string in a (D+1)-de Sitter spacetime considering the presence of two flat boundaries perpendicular to it. In this setup, the Robin boundary conditions [...] Read more.
In this paper, we investigate the vacuum bosonic current density induced by a carrying-magnetic-flux cosmic string in a (D+1)-de Sitter spacetime considering the presence of two flat boundaries perpendicular to it. In this setup, the Robin boundary conditions are imposed on the scalar charged quantum field on the boundaries. The particular cases of Dirichlet and Neumann boundary conditions are studied separately. Due to the coupling of the quantum scalar field with the classical gauge field, corresponding to a magnetic flux running along the string’s core, a nonzero vacuum expectation value for the current density operator along the azimuthal direction is induced. The two boundaries divide the space in three regions with different properties of the vacuum states. In this way, our main objective is to calculate the induced currents in these three regions. In order to develop this analysis we calculate, for both regions, the positive frequency Wightman functions. Because the vacuum bosonic current in dS space has been investigated before, in this paper we consider only the contributions induced by the boundaries. We show that for each region the azimuthal current densities are odd functions of the magnetic flux along the string. To probe the correctness of our results, we take the particular cases and analyze some asymptotic limits of the parameters of the model. Also some graphs are presented exhibiting the behavior of the current with relevant physical parameter of the system. Full article
(This article belongs to the Section Field Theory)
Show Figures

Figure 1

50 pages, 751 KiB  
Article
Non-Equilibrium Quantum Brain Dynamics: Water Coupled with Phonons and Photons
by Akihiro Nishiyama, Shigenori Tanaka and Jack Adam Tuszynski
Entropy 2024, 26(11), 981; https://doi.org/10.3390/e26110981 - 15 Nov 2024
Viewed by 1302
Abstract
We investigate Quantum Electrodynamics (QED) of water coupled with sound and light, namely Quantum Brain Dynamics (QBD) of water, phonons and photons. We provide phonon degrees of freedom as additional quanta in the framework of QBD in this paper. We begin with the [...] Read more.
We investigate Quantum Electrodynamics (QED) of water coupled with sound and light, namely Quantum Brain Dynamics (QBD) of water, phonons and photons. We provide phonon degrees of freedom as additional quanta in the framework of QBD in this paper. We begin with the Lagrangian density QED with non-relativistic charged bosons, photons and phonons, and derive time-evolution equations of coherent fields and Kadanoff–Baym (KB) equations for incoherent particles. We next show an acoustic super-radiance solution in our model. We also introduce a kinetic entropy current in KB equations in 1st order approximation in the gradient expansion and show the H-theorem for self-energy in Hartree–Fock approximation. We finally derive conserved number density of charged bosons and conserved energy density in spatially homogeneous system. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

37 pages, 2139 KiB  
Article
A Review of the Multiple-Readout Concept and Its Application in an Integrally Active Calorimeter
by Corrado Gatto, Vito Di Benedetto and Anna Mazzacane
Instruments 2024, 8(4), 49; https://doi.org/10.3390/instruments8040049 - 14 Nov 2024
Viewed by 2285
Abstract
A comprehensive multi-jet physics program is anticipated for experiments at future colliders. Key physics processes necessitate detectors that can distinguish signals from W and Z bosons and the Higgs boson. Typical examples include channels with W+W or  [...] Read more.
A comprehensive multi-jet physics program is anticipated for experiments at future colliders. Key physics processes necessitate detectors that can distinguish signals from W and Z bosons and the Higgs boson. Typical examples include channels with W+W or ZoZo pairs and processes involving new physics in those cases where neutral particles must be disentangled from charged ones due to the presence of W or Z bosons in their final states. Such a physics program demands calorimetric energy resolution at or beyond the limits of traditional calorimetric techniques. Multiple-readout calorimetry, which aims to reduce fluctuations in energy measurements of hadronic showers, is a promising approach. The first part of this article reviews dual- and triple-readout calorimetry within a mathematical framework describing the underlying compensating mechanism. The second part proposes a potential implementation using an integrally active and total absorption detector. This model serves as the basis for several Monte Carlo studies, illustrating how the response of a multiple-readout calorimeter depends on construction parameters. Among the layouts considered, one configuration operating in triple-readout mode shows the potential to achieve an energy resolution approaching 20%/E. Full article
Show Figures

Figure 1

10 pages, 280 KiB  
Review
Pseudo-Quantum Electrodynamics: 30 Years of Reduced QED
by Eduardo C. Marino, Leandro O. Nascimento, Van Sérgio Alves and Danilo T. Alves
Entropy 2024, 26(11), 925; https://doi.org/10.3390/e26110925 - 30 Oct 2024
Cited by 1 | Viewed by 1157
Abstract
Charged quasiparticles, which are constrained to move on a plane, interact by means of electromagnetic (EM) fields which are not subject to this constraint, living, thus, in three-dimensional space. We have, consequently, a hybrid situation where the particles of a given system and [...] Read more.
Charged quasiparticles, which are constrained to move on a plane, interact by means of electromagnetic (EM) fields which are not subject to this constraint, living, thus, in three-dimensional space. We have, consequently, a hybrid situation where the particles of a given system and the EM fields (through which they interact) live in different dimensions. Pseudo-Quantum Electrodynamics (PQED) is a U(1) gauge field theory that, despite being strictly formulated in two-dimensional space, precisely describes the real EM interaction of charged particles confined to a plane. PQED is completely different from QED(2 + 1), namely, Quantum Electrodynamics of a planar gauge field. It produces, for instance, the correct 1/r Coulomb potential between static charges, whereas QED(2 + 1) produces lnr potential. In spite of possessing a nonlocal Lagrangian, it has been shown that PQED preserves both causality and unitarity, as well as the Huygens principle. PQED has been applied successfully to describe the EM interaction of numerous systems containing charged particles constrained to move on a plane. Among these are p-electrons in graphene, silicene, and transition-metal dichalcogenides; systems exhibiting the Valley Quantum Hall Effect; systems inside cavities; and bosonization in (2 + 1)D. Here, we present a review article on PQED (also known as Reduced Quantum Electrodynamics). Full article
(This article belongs to the Special Issue PQED: 30 Years of Reduced Quantum Electrodynamics)
13 pages, 356 KiB  
Review
Bose Metals, from Prediction to Realization
by M. C. Diamantini and C. A. Trugenberger
Materials 2024, 17(19), 4924; https://doi.org/10.3390/ma17194924 - 9 Oct 2024
Cited by 1 | Viewed by 1120
Abstract
Bose metals are metals made of Cooper pairs, which form at very low temperatures in superconducting films and Josephson junction arrays as an intermediate phase between superconductivity and superinsulation. We predicted the existence of this 2D metallic phase of bosons in the mid [...] Read more.
Bose metals are metals made of Cooper pairs, which form at very low temperatures in superconducting films and Josephson junction arrays as an intermediate phase between superconductivity and superinsulation. We predicted the existence of this 2D metallic phase of bosons in the mid 1990s, showing that they arise due to topological quantum effects. The observation of Bose metals in perfectly regular Josephson junction arrays fully confirms our prediction and rules out alternative models based on disorder. Here, we review the basic mechanism leading to Bose metals. The key points are that the relevant vortices in granular superconductors are core-less, mobile XY vortices which can tunnel through the system due to quantum phase slips, that there is no charge-phase commutation relation preventing such vortices from being simultaneously out of condensate with charges, and that out-of-condensate charges and vortices are subject to topological mutual statistics interactions, a quantum effect that dominates at low temperatures. These repulsive mutual statistics interactions are sufficient to increase the energy of the Cooper pairs and lift them out of condensate. The result is a topological ground state in which charge conduction along edges and vortex movement across them organize themselves so as to generate the observed metallic saturation at low temperatures. This state is known today as a bosonic topological insulator. Full article
(This article belongs to the Special Issue Advanced Materials with Strong Electron Correlations)
Show Figures

Figure 1

39 pages, 18398 KiB  
Review
Higgs Boson Searches at the LHC Beyond the Standard Model
by André Sopczak
Physics 2024, 6(3), 1132-1170; https://doi.org/10.3390/physics6030071 - 19 Sep 2024
Viewed by 2520
Abstract
The latest results of Higgs boson searches beyond the Standard Model from the ATLAS and CMS experiments are reviewed. This includes searches for additional neutral, charged, and double charged Higgs-like bosons, searches for dark matter produced in association with a Higgs boson, and [...] Read more.
The latest results of Higgs boson searches beyond the Standard Model from the ATLAS and CMS experiments are reviewed. This includes searches for additional neutral, charged, and double charged Higgs-like bosons, searches for dark matter produced in association with a Higgs boson, and searches for new physics in Higgs boson production and decay processes. Interpretations are given within the hMSSM, a special parameterization of the Minimal Supersymmetric extension of the Standard Model, in which the mass of the lightest Higgs boson is set to the value of 125 GeV measured at the LHC. Full article
(This article belongs to the Special Issue Precision Physics and Fundamental Physical Constants (FFK 2023))
Show Figures

Figure 1

50 pages, 3558 KiB  
Article
Dark Atoms of Nuclear Interacting Dark Matter
by Vitaly A. Beylin, Timur E. Bikbaev, Maxim Yu. Khlopov, Andrey G. Mayorov and Danila O. Sopin
Universe 2024, 10(9), 368; https://doi.org/10.3390/universe10090368 - 11 Sep 2024
Cited by 3 | Viewed by 1660
Abstract
The lack of positive evidence for Weakly Interacting Massive Particles (WIMPs) as well as the lack of discovery of supersymmetric (SUSY) particles at the LHC may appeal to a non-supersymmetric solution for the Standard Model problem of the Higgs boson mass divergence, the [...] Read more.
The lack of positive evidence for Weakly Interacting Massive Particles (WIMPs) as well as the lack of discovery of supersymmetric (SUSY) particles at the LHC may appeal to a non-supersymmetric solution for the Standard Model problem of the Higgs boson mass divergence, the origin of the electroweak energy scale and the physical nature of the cosmological dark matter in the approach of composite Higgs boson. If the Higgs boson consists of charged constituents, their binding can lead to stable particles with electroweak charges. Such particles can take part in sphaleron transitions in the early Universe, which balance their excess with baryon asymmetry. Constraints on exotic charged species leave only stable particles with charge 2n possible, which can bind with n nuclei of primordial helium in neutral dark atoms. The predicted ratio of densities of dark atoms and baryonic matter determines the condition for dark atoms to dominate in the cosmological dark matter. To satisfy this condition of the dark-atom nature of the observed dark matter, the mass of new stable 2n charged particles should be within reach of the LHC for their searches. We discuss the possibilities of dark-atom binding in multi-atom systems and present state-of-the-art quantum mechanical descriptions of dark-atom interactions with nuclei. Annual modulations in such interactions with nuclei of underground detectors can explain the positive results of DAMA/NaI and DAMA/LIBRA experiments and the negative results of the underground WIMP searches. Full article
Show Figures

Figure 1

12 pages, 1462 KiB  
Article
Searching for Extra Higgs Boson Effects in General Two-Higgs Doublet Model (2HDM)
by George Wei-Shu Hou
Symmetry 2024, 16(8), 1013; https://doi.org/10.3390/sym16081013 - 8 Aug 2024
Viewed by 1265
Abstract
Starting from our current impasse at the LHC, of observing an SM-like Higgs boson but nothing beyond, we focus on the General 2HDM (G2HDM), which possesses extra sets of Yukawa couplings as a likely Next New Physics. After expounding its merits, we [...] Read more.
Starting from our current impasse at the LHC, of observing an SM-like Higgs boson but nothing beyond, we focus on the General 2HDM (G2HDM), which possesses extra sets of Yukawa couplings as a likely Next New Physics. After expounding its merits, we explore our “Decadal Mission of the New Higgs/Flavor era”, reporting on an Academic Summit Project (ASP) in Taiwan that conducts a four-pronged pursuit of G2HDM: CMS and Belle II searches, a lattice study of first-order electroweak phase transition, and phenomenology. The ASP Midterm report is based on ATLAS and CMS searches for cgtH/tAttc¯, where H and A are exotic neutral scalar bosons, and now progressing onto a post-Midterm cgbH+btb¯ search, where H+ is the exotic charged Higgs boson, plus a few other searches at the LHC, all with discovery potential. We then discuss a plethora of flavor observables that can be explored by CMS and Belle II, as well as other dedicated experiments. Finally, we elucidate why G2HDM, providing myriad new dynamics, can remain well hidden so far. This brief report summarizes the progress of the ASP of the NSTC of Taiwan. Full article
(This article belongs to the Special Issue Feature Papers in 'Physics' Section 2024)
Show Figures

Figure 1

16 pages, 515 KiB  
Article
Evaporation of Primordial Charged Black Holes: Timescale and Evolution of Thermodynamic Parameters
by José Antonio de Freitas Pacheco
Symmetry 2024, 16(7), 895; https://doi.org/10.3390/sym16070895 - 13 Jul 2024
Cited by 1 | Viewed by 1314
Abstract
The evolution of primordial black holes formed during the reheating phase is revisited. For reheating temperatures in the range of 10121013 GeV, the initial masses are respectively of the order of 1010108MP, [...] Read more.
The evolution of primordial black holes formed during the reheating phase is revisited. For reheating temperatures in the range of 10121013 GeV, the initial masses are respectively of the order of 1010108MP, where MP is the Planck mass. These newborn black holes have a small charge-to-mass ratio of the order of 103, a consequence of statistical fluctuations present in the plasma constituting the collapsing matter. Charged black holes can be rapidly discharged by the Schwinger mechanism, but one expects that, for very light black holes satisfying the condition M/MP<<MP/mW (mW is the mass of the heaviest standard model charged W-boson), the pair production process is probably strongly quenched. Under these conditions, these black holes evaporate until attaining extremality with final masses of about 107105MP. Timescales to reach extremality as a function of the initial charge excess were computed, as well as the evolution of the horizon temperature and the charge-to-mass ratio. The behavior of the horizon temperature can be understood in terms of the well-known discontinuity present in the heat capacity for a critical charge-to-mass ratio Q/GM=3/2. Full article
(This article belongs to the Special Issue Symmetry in Gravity Theories and Cosmology)
Show Figures

Figure 1

Back to TopTop