Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,512)

Search Parameters:
Keywords = channel model selection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1936 KiB  
Communication
Diffusion of C-O-H Fluids in a Sub-Nanometer Pore Network: Role of Pore Surface Area and Its Ratio with Pore Volume
by Siddharth Gautam and David Cole
C 2025, 11(3), 57; https://doi.org/10.3390/c11030057 (registering DOI) - 1 Aug 2025
Abstract
Porous materials are characterized by the pore surface area (S) and volume (V) accessible to a confined fluid. For mesoporous materials NMR measurements of diffusion are used to assess the S/V ratio, because at short times, only [...] Read more.
Porous materials are characterized by the pore surface area (S) and volume (V) accessible to a confined fluid. For mesoporous materials NMR measurements of diffusion are used to assess the S/V ratio, because at short times, only the diffusivity of molecules in the adsorbed layer is affected by confinement and the fractional population of these molecules is proportional to the S/V ratio. For materials with sub-nanometer pores, this might not be true, as the adsorbed layer can encompass the entire pore volume. Here, using molecular simulations, we explore the role played by S and S/V in determining the dynamical behavior of two carbon-bearing fluids—CO2 and ethane—confined in sub-nanometer pores of silica. S and V in a silicalite model representing a sub-nanometer porous material are varied by selectively blocking a part of the pore network by immobile methane molecules. Three classes of adsorbents were thus obtained with either all of the straight (labeled ‘S-major’) or zigzag channels (‘Z-major’) remaining open or a mix of a fraction of both types of channel blocked, resulting in half of the total pore volume being blocked (‘Half’). While the adsorption layers from opposite surfaces overlap, encompassing the entire pore volume for all pores except the intersections, the diffusion coefficient is still found to be reduced at high S/V, especially for CO2, albeit not so strongly as would be expected in the case of wider pores. This is because of the presence of channel intersections that provide a wider pore space with non-overlapping adsorption layers. Full article
(This article belongs to the Section Carbon Cycle, Capture and Storage)
Show Figures

Figure 1

24 pages, 4810 KiB  
Article
The Effects of Overexpressing K2p Channels in Various Tissues on Physiology and Behaviors
by Alaina C. Taul, Elizabeth R. Elliott, Douglas A. Harrison and Robin L. Cooper
Insects 2025, 16(8), 787; https://doi.org/10.3390/insects16080787 (registering DOI) - 31 Jul 2025
Abstract
Two-pore-domain K+ channels (K2p), known previously as leak channels, are responsible for maintaining the resting membrane potential of cells. Fifteen subtypes are known to exist in humans and eleven are known in Drosophila melanogaster, as well as six subfamilies; however, little [...] Read more.
Two-pore-domain K+ channels (K2p), known previously as leak channels, are responsible for maintaining the resting membrane potential of cells. Fifteen subtypes are known to exist in humans and eleven are known in Drosophila melanogaster, as well as six subfamilies; however, little is known about the expression of these subtypes in various animal tissues or the impact of altered expression on cellular physiology. The Drosophila melanogaster model allows for selective misexpression of certain neuron subsets, providing insight into individual cell types and the animal’s physiology more generally. Prior research on the overexpression of K2p channels and the resulting behavioral and neuronal effects is limited. This project expanded upon this prior research by using Drosophila motor neurons to examine the effects of K2p overexpression on behavior and physiology. After conducting various assays, it was concluded that K2p overexpression in motor neurons had the most prominent effects on Drosophila functioning, with sensory, cardiac, and chordotonal neurons also generating differences in behavior. Altered expression levels of K2p channels could result in tissue-specific and/or whole-animal dysfunction. Full article
(This article belongs to the Collection Advances in Diptera Biology)
Show Figures

Graphical abstract

16 pages, 3521 KiB  
Article
HBM Package Interconnection Pseudo All-Channel Signal Integrity Simulation and Implementation Method of the Synchronous Current Load Research
by Wen-Xue Tang, Cong-Jian Mai, Li-Yan Zhou, Ying Sun, Xin-Ran Zhao, Shu-Li Liu, Gang Wang, Da-Wei Wang and Cheng-Qian Wang
Micromachines 2025, 16(8), 896; https://doi.org/10.3390/mi16080896 (registering DOI) - 31 Jul 2025
Abstract
This paper proposes a pseudo full-channel signal integrity (SI) simulation method tailored for high-bandwidth memory (HBM) interconnects. In this approach, real interconnect models are applied to selected portions of the channel, while the remaining sections are replaced with synchronized current loads that emulate [...] Read more.
This paper proposes a pseudo full-channel signal integrity (SI) simulation method tailored for high-bandwidth memory (HBM) interconnects. In this approach, real interconnect models are applied to selected portions of the channel, while the remaining sections are replaced with synchronized current loads that emulate the electrical behavior of actual signal transmission. This technique enables accurate modeling of the HBM interface under full-channel parallel data transfer conditions. In addition to the simulation methodology itself, this study focuses on three specific implementation schemes for the synchronized current loads and explores their practical applications. Comparative analysis demonstrates the necessity and effectiveness of using synchronized current loads as substitutes for real transmission loads, offering a viable and efficient solution for SI analysis in HBM interconnect systems. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

29 pages, 15488 KiB  
Article
GOFENet: A Hybrid Transformer–CNN Network Integrating GEOBIA-Based Object Priors for Semantic Segmentation of Remote Sensing Images
by Tao He, Jianyu Chen and Delu Pan
Remote Sens. 2025, 17(15), 2652; https://doi.org/10.3390/rs17152652 (registering DOI) - 31 Jul 2025
Abstract
Geographic object-based image analysis (GEOBIA) has demonstrated substantial utility in remote sensing tasks. However, its integration with deep learning remains largely confined to image-level classification. This is primarily due to the irregular shapes and fragmented boundaries of segmented objects, which limit its applicability [...] Read more.
Geographic object-based image analysis (GEOBIA) has demonstrated substantial utility in remote sensing tasks. However, its integration with deep learning remains largely confined to image-level classification. This is primarily due to the irregular shapes and fragmented boundaries of segmented objects, which limit its applicability in semantic segmentation. While convolutional neural networks (CNNs) excel at local feature extraction, they inherently struggle to capture long-range dependencies. In contrast, Transformer-based models are well suited for global context modeling but often lack fine-grained local detail. To overcome these limitations, we propose GOFENet (Geo-Object Feature Enhanced Network)—a hybrid semantic segmentation architecture that effectively fuses object-level priors into deep feature representations. GOFENet employs a dual-encoder design combining CNN and Swin Transformer architectures, enabling multi-scale feature fusion through skip connections to preserve both local and global semantics. An auxiliary branch incorporating cascaded atrous convolutions is introduced to inject information of segmented objects into the learning process. Furthermore, we develop a cross-channel selection module (CSM) for refined channel-wise attention, a feature enhancement module (FEM) to merge global and local representations, and a shallow–deep feature fusion module (SDFM) to integrate pixel- and object-level cues across scales. Experimental results on the GID and LoveDA datasets demonstrate that GOFENet achieves superior segmentation performance, with 66.02% mIoU and 51.92% mIoU, respectively. The model exhibits strong capability in delineating large-scale land cover features, producing sharper object boundaries and reducing classification noise, while preserving the integrity and discriminability of land cover categories. Full article
Show Figures

Figure 1

23 pages, 4400 KiB  
Article
BFLE-Net: Boundary Feature Learning and Enhancement Network for Medical Image Segmentation
by Jiale Fan, Liping Liu and Xinyang Yu
Electronics 2025, 14(15), 3054; https://doi.org/10.3390/electronics14153054 - 30 Jul 2025
Abstract
Multi-organ medical image segmentation is essential for accurate clinical diagnosis, effective treatment planning, and reliable prognosis, yet it remains challenging due to complex backgrounds, irrelevant noise, unclear organ boundaries, and wide variations in organ size. To address these challenges, the boundary feature learning [...] Read more.
Multi-organ medical image segmentation is essential for accurate clinical diagnosis, effective treatment planning, and reliable prognosis, yet it remains challenging due to complex backgrounds, irrelevant noise, unclear organ boundaries, and wide variations in organ size. To address these challenges, the boundary feature learning and enhancement network is proposed. This model integrates a dedicated boundary learning module combined with an auxiliary loss function to strengthen the semantic correlations between boundary pixels and regional features, thus reducing category mis-segmentation. Additionally, channel and positional compound attention mechanisms are employed to selectively filter features and minimize background interference. To further enhance multi-scale representation capabilities, the dynamic scale-aware context module dynamically selects and fuses multi-scale features, significantly improving the model’s adaptability. The model achieves average Dice similarity coefficients of 81.67% on synapse and 90.55% on ACDC datasets, outperforming state-of-the-art methods. This network significantly improves segmentation by emphasizing boundary accuracy, noise reduction, and multi-scale adaptability, enhancing clinical diagnostics and treatment planning. Full article
Show Figures

Figure 1

23 pages, 19710 KiB  
Article
Hybrid EEG Feature Learning Method for Cross-Session Human Mental Attention State Classification
by Xu Chen, Xingtong Bao, Kailun Jitian, Ruihan Li, Li Zhu and Wanzeng Kong
Brain Sci. 2025, 15(8), 805; https://doi.org/10.3390/brainsci15080805 - 28 Jul 2025
Viewed by 152
Abstract
Background: Decoding mental attention states from electroencephalogram (EEG) signals is crucial for numerous applications such as cognitive monitoring, adaptive human–computer interaction, and brain–computer interfaces (BCIs). However, conventional EEG-based approaches often focus on channel-wise processing and are limited to intra-session or subject-specific scenarios, lacking [...] Read more.
Background: Decoding mental attention states from electroencephalogram (EEG) signals is crucial for numerous applications such as cognitive monitoring, adaptive human–computer interaction, and brain–computer interfaces (BCIs). However, conventional EEG-based approaches often focus on channel-wise processing and are limited to intra-session or subject-specific scenarios, lacking robustness in cross-session or inter-subject conditions. Methods: In this study, we propose a hybrid feature learning framework for robust classification of mental attention states, including focused, unfocused, and drowsy conditions, across both sessions and individuals. Our method integrates preprocessing, feature extraction, feature selection, and classification in a unified pipeline. We extract channel-wise spectral features using short-time Fourier transform (STFT) and further incorporate both functional and structural connectivity features to capture inter-regional interactions in the brain. A two-stage feature selection strategy, combining correlation-based filtering and random forest ranking, is adopted to enhance feature relevance and reduce dimensionality. Support vector machine (SVM) is employed for final classification due to its efficiency and generalization capability. Results: Experimental results on two cross-session and inter-subject EEG datasets demonstrate that our approach achieves classification accuracy of 86.27% and 94.01%, respectively, significantly outperforming traditional methods. Conclusions: These findings suggest that integrating connectivity-aware features with spectral analysis can enhance the generalizability of attention decoding models. The proposed framework provides a promising foundation for the development of practical EEG-based systems for continuous mental state monitoring and adaptive BCIs in real-world environments. Full article
Show Figures

Figure 1

18 pages, 4456 KiB  
Article
Study on the Filling and Plugging Mechanism of Oil-Soluble Resin Particles on Channeling Cracks Based on Rapid Filtration Mechanism
by Bangyan Xiao, Jianxin Liu, Feng Xu, Liqin Fu, Xuehao Li, Xianhao Yi, Chunyu Gao and Kefan Qian
Processes 2025, 13(8), 2383; https://doi.org/10.3390/pr13082383 - 27 Jul 2025
Viewed by 325
Abstract
Channeling in cementing causes interlayer interference, severely restricting oilfield recovery. Existing channeling plugging agents, such as cement and gels, often lead to reservoir damage or insufficient strength. Oil-soluble resin (OSR) particles show great potential in selective plugging of channeling fractures due to their [...] Read more.
Channeling in cementing causes interlayer interference, severely restricting oilfield recovery. Existing channeling plugging agents, such as cement and gels, often lead to reservoir damage or insufficient strength. Oil-soluble resin (OSR) particles show great potential in selective plugging of channeling fractures due to their excellent oil solubility, temperature/salt resistance, and high strength. However, their application is limited by the efficient filling and retention in deep fractures. This study innovatively combines the OSR particle plugging system with the mature rapid filtration loss plugging mechanism in drilling, systematically exploring the influence of particle size and sorting on their filtration, packing behavior, and plugging performance in channeling fractures. Through API filtration tests, visual fracture models, and high-temperature/high-pressure (100 °C, salinity 3.0 × 105 mg/L) core flow experiments, it was found that well-sorted large particles preferentially bridge in fractures to form a high-porosity filter cake, enabling rapid water filtration from the resin plugging agent. This promotes efficient accumulation of OSR particles to form a long filter cake slug with a water content <20% while minimizing the invasion of fine particles into matrix pores. The slug thermally coalesces and solidifies into an integral body at reservoir temperature, achieving a plugging strength of 5–6 MPa for fractures. In contrast, poorly sorted particles or undersized particles form filter cakes with low porosity, resulting in slow water filtration, high water content (>50%) in the filter cake, insufficient fracture filling, and significantly reduced plugging strength (<1 MPa). Finally, a double-slug strategy is adopted: small-sized OSR for temporary plugging of the oil layer injection face combined with well-sorted large-sized OSR for main plugging of channeling fractures. This strategy achieves fluid diversion under low injection pressure (0.9 MPa), effectively protects reservoir permeability (recovery rate > 95% after backflow), and establishes high-strength selective plugging. This study clarifies the core role of particle size and sorting in regulating the OSR plugging effect based on rapid filtration loss, providing key insights for developing low-damage, high-performance channeling plugging agents and scientific gradation of particle-based plugging agents. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

22 pages, 5706 KiB  
Article
Improved Dab-Deformable Model for Runway Foreign Object Debris Detection in Airport Optical Images
by Yang Cao, Yuming Wang, Yilin Zhu and Rui Yang
Appl. Sci. 2025, 15(15), 8284; https://doi.org/10.3390/app15158284 - 25 Jul 2025
Viewed by 124
Abstract
Foreign Object Debris (FOD) detection is paramount for airport operations. The precise identification and removal of FOD are critical for ensuring airplane flight safety. This study collected FOD images using optical imaging sensors installed at Urumqi Airport and created a custom FOD dataset [...] Read more.
Foreign Object Debris (FOD) detection is paramount for airport operations. The precise identification and removal of FOD are critical for ensuring airplane flight safety. This study collected FOD images using optical imaging sensors installed at Urumqi Airport and created a custom FOD dataset based on these images. To address the challenges of small targets and complex backgrounds in the dataset, this paper proposes optimizations and improvements based on the advanced detection network Dab-Deformable. First, this paper introduces a Lightweight Deep-Shallow Feature Fusion algorithm (LDSFF), which integrates a hotspot sensing network and a spatial mapping enhancer aimed at focusing the model on significant regions. Second, we devise a Multi-Directional Deformable Channel Attention (MDDCA) module for rational feature weight allocation. Furthermore, a feedback mechanism is incorporated into the encoder structure, enhancing the model’s capacity to capture complex dependencies within sequential data. Additionally, when combined with a Threshold Selection (TS) algorithm, the model effectively mitigates the distraction caused by the serialization of multi-layer feature maps in the Transformer architecture. Experimental results on the optical small FOD dataset show that the proposed network achieves a robust performance and improved accuracy in FOD detection. Full article
Show Figures

Figure 1

25 pages, 549 KiB  
Article
CurveMark: Detecting AI-Generated Text via Probabilistic Curvature and Dynamic Semantic Watermarking
by Yuhan Zhang, Xingxiang Jiang, Hua Sun, Yao Zhang and Deyu Tong
Entropy 2025, 27(8), 784; https://doi.org/10.3390/e27080784 - 24 Jul 2025
Viewed by 220
Abstract
Large language models (LLMs) pose significant challenges to content authentication, as their sophisticated generation capabilities make distinguishing AI-produced text from human writing increasingly difficult. Current detection methods suffer from limited information capture, poor rate–distortion trade-offs, and vulnerability to adversarial perturbations. We present CurveMark, [...] Read more.
Large language models (LLMs) pose significant challenges to content authentication, as their sophisticated generation capabilities make distinguishing AI-produced text from human writing increasingly difficult. Current detection methods suffer from limited information capture, poor rate–distortion trade-offs, and vulnerability to adversarial perturbations. We present CurveMark, a novel dual-channel detection framework that combines probability curvature analysis with dynamic semantic watermarking, grounded in information-theoretic principles to maximize mutual information between text sources and observable features. To address the limitation of requiring prior knowledge of source models, we incorporate a Bayesian multi-hypothesis detection framework for statistical inference without prior assumptions. Our approach embeds imperceptible watermarks during generation via entropy-aware, semantically informed token selection and extracts complementary features from probability curvature patterns and watermark-specific metrics. Evaluation across multiple datasets and LLM architectures demonstrates 95.4% detection accuracy with minimal quality degradation (perplexity increase < 1.3), achieving 85–89% channel capacity utilization and robust performance under adversarial perturbations (72–94% information retention). Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

18 pages, 2163 KiB  
Article
Transmission Opportunity and Throughput Prediction for WLAN Access Points via Multi-Dimensional Feature Modeling
by Wei Li, Xin Huang, Danju Lv, Yueyun Yu, Yan Zhang, Zhicheng Zhu and Ting Zhou
Electronics 2025, 14(15), 2941; https://doi.org/10.3390/electronics14152941 - 23 Jul 2025
Viewed by 223
Abstract
With the rapid development of wireless communication, Wireless Local Area Networks (WLANs) are widely deployed in high-density environments. Ensuring fast handovers and optimal AP selection during device roaming is critical for maintaining network throughput and user experience. However, frequent mobility, high access density, [...] Read more.
With the rapid development of wireless communication, Wireless Local Area Networks (WLANs) are widely deployed in high-density environments. Ensuring fast handovers and optimal AP selection during device roaming is critical for maintaining network throughput and user experience. However, frequent mobility, high access density, and dynamic channel fluctuations complicate throughput prediction. To address this, we propose a method combining the Snow-Melting Optimizer (SMO) with decision tree regression models to optimize feature selection and model transmission opportunities (TXOP) and AP throughput. Experimental results show that the Extreme Gradient Boosting (XGBoost) model performs best, achieving high prediction accuracy for TXOP (MSE = 1.3746, R2 = 0.9842) and AP throughput (MAE = 2.5071, R2 = 0.9896). This approach effectively captures the nonlinear relationships between throughput and network factors in dense WLAN scenarios, demonstrating its potential for real-world applications. Full article
(This article belongs to the Special Issue AI in Network Security: New Opportunities and Threats)
Show Figures

Figure 1

19 pages, 5417 KiB  
Article
SE-TFF: Adaptive Tourism-Flow Forecasting Under Sparse and Heterogeneous Data via Multi-Scale SE-Net
by Jinyuan Zhang, Tao Cui and Peng He
Appl. Sci. 2025, 15(15), 8189; https://doi.org/10.3390/app15158189 - 23 Jul 2025
Viewed by 190
Abstract
Accurate and timely forecasting of cross-regional tourist flows is essential for sustainable destination management, yet existing models struggle with sparse data, complex spatiotemporal interactions, and limited interpretability. This paper presents SE-TFF, a multi-scale tourism-flow forecasting framework that couples a Squeeze-and-Excitation (SE) network with [...] Read more.
Accurate and timely forecasting of cross-regional tourist flows is essential for sustainable destination management, yet existing models struggle with sparse data, complex spatiotemporal interactions, and limited interpretability. This paper presents SE-TFF, a multi-scale tourism-flow forecasting framework that couples a Squeeze-and-Excitation (SE) network with reinforcement-driven optimization to adaptively re-weight environmental, economic, and social features. A benchmark dataset of 17.8 million records from 64 countries and 743 cities (2016–2024) is compiled from the Open Travel Data repository in github (OPTD) for training and validation. SE-TFF introduces (i) a multi-channel SE module for fine-grained feature selection under heterogeneous conditions, (ii) a Top-K attention filter to preserve salient context in highly sparse matrices, and (iii) a Double-DQN layer that dynamically balances prediction objectives. Experimental results show SE-TFF attains 56.5% MAE and 65.6% RMSE reductions over the best baseline (ARIMAX) at 20% sparsity, with 0.92 × 103 average MAE across multi-task outputs. SHAP analysis ranks climate anomalies, tourism revenue, and employment as dominant predictors. These gains demonstrate SE-TFF’s ability to deliver real-time, interpretable forecasts for data-limited destinations. Future work will incorporate real-time social media signals and larger multimodal datasets to enhance generalizability. Full article
Show Figures

Figure 1

23 pages, 4256 KiB  
Article
A GAN-Based Framework with Dynamic Adaptive Attention for Multi-Class Image Segmentation in Autonomous Driving
by Bashir Sheikh Abdullahi Jama and Mehmet Hacibeyoglu
Appl. Sci. 2025, 15(15), 8162; https://doi.org/10.3390/app15158162 - 22 Jul 2025
Viewed by 200
Abstract
Image segmentation is a foundation for autonomous driving frameworks that empower vehicles to explore and navigate their surrounding environment. It gives a fundamental setting to the dynamic cycles by dividing the image into significant parts like streets, vehicles, walkers, and traffic signs. Precise [...] Read more.
Image segmentation is a foundation for autonomous driving frameworks that empower vehicles to explore and navigate their surrounding environment. It gives a fundamental setting to the dynamic cycles by dividing the image into significant parts like streets, vehicles, walkers, and traffic signs. Precise segmentation ensures safe navigation and the avoidance of collisions, while following the rules of traffic is very critical for seamless operation in self-driving cars. The most recent deep learning-based image segmentation models have demonstrated impressive performance in structured environments, yet they often fall short when applied to the complex and unpredictable conditions encountered in autonomous driving. This study proposes an Adaptive Ensemble Attention (AEA) mechanism within a Generative Adversarial Network architecture to deal with dynamic and complex driving conditions. The AEA integrates the features of self, spatial, and channel attention adaptively and powerfully changes the amount of each contribution as per input and context-oriented relevance. It does this by allowing the discriminator network in GAN to evaluate the segmentation mask created by the generator. This explains the difference between real and fake masks by considering a concatenated pair of an original image and its mask. The adversarial training will prompt the generator, via the discriminator, to mask out the image in such a way that the output aligns with the expected ground truth and is also very realistic. The exchange of information between the generator and discriminator improves the quality of the segmentation. In order to check the accuracy of the proposed method, the three widely used datasets BDD100K, Cityscapes, and KITTI were selected to calculate average IoU, where the value obtained was 89.46%, 89.02%, and 88.13% respectively. These outcomes emphasize the model’s effectiveness and consistency. Overall, it achieved a remarkable accuracy of 98.94% and AUC of 98.4%, indicating strong enhancements compared to the State-of-the-art (SOTA) models. Full article
Show Figures

Figure 1

18 pages, 2502 KiB  
Article
Learning Local Texture and Global Frequency Clues for Face Forgery Detection
by Xin Jin, Yuru Kou, Yuhao Xie, Yuying Zhao, Miss Laiha Mat Kiah, Qian Jiang and Wei Zhou
Biomimetics 2025, 10(8), 480; https://doi.org/10.3390/biomimetics10080480 - 22 Jul 2025
Viewed by 296
Abstract
In recent years, the rapid advancement of deep learning techniques has significantly propelled the development of face forgery methods, drawing considerable attention to face forgery detection. However, existing detection methods still struggle with generalization across different datasets and forgery techniques. In this work, [...] Read more.
In recent years, the rapid advancement of deep learning techniques has significantly propelled the development of face forgery methods, drawing considerable attention to face forgery detection. However, existing detection methods still struggle with generalization across different datasets and forgery techniques. In this work, we address this challenge by leveraging both local texture cues and global frequency domain information in a complementary manner to enhance the robustness of face forgery detection. Specifically, we introduce a local texture mining and enhancement module. The input image is segmented into patches and a subset is strategically masked, then texture enhanced. This joint masking and enhancement strategy forces the model to focus on generalizable localized texture traces, mitigates overfitting to specific identity features and enabling the model to capture more meaningful subtle traces of forgery. Additionally, we extract multi-scale frequency domain features from the face image using wavelet transform, thereby preserving various frequency domain characteristics of the image. And we propose an innovative frequency-domain processing strategy to adjust the contributions of different frequency-domain components through frequency-domain selection and dynamic weighting. This Facilitates the model’s ability to uncover frequency-domain inconsistencies across various global frequency layers. Furthermore, we propose an integrated framework that combines these two feature modalities, enhanced with spatial attention and channel attention mechanisms, to foster a synergistic effect. Extensive experiments conducted on several benchmark datasets demonstrate that the proposed technique demonstrates superior performance and generalization capabilities compared to existing methods. Full article
(This article belongs to the Special Issue Exploration of Bioinspired Computer Vision and Pattern Recognition)
Show Figures

Figure 1

43 pages, 6462 KiB  
Article
An Integrated Mechanical Fault Diagnosis Framework Using Improved GOOSE-VMD, RobustICA, and CYCBD
by Jingzong Yang and Xuefeng Li
Machines 2025, 13(7), 631; https://doi.org/10.3390/machines13070631 - 21 Jul 2025
Viewed by 242
Abstract
Rolling element bearings serve as critical transmission components in industrial automation systems, yet their fault signatures are susceptible to interference from strong background noise, complex operating conditions, and nonlinear impact characteristics. Addressing the limitations of conventional methods in adaptive parameter optimization and weak [...] Read more.
Rolling element bearings serve as critical transmission components in industrial automation systems, yet their fault signatures are susceptible to interference from strong background noise, complex operating conditions, and nonlinear impact characteristics. Addressing the limitations of conventional methods in adaptive parameter optimization and weak feature enhancement, this paper proposes an innovative diagnostic framework integrating Improved Goose optimized Variational Mode Decomposition (IGOOSE-VMD), RobustICA, and CYCBD. First, to mitigate modal aliasing issues caused by empirical parameter dependency in VMD, we fuse a refraction-guided reverse learning mechanism with a dynamic mutation strategy to develop the IGOOSE. By employing an energy-feature-driven fitness function, this approach achieves synergistic optimization of the mode number and penalty factor. Subsequently, a multi-channel observation model is constructed based on optimal component selection. Noise interference is suppressed through the robust separation capabilities of RobustICA, while CYCBD introduces cyclostationarity-based prior constraints to formulate a blind deconvolution operator with periodic impact enhancement properties. This significantly improves the temporal sparsity of fault-induced impact components. Experimental results demonstrate that, compared to traditional time–frequency analysis techniques (e.g., EMD, EEMD, LMD, ITD) and deconvolution methods (including MCKD, MED, OMEDA), the proposed approach exhibits superior noise immunity and higher fault feature extraction accuracy under high background noise conditions. Full article
Show Figures

Figure 1

28 pages, 2139 KiB  
Article
An Improved Approach to DNS Covert Channel Detection Based on DBM-ENSec
by Xinyu Li, Xiaoying Wang, Guoqing Yang, Jinsha Zhang, Chunhui Li, Fangfang Cui and Ruize Gu
Future Internet 2025, 17(7), 319; https://doi.org/10.3390/fi17070319 - 21 Jul 2025
Viewed by 172
Abstract
The covert nature of DNS covert channels makes them a widely utilized method for data exfiltration by malicious attackers. In response to this challenge, the present study proposes a detection methodology for DNS covert channels that employs a Deep Boltzmann Machine with Enhanced [...] Read more.
The covert nature of DNS covert channels makes them a widely utilized method for data exfiltration by malicious attackers. In response to this challenge, the present study proposes a detection methodology for DNS covert channels that employs a Deep Boltzmann Machine with Enhanced Security (DBM-ENSec). This approach entails the creation of a dataset through the collection of malicious traffic associated with various DNS covert channel attacks. Time-dependent grouping features are excluded, and feature optimization is conducted on individual traffic data through feature selection and normalization to minimize redundancy, enhancing the differentiation and stability of the features. The result of this process is the extraction of 23-dimensional features for each DNS packet. The extracted features are converted to gray scale images to improve the interpretability of the model and then fed into an improved Deep Boltzmann Machine for further optimization. The optimized features are then processed by an ensemble of classifiers (including Random Forest, XGBoost, LightGBM, and CatBoost) for detection purposes. Experimental results show that the proposed method achieves 99.92% accuracy in detecting DNS covert channels, with a validation accuracy of up to 98.52% on publicly available datasets. Full article
(This article belongs to the Section Cybersecurity)
Show Figures

Figure 1

Back to TopTop