Learning Local Texture and Global Frequency Clues for Face Forgery Detection
Abstract
1. Introduction
- We propose a local texture mining and enhancement module (LTME) to extract forgery clues from local texture features and a global frequency feature filtering extraction module (GFE) to capture forgery cues from the frequency domain. These modules work together to reduce the influence of high-level semantic facial features, offering new approaches for detecting manipulation cues in face forgery images from both local and global perspectives.
- We propose a local and global feature enhancement module (LGFE) that enhances the model’s ability to synergistically exploit both local and global features. By employing spatial and channel attention mechanisms, the LGFE improves the model’s global perception and its capacity for non-local modeling.
- We conduct extensive ablation studies to validate the effectiveness of the proposed modules. In-domain comparison experiments and cross-domain experiments validate the model. Experimental results show that our method has high generalization ability while maintaining the highest accuracy.
2. Related Work
2.1. Conventional Face Forgery Detection
2.2. Uncovering Hidden Forgery Clues
3. Proposed Method
3.1. Local Texture Mining and Enhancement Module
3.2. Global Frequency Feature Filtering Extraction Module
3.3. Local and Global Feature Enhancement Module
3.4. Feature Fusion and Loss Function
4. Experiments
4.1. Experimental Settings
4.1.1. Datasets
4.1.2. Evaluation Metrics
4.1.3. Implementation Details
4.2. Comparison with Previous Methods
4.2.1. In-Domain Evaluation
4.2.2. Cross-Domain Evaluation
4.3. Ablation Study
4.3.1. Modality
4.3.2. Components
4.4. Visualization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.C.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, Montreal, QC, Canada, 8–13 December 2014; Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q., Eds.; 2014; pp. 2672–2680. [Google Scholar]
- Karras, T.; Laine, S.; Aila, T. A Style-Based Generator Architecture for Generative Adversarial Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019; Computer Vision Foundation/IEEE: New York, NY, USA, 2019; pp. 4401–4410. [Google Scholar]
- Zhu, J.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. In Proceedings of the IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, 22–29 October 2017; IEEE Computer Society: Los Alamitos, CA, USA, 2017; pp. 2242–2251. [Google Scholar]
- Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. In Proceedings of the 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014; Conference Track Proceedings. Bengio, Y., LeCun, Y., Eds.; 2014. [Google Scholar]
- Cho, K.; van Merrienboer, B.; Gülçehre, Ç.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, Doha, Qatar, 25–29 October 2014; A meeting of SIGDAT, a Special Interest Group of the ACL. Moschitti, A., Pang, B., Daelemans, W., Eds.; ACL: Stroudsburg, PA, USA, 2014; pp. 1724–1734. [Google Scholar]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th International Conference on Machine Learning, ICML 2019, Long Beach, CA, USA, 9–15 June 2019; Proceedings of Machine Learning Research. Chaudhuri, K., Salakhutdinov, R., Eds.; PMLR: New York, NY, USA, 2019; Volume 97, pp. 6105–6114. [Google Scholar]
- Rössler, A.; Cozzolino, D.; Verdoliva, L.; Riess, C.; Thies, J.; Nießner, M. FaceForensics++: Learning to Detect Manipulated Facial Images. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Republic of Korea, 27 October–2 November 2019; IEEE: New York, NY, USA, 2019; pp. 1–11. [Google Scholar]
- Thies, J.; Zollhöfer, M.; Nießner, M. Deferred neural rendering: Image synthesis using neural textures. ACM Trans. Graph. (TOG) 2019, 38, 1–12. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In Proceedings of the IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, 22–29 October 2017; IEEE Computer Society: Los Alamitos, CA, USA, 2017; pp. 618–626. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016; IEEE Computer Society: Los Alamitos, CA, USA, 2016; pp. 770–778. [Google Scholar]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; IEEE Computer Society: Los Alamitos, CA, USA, 2017; pp. 1800–1807. [Google Scholar]
- Nguyen, H.H.; Yamagishi, J.; Echizen, I. Use of a Capsule Network to Detect Fake Images and Videos. arXiv 2019, arXiv:1910.12467. [Google Scholar] [CrossRef]
- Afchar, D.; Nozick, V.; Yamagishi, J.; Echizen, I. MesoNet: A Compact Facial Video Forgery Detection Network. In Proceedings of the 2018 IEEE International Workshop on Information Forensics and Security, WIFS 2018, Hong Kong, China, 11–13 December 2018; IEEE: New York, NY, USA, 2018; pp. 1–7. [Google Scholar]
- Wang, T.; Mallya, A.; Liu, M. One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, Virtual, 19–25 June 2021; Computer Vision Foundation/IEEE: New York, NY, USA, 2021; pp. 10039–10049. [Google Scholar]
- Yang, X.; Li, Y.; Lyu, S. Exposing Deep Fakes Using Inconsistent Head Poses. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2019, Brighton, UK, 12–17 May 2019; IEEE: New York, NY, USA, 2019; pp. 8261–8265. [Google Scholar]
- Li, Y.; Chang, M.; Lyu, S. In Ictu Oculi: Exposing AI Created Fake Videos by Detecting Eye Blinking. In Proceedings of the 2018 IEEE International Workshop on Information Forensics and Security, WIFS 2018, Hong Kong, China, 11–13 December 2018; IEEE: New York, NY, USA, 2018; pp. 1–7. [Google Scholar]
- Chen, L.; Zhang, Y.; Song, Y.; Liu, L.; Wang, J. Self-supervised Learning of Adversarial Example: Towards Good Generalizations for Deepfake Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, 18–24 June 2022; IEEE: New York, NY, USA, 2022; pp. 18689–18698. [Google Scholar]
- Dong, X.; Bao, J.; Chen, D.; Zhang, T.; Zhang, W.; Yu, N.; Chen, D.; Wen, F.; Guo, B. Protecting Celebrities from DeepFake with Identity Consistency Transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, 18–24 June 2022; IEEE: New York, NY, USA, 2022; pp. 9458–9468. [Google Scholar]
- Shiohara, K.; Yamasaki, T. Detecting Deepfakes with Self-Blended Images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, 18–24 June 2022; IEEE: New York, NY, USA, 2022; pp. 18699–18708. [Google Scholar]
- Wang, C.; Deng, W. Representative Forgery Mining for Fake Face Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, Virtual, 19–25 June 2021; Computer Vision Foundation/IEEE: New York, NY, USA, 2021; pp. 14923–14932. [Google Scholar]
- Sun, K.; Yao, T.; Chen, S.; Ding, S.; Li, J.; Ji, R. Dual contrastive learning for general face forgery detection. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 22 February–1 March 2022; AAAI Press: Washington, DC, USA, 2022; Volume 36, pp. 2316–2324. [Google Scholar]
- Chen, X.; Tao, H.; Zhou, H.; Zhou, P.; Deng, Y. Hierarchical and progressive learning with key point sensitive loss for sonar image classification. Multimed. Syst. 2024, 30, 380. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Y.; Yan, J.; Liu, W. Generalizing Face Forgery Detection With High-Frequency Features. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, Virtual, 19–25 June 2021; Computer Vision Foundation/IEEE: New York, NY, USA, 2021; pp. 16317–16326. [Google Scholar]
- Fridrich, J.J.; Kodovský, J. Rich Models for Steganalysis of Digital Images. IEEE Trans. Inf. Forensics Secur. 2012, 7, 868–882. [Google Scholar] [CrossRef]
- Tan, C.; Zhao, Y.; Wei, S.; Gu, G.; Liu, P.; Wei, Y. Frequency-Aware Deepfake Detection: Improving Generalizability through Frequency Space Domain Learning. In Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2024, Vancouver, BC, Canada, 20–27 February 2024; Wooldridge, M.J., Dy, J.G., Natarajan, S., Eds.; AAAI Press: Washington, DC, USA, 2024; pp. 5052–5060. [Google Scholar]
- Zhao, H.; Zhou, W.; Chen, D.; Wei, T.; Zhang, W.; Yu, N. Multi-Attentional Deepfake Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, Virtual, 19–25 June 2021; Computer Vision Foundation/IEEE: New York, NY, USA, 2021; pp. 2185–2194. [Google Scholar]
- Nguyen, H.H.; Fang, F.; Yamagishi, J.; Echizen, I. Multi-task Learning for Detecting and Segmenting Manipulated Facial Images and Videos. In Proceedings of the 10th IEEE International Conference on Biometrics Theory, Applications and Systems, BTAS 2019, Tampa, FL, USA, 23–26 September 2019; IEEE: New York, NY, USA, 2019; pp. 1–8. [Google Scholar]
- Agarwal, S.; Farid, H.; Fried, O.; Agrawala, M. Detecting Deep-Fake Videos from Phoneme-Viseme Mismatches. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR Workshops 2020, Seattle, WA, USA, 14–19 June 2020; Computer Vision Foundation/IEEE: New York, NY, USA, 2020; pp. 2814–2822. [Google Scholar]
- Gu, Q.; Chen, S.; Yao, T.; Chen, Y.; Ding, S.; Yi, R. Exploiting Fine-Grained Face Forgery Clues via Progressive Enhancement Learning. In Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, the Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022, Virtual Event, 22 February–1 March 2022; AAAI Press: Washington, DC, USA, 2022; pp. 735–743. [Google Scholar]
- Yang, J.; Li, A.; Xiao, S.; Lu, W.; Gao, X. MTD-Net: Learning to Detect Deepfakes Images by Multi-Scale Texture Difference. IEEE Trans. Inf. Forensics Secur. 2021, 16, 4234–4245. [Google Scholar] [CrossRef]
- Yang, G.; Wei, A.; Fang, X.; Zhang, J. FDS_2D: Rethinking magnitude-phase features for DeepFake detection. Multimed. Syst. 2023, 29, 2399–2413. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, H.; Fei, H.; Lei, Z.; Li, S.Z. Face Forgery Detection by 3D Decomposition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, Virtual, 19–25 June 2021; Computer Vision Foundation/IEEE: New York, NY, USA, 2021; pp. 2929–2939. [Google Scholar]
- Guo, Z.; Yang, G.; Zhang, D.; Xia, M. Rethinking gradient operator for exposing AI-enabled face forgeries. Expert Syst. Appl. 2023, 215, 119361. [Google Scholar] [CrossRef]
- Fei, J.; Dai, Y.; Yu, P.; Shen, T.; Xia, Z.; Weng, J. Learning Second Order Local Anomaly for General Face Forgery Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, 18–24 June 2022; IEEE: New York, NY, USA, 2022; pp. 20238–20248. [Google Scholar]
- Brewster, M.E. An Introduction to Wavelets (Charles K. Chui). SIAM Rev. 1993, 35, 312–313. [Google Scholar] [CrossRef]
- Mallat, S. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Sun, P.; Qi, H.; Lyu, S. Celeb-DF: A Large-Scale Challenging Dataset for DeepFake Forensics. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, 13–19 June 2020; Computer Vision Foundation/IEEE: New York, NY, USA, 2020; pp. 3204–3213. [Google Scholar]
- Dolhansky, B.; Howes, R.; Pflaum, B.; Baram, N.; Canton-Ferrer, C. The Deepfake Detection Challenge (DFDC) Preview Dataset. arXiv 2019, arXiv:1910.08854. [Google Scholar] [CrossRef]
- Deepfakes. 2018. Available online: https://github.com/deepfakes/faceswap (accessed on 29 October 2018).
- Thies, J.; Zollhofer, M.; Stamminger, M.; Theobalt, C.; Nießner, M. Face2face: Real-time face capture and reenactment of rgb videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2387–2395. [Google Scholar]
- Kowalski, M. Faceswap. 2018. Available online: https://github.com/marekkowalski/faceswap (accessed on 1 August 2020).
- Dong, F.; Zou, X.; Wang, J.; Liu, X. Contrastive learning-based general Deepfake detection with multi-scale RGB frequency clues. J. King Saud Univ.—Comput. Inf. Sci. 2023, 35, 90–99. [Google Scholar] [CrossRef]
- Qian, Y.; Yin, G.; Sheng, L.; Chen, Z.; Shao, J. Thinking in Frequency: Face Forgery Detection by Mining Frequency-Aware Clues. In Proceedings of the Computer Vision—ECCV 2020—16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part XII; Lecture Notes in Computer Science. Vedaldi, A., Bischof, H., Brox, T., Frahm, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; Volume 12357, pp. 86–103. [Google Scholar]
- Zi, B.; Chang, M.; Chen, J.; Ma, X.; Jiang, Y. WildDeepfake: A Challenging Real-World Dataset for Deepfake Detection. In Proceedings of the MM ’20: The 28th ACM International Conference on Multimedia, Virtual Event/Seattle, WA, USA, 12–16 October 2020; Chen, C.W., Cucchiara, R., Hua, X., Qi, G., Ricci, E., Zhang, Z., Zimmermann, R., Eds.; ACM: New York, NY, USA, 2020; pp. 2382–2390. [Google Scholar]
- Cao, J.; Ma, C.; Yao, T.; Chen, S.; Ding, S.; Yang, X. End-to-End Reconstruction-Classification Learning for Face Forgery Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, 18–24 June 2022; IEEE: New York, NY, USA, 2022; pp. 4103–4112. [Google Scholar]
- Ahmed, A.H.; Hamzah, L.; Raed, K.; Saeed, A. FSBI: Deepfake detection with frequency enhanced self-blended images. Image Vis. Comput. 2025, 154, 105418. [Google Scholar] [CrossRef]
- Yin, Z.; Wang, J.; Xiao, Y.; Zhao, H.; Li, T.; Zhou, W.; Liu, A.; Liu, X. Improving Deepfake Detection Generalization by Invariant Risk Minimization. IEEE Trans. Multimed. 2024, 26, 6785–6798. [Google Scholar] [CrossRef]
- Masi, I.; Killekar, A.; Mascarenhas, R.M.; Gurudatt, S.P.; AbdAlmageed, W. Two-Branch Recurrent Network for Isolating Deepfakes in Videos. In Proceedings of the Computer Vision—ECCV 2020—16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part VII; Lecture Notes in Computer Science. Vedaldi, A., Bischof, H., Brox, T., Frahm, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; Volume 12352, pp. 667–684. [Google Scholar]
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; IEEE Computer Society: Los Alamitos, CA, USA, 2017; pp. 2261–2269. [Google Scholar]
- Li, L.; Bao, J.; Zhang, T.; Yang, H.; Chen, D.; Wen, F.; Guo, B. Face X-Ray for More General Face Forgery Detection. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, 13–19 June 2020; Computer Vision Foundation/IEEE: New York, NY, USA, 2020; pp. 5000–5009. [Google Scholar]
- Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep High-Resolution Representation Learning for Human Pose Estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019; Computer Vision Foundation/IEEE: New York, NY, USA, 2019; pp. 5693–5703. [Google Scholar]
- Lin, L.; He, X.; Ju, Y.; Wang, X.; Ding, F.; Hu, S. Preserving Fairness Generalization in Deepfake Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024, Seattle, WA, USA, 16–22 June 2024; IEEE: New York, NY, USA, 2024; pp. 16815–16825. [Google Scholar]
- Zhang, Y.; Lin, W.; Xu, J.; Xu, W.; Xu, Y. MLPN: Multi-Scale Laplacian Pyramid Network for deepfake detection and localization. J. Inf. Secur. Appl. 2025, 89, 103965. [Google Scholar] [CrossRef]
Method | FF++ | Celeb-DF | ||
---|---|---|---|---|
acc | auc | acc | auc | |
Xception [11] | 95.73 | 96.30 | 97.90 | 99.73 |
Eff-b4 [6] | 96.63 | 98.97 | 98.36 | 99.56 |
Meso4 [13] | 93.10 | - | - | - |
F3Net [43] | 97.52 | 98.10 | 95.95 | 98.93 |
Add-Net [44] | 96.78 | 97.74 | 96.93 | 99.55 |
RFM [20] | 97.60 | 99.29 | 95.69 | 98.79 |
RECCE [45] | 97.06 | 99.32 | 98.59 | 99.94 |
MADD [26] | 97.60 | 99.29 | 97.92 | 99.94 |
PEL [29] | 97.63 | 99.32 | - | - |
GocNet [33] | 94.34 | 97.75 | - | - |
CLG [42] | 96.90 | 99.30 | - | - |
FSBI [46] | - | 95.13 | - | 95.40 |
ID3 [47] | 93.07 | 97.33 | 97.17 | 99.75 |
Ours | 98.23 | 99.67 | 98.68 | 99.85 |
Method | Backbone | Train Set | Celeb-DF | DFDC |
---|---|---|---|---|
Xception [11] | Xception | FF++ (c23) | 65.30 | 69.83 |
Eff-b4 [6] | Eff-b4 | FF++ (c23) | 68.52 | 70.53 |
Eff-b4 [6] | Eff-b4 | FF++ (c40) | 71.10 | - |
Meso4 [13] | - | FF++ (c23) | 54.80 | 49.70 |
MesoInception4 [13] | - | FF++ (c23) | 53.60 | 49.90 |
F3Net [43] | Xception | FF++ (c23) | 65.17 | 66.90 |
Two Branch [48] | DenseNet [49] | FF++ (c40) | 73.41 | - |
Face X-ray [50] | HRNet [51] | FF++ (c23) | 74.20 | 71.20 |
RECCE [45] | Xception | FF++(c40) | 68.71 | - |
GocNet [33] | ResNet [10] | FF++ (c40) | 59.46 | - |
GocNet [33] | ResNet [10] | FF++ (c23) | 67.43 | - |
GFF [23] | Eff-b4 | FF++ (c23) | 65.20 | - |
PEL [29] | Eff-b4 | FF++ (c40) | 69.18 | 63.30 |
MADD [26] | Eff-b4 | FF++ (c23) | 67.44 | - |
PFG [52] | Eff-b3 | FF++ (c23) | 75.32 | - |
MLPN [53] | Autoencoder | FF++ (c23) | 62.49 | 61.55 |
ID3 [47] | Eff-b4 | FF++ (c23) | 71.18 | 65.86 |
Ours | Eff-b4 | FF++ (c40) | 72.16 | 73.47 |
Ours | Eff-b4 | FF++ (c23) | 75.56 | 76.34 |
Method | Train Set | Test Set | |||
---|---|---|---|---|---|
DF | F2F | FS | NT | ||
Eff-b4 [6] | DF | 99.53 | 69.91 | 49.54 | 75.68 |
GFF [23] | 99.87 | 76.89 | 47.21 | 72.88 | |
DCL [21] | 99.98 | 77.13 | 61.01 | 75.01 | |
Ours | 99.85 | 77.34 | 46.82 | 85.14 | |
Eff-b4 [6] | F2F | 84.52 | 99.20 | 58.14 | 63.71 |
GFF [23] | 89.23 | 99.10 | 61.30 | 64.77 | |
DCL [21] | 91.91 | 99.21 | 59.58 | 66.67 | |
Ours | 91.83 | 99.87 | 65.20 | 73.58 |
Method | Feature Type | Celeb-DF |
---|---|---|
SRM | frequency domain | 72.85 |
DWT | 73.42 | |
Ours | 75.56 | |
RGB | spatial domain | 70.65 |
Random patch | 74.77 | |
Ours | 75.56 |
ID | LTE | Spatial Enhance | Channel Enhance | FF++ | Celeb-DF |
---|---|---|---|---|---|
(a1) | 98.66 | 72.68 | |||
(a2) | ✔ | 97.67 | 73.46 | ||
(a3) | ✔ | ✔ | 98.41 | 74.54 | |
(a4) | ✔ | ✔ | 97.94 | 73.10 | |
(a5) | ✔ | ✔ | 98.08 | 74.51 | |
(a6) | ✔ | ✔ | ✔ | 98.23 | 75.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.; Kou, Y.; Xie, Y.; Zhao, Y.; Mat Kiah, M.L.; Jiang, Q.; Zhou, W. Learning Local Texture and Global Frequency Clues for Face Forgery Detection. Biomimetics 2025, 10, 480. https://doi.org/10.3390/biomimetics10080480
Jin X, Kou Y, Xie Y, Zhao Y, Mat Kiah ML, Jiang Q, Zhou W. Learning Local Texture and Global Frequency Clues for Face Forgery Detection. Biomimetics. 2025; 10(8):480. https://doi.org/10.3390/biomimetics10080480
Chicago/Turabian StyleJin, Xin, Yuru Kou, Yuhao Xie, Yuying Zhao, Miss Laiha Mat Kiah, Qian Jiang, and Wei Zhou. 2025. "Learning Local Texture and Global Frequency Clues for Face Forgery Detection" Biomimetics 10, no. 8: 480. https://doi.org/10.3390/biomimetics10080480
APA StyleJin, X., Kou, Y., Xie, Y., Zhao, Y., Mat Kiah, M. L., Jiang, Q., & Zhou, W. (2025). Learning Local Texture and Global Frequency Clues for Face Forgery Detection. Biomimetics, 10(8), 480. https://doi.org/10.3390/biomimetics10080480