Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (157)

Search Parameters:
Keywords = changes in a runoff regime

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6293 KB  
Article
Performance Evaluation of the SRM and GRxJ—CemaNeige Models for Daily Streamflow Simulation in Two Catchments with Snow and Rain Dominated Hydrological Regimes
by Bastián Rivas, Víctor Osores, David González, Carlo Gualtieri and Santiago Yépez
Water 2025, 17(23), 3413; https://doi.org/10.3390/w17233413 - 30 Nov 2025
Viewed by 529
Abstract
This study evaluated the Snowmelt-Runoff Model (SRM) and the Génie Rural à X Paramètres Journalier (GRxJ) model family, analyzing the latter both independently and in combination with the CemaNeige snow module. SRM and GRxJ represent snowmelt-runoff and rainfall-runoff hydrological models, respectively. Accurate streamflow [...] Read more.
This study evaluated the Snowmelt-Runoff Model (SRM) and the Génie Rural à X Paramètres Journalier (GRxJ) model family, analyzing the latter both independently and in combination with the CemaNeige snow module. SRM and GRxJ represent snowmelt-runoff and rainfall-runoff hydrological models, respectively. Accurate streamflow estimation in snow- and rain-dominated basins is crucial for water resource management, especially in the Andes where climate variability and glacier retreat threaten long-term water availability. The analysis was conducted in two Chilean watershed basins with contrasting regimes: the snow-dominated Aconcagua and the mixed rain–snow Duqueco basins. Daily data (2012–2020) of precipitation, temperature, evapotranspiration, snow cover (MODIS), and streamflow were used. Models were calibrated and validated with optimization algorithms and evaluated using NSE, RMSE, R2, PBIAS, KGE, MAE, logNSE and APFB. The results show that SRM effectively reproduces variability and, in the case of the rain–snow regime basin, extreme events, with NSE ranging from 0.70 to 0.78 (Aconcagua) and 0.93 to 0.94 (Duqueco). Model selection should take into account the dominant hydrological processes. In this study, SRM showed the best performance in both analyzed catchments, although with limitations in reproducing extreme streamflow events. In contrast, the GRxJ models did not adequately capture the hydrological dynamics of the snow-dominated Aconcagua catchment. However, their performance improved considerably when applied to the mixed regime of the Duqueco River. These findings highlight the importance of adapting modeling strategies to local hydrological conditions and limited data availability, offering practical guidance for water management and climate change adaptation in Andean catchments. Full article
Show Figures

Figure 1

22 pages, 4374 KB  
Article
Drivers and Future Regimes of Runoff and Hydrological Drought in a Critical Tributary of the Yellow River Under Climate Change
by Yu Wang, Yong Wang, Wenya Fang, Yuhan Zhao, Ying Zhou and Fangting Wang
Atmosphere 2025, 16(12), 1327; https://doi.org/10.3390/atmos16121327 - 24 Nov 2025
Viewed by 309
Abstract
China’s Yellow River basin encounters widespread risks of reduced runoff and intensified hydrological drought. This study focuses on the middle and upper reaches of the Dahei River, the Yellow River’s primary tributary. In this region, the Soil & Water Assessment Tool (SWAT) hydrological [...] Read more.
China’s Yellow River basin encounters widespread risks of reduced runoff and intensified hydrological drought. This study focuses on the middle and upper reaches of the Dahei River, the Yellow River’s primary tributary. In this region, the Soil & Water Assessment Tool (SWAT) hydrological model was employed to simulate hydrological processes, identify runoff changes and hydrological drought characteristics, and conduct attribution analysis from 1983 to 2022, as well as to project trends over the next 40 years. The results indicate that total runoff during the impact period (1999–2022) decreased by 55.26% compared to the baseline period (1983–1998). Climate change accounted for a contribution rate of 38.6% to this decline, while human activities accounted for 61.4%. Additionally, climate primarily altered surface runoff (SURQ) and lateral groundwater flow (LATQ) through precipitation changes, while land use had a predominant influence on total runoff volume by modifying SURQ. Both factors exhibited relatively minor effects on LATQ. Moreover, human activities contribute to hydrological drought at a rate of 36.11% to 94.25%. Drought probability is significantly influenced by climate through precipitation and temperature changes, while land use primarily mitigates hydrological drought by impacting the three runoff components. It is predicted that over the next 40 years, total runoff will decrease by 2.08% to 60.16%, along with hydrological droughts that are more frequent, longer in average duration, and more intense; however, the Maximum Drought Duration is anticipated to shorten. In the east and northeast, hydrological drought presents a trend of intensification, with central and western regions exhibiting weaker or declining changes. Full article
Show Figures

Figure 1

27 pages, 16532 KB  
Article
Sustainable Ecological Restoration Planning Strategies Based on Watershed Scenario Simulation: A Case Study of the Wuhan Metropolitan Area
by Ying Lin, Xian Zhang, Xiao Yu and Kanglin Li
Sustainability 2025, 17(23), 10524; https://doi.org/10.3390/su172310524 - 24 Nov 2025
Viewed by 253
Abstract
Climate change is profoundly reshaping watershed hydrological regimes and threatening the sustainability of regional ecosystems, rendering traditional ecological restoration planning—primarily reliant on static baselines—insufficient to support long-term resilience under future environmental conditions. To enhance the sustainability of metropolitan ecological restoration, this study develops [...] Read more.
Climate change is profoundly reshaping watershed hydrological regimes and threatening the sustainability of regional ecosystems, rendering traditional ecological restoration planning—primarily reliant on static baselines—insufficient to support long-term resilience under future environmental conditions. To enhance the sustainability of metropolitan ecological restoration, this study develops a climate-adaptive restoration framework for the Wuhan Metropolitan Area, structured around “climate scenario—hydrological simulation—zoning delineation—strategy formulation.” The framework aims to elucidate how projected hydrological shifts constrain the spatial configuration of ecological restoration. Under the RCP4.5 (Representative Concentration Pathway 4.5) scenario, the WEP-L (Water and Energy transfer Processes in Large river basins) distributed hydrological model was calibrated and validated using observed hydrological data from 2016–2020 and subsequently applied to simulate the spatiotemporal evolution of precipitation, evapotranspiration, runoff, and total water resources in 2035. Hydrological trend analyses were further conducted at the secondary watershed scale to assess the differentiated impacts of future hydrological changes across planning units. Based on these simulations, ecological sensitivity and ecosystem service assessments were integrated to identify priority restoration areas, forming a “five-zone × three-tier” sustainable restoration zoning system encompassing farmland restoration, forest ecological restoration, soil and water conservation restoration, river and lake wetland ecological restoration, and urban habitat improvement restoration, classified into general, important, and extremely important levels. A comprehensive “four-water” management scheme—addressing water security, water resources, water environment, and water landscape—was subsequently proposed to strengthen the sustainable supply capacity and overall resilience of metropolitan ecosystems. Results indicate that by 2035, hydrological processes in the Wuhan Metropolitan Area will exhibit pronounced spatial heterogeneity, with uneven changes in precipitation and runoff further intensifying disparities in regional water availability. These findings highlight the necessity of incorporating scenario-based hydrological constraints into sustainable ecological restoration planning. The proposed technical framework provides a transferable pathway for enhancing watershed ecosystem sustainability and resilience under climate change. Full article
Show Figures

Figure 1

19 pages, 2962 KB  
Article
Effects of Land Use Change on Surface Runoff and Infiltration: The Case of Dhaka City
by Toriqul Bashar and Md Zamal Uddin
Urban Sci. 2025, 9(12), 497; https://doi.org/10.3390/urbansci9120497 - 23 Nov 2025
Viewed by 524
Abstract
This study presents an integrated field- and model-based assessment of how rapid urbanization is transforming water infiltration and storm runoff dynamics in Dhaka—a megacity facing escalating flood risks. Unlike conventional studies that rely solely on secondary or modeled datasets, this research combines extensive [...] Read more.
This study presents an integrated field- and model-based assessment of how rapid urbanization is transforming water infiltration and storm runoff dynamics in Dhaka—a megacity facing escalating flood risks. Unlike conventional studies that rely solely on secondary or modeled datasets, this research combines extensive in situ field measurements of soil infiltration with scenario-based hydrological modeling to capture the localized impacts of land use change. Using the SCS Curve Number and Water Balance methods, the study quantifies how variations in land cover under different urban growth trajectories alter surface runoff behavior. Results show that Dhaka’s annual infiltration rates—measured at 2034 mm, 1546 mm, and 1074 mm during wet (2017), normal (2018), and dry (2020) years—could decline by nearly 50% if current urban expansion trends persist. Concurrently, surface runoff volumes are projected to nearly double, amplifying flood hazard potential across the city. By grounding scenario modeling in empirical local data, this work offers a context-specific understanding of the evolving hydrological regime of a rapidly urbanizing South Asian metropolis, providing a framework for flood resilience planning in other data-limited cities. Full article
Show Figures

Figure 1

32 pages, 5861 KB  
Article
Current Trends and Future Scenarios: Modeling Maximum River Discharge in the Zhaiyk–Caspian Basin (Kazakhstan) Under a Changing Climate
by Sayat Alimkulov, Lyazzat Makhmudova, Saken Davletgaliev, Elmira Talipova, Daniel Snow, Lyazzat Birimbayeva, Mirlan Dyldaev, Zhanibek Smagulov and Akgulim Sailaubek
Hydrology 2025, 12(11), 278; https://doi.org/10.3390/hydrology12110278 - 24 Oct 2025
Viewed by 1528
Abstract
In the context of intensifying climate change, it is particularly important to assess the transformation of spring floods as a key phase of the hydrological regime of rivers. This study provides a comprehensive analysis of the characteristics of maximum runoff in the Zhaiyk–Caspian [...] Read more.
In the context of intensifying climate change, it is particularly important to assess the transformation of spring floods as a key phase of the hydrological regime of rivers. This study provides a comprehensive analysis of the characteristics of maximum runoff in the Zhaiyk–Caspian basin for the modern period and projected changes for 2030, 2040, and 2050 based on CMIP6 climate scenarios (SSP3-7.0 and SSP5-8.5). Analysis of observations at 34 hydrological stations showed a reduction in spring runoff by up to 35%, a decrease in the duration of high water and a reduction in maximum water discharge on some rivers by up to 45%. It has been established that those rising temperatures, more frequent thaws, and reduced autumn moisture lead to lower maximum water discharge and a redistribution of the seasonal flow regime. Scenario projections revealed significant spatial heterogeneity: some rivers are expected to experience an increase in maximum discharge of up to 72%, while others will see a steady decline in maximum discharge of up to 35%. The results obtained indicate the need to transition to an adaptive water management system focused on the regional characteristics of river basins and the sensitivity of small- and medium-sized watercourses to climate change. Full article
(This article belongs to the Section Water Resources and Risk Management)
Show Figures

Figure 1

50 pages, 63785 KB  
Article
Climate Trends and Attribution Analysis of Runoff Changes in the Songhua River Basin from 1980 to 2022 Based on the Budyko Hypothesis
by Xinyu Wang, Changlei Dai, Gengwei Liu, Xiang Meng, Pengfei Lu and Bo Pang
Sustainability 2025, 17(18), 8459; https://doi.org/10.3390/su17188459 - 20 Sep 2025
Viewed by 949
Abstract
Understanding the spatiotemporal dynamics of runoff and its drivers is essential for water resources management in mid–high latitude basins. This study investigates runoff changes in the Songhua River Basin, Northeast China, during 1980–2022 using the Budyko framework, combined with Mann–Kendall trend analysis, Pettitt [...] Read more.
Understanding the spatiotemporal dynamics of runoff and its drivers is essential for water resources management in mid–high latitude basins. This study investigates runoff changes in the Songhua River Basin, Northeast China, during 1980–2022 using the Budyko framework, combined with Mann–Kendall trend analysis, Pettitt tests, Hurst index, and wavelet analysis. Results indicate significant climatic shifts, with basin-wide warming, heterogeneous precipitation changes, and declining relative humidity, leading to intensified cold-season drying. Temperature and evapotranspiration showed strong persistence, while precipitation exhibited high variability and periodicities linked to ENSO and East Asian monsoon anomalies. Runoff increased significantly in the mainstream Songhua and Nenjiang basins, especially in autumn, with abrupt changes clustered between 2009 and 2015. The Second Songhua Basin displayed weaker variability, largely influenced by reservoir regulation and land-use change. Attribution analysis confirmed precipitation as a primary driver, with elasticity coefficients exceeding 3 in the Nenjiang Basin during some summers, indicating extreme sensitivity. Evapotranspiration suppressed runoff under high temperatures, while freeze–thaw processes and human interventions became critical in spring and autumn. The aridity index revealed persistent winter deficits and rising spring–autumn drying trends after 2000, posing risks for snowmelt runoff and baseflow sustainability. Overall, runoff evolution reflects a shift from gradual to threshold-triggered regime changes driven by both climate variability and human regulation. These findings provide a basis for adaptive, basin-specific water management and climate resilience strategies in Northeast China. Full article
Show Figures

Figure 1

24 pages, 5915 KB  
Article
Evolution Trend and Cause Analysis of Diversion Characteristics of Three Outlets Along Jingjiang River Under New Flow and Sediment Conditions
by Dong Wang, Tao Zhou, Jiaze Fan, Zhengyang Tang and Yongqiang Wang
Sustainability 2025, 17(18), 8285; https://doi.org/10.3390/su17188285 - 15 Sep 2025
Viewed by 504
Abstract
Changes in the diversion characteristics of three outlets along Jingjiang River are of vital importance to the adjustment of river–lake relationships. This study analyzed the mechanism of periodic changes in the diversion ratio of the three outlets along the Jingjiang River after the [...] Read more.
Changes in the diversion characteristics of three outlets along Jingjiang River are of vital importance to the adjustment of river–lake relationships. This study analyzed the mechanism of periodic changes in the diversion ratio of the three outlets along the Jingjiang River after the storage of the Three Gorges Reservoir. It used the latest measured flow and sediment data. The analysis was conducted from the perspective of changes in the main stream regime at the three outlets along the Jingjiang River and the erosion and deposition trend of the floodway at the three outlets. On such a basis, the contribution ratio of three factors was analyzed quantitatively. These factors are Jingjiang River runoff reduction, reservoir regulation action, and diversion capacity drop. This analysis comprehensively considered the diversion capacity of the floodway at three outlets. It also considered the annual runoff volume and runoff process of the Jingjiang River mainstream. The purpose was to reveal the change laws of water resource quantity and response mechanism of Dongting Lake area under the new flow and sediment conditions. This will provide technical support for the sustainable management of water resources in the basin and the adaptive operation of reservoirs. The analysis results indicated that the diversion volume reduction at the three outlets along Jingjiang River is jointly caused by the regulation of the Three Gorges Reservoir and the runoff volume of the incoming flows of Jingjiang River. Seen from the proportion, the reservoir regulation action takes up 35% before the Three Gorges Reservoir is filled to 175 m, and less runoff of Jingjiang River takes up 65%; after the reservoir runs normally when filled to 175 m, the reservoir regulation action takes up 63%, the proportion of the diversion capacity drop of the three outlets causing diversion volume reduction takes up 2.5%, and less runoff of Jingjiang River takes up 34.5%. Full article
(This article belongs to the Special Issue Sediment Movement, Sustainable Water Conservancy and Water Transport)
Show Figures

Figure 1

19 pages, 7486 KB  
Article
Quantifying the Impacts of Climate Change and Human Activities on Monthly Runoff in the Liuhe River Basin, Northeast China
by Jiyun Yao, Xiaomeng Song and Mingqian Li
Sustainability 2025, 17(17), 8050; https://doi.org/10.3390/su17178050 - 7 Sep 2025
Viewed by 1129
Abstract
Both climate change and human activities have had a significant impact on hydrological processes. Quantification of affecting factors on river regime changes is scientifically essential for understanding hydrological processes and sustainable water resources management in the basins. This study investigates the features of [...] Read more.
Both climate change and human activities have had a significant impact on hydrological processes. Quantification of affecting factors on river regime changes is scientifically essential for understanding hydrological processes and sustainable water resources management in the basins. This study investigates the features of variations in meteorological and hydrological variables in the Liuhe River Basin (LRB) from 1956 to 2020 based on various observed records and statistical methods. It then quantitatively identifies the possible impacts of climate variability and human activities on runoff in the LRB using the empirical methods and the Budyko framework. The results show that (1) the runoff demonstrates a significantly decreasing trend over the past 65 years, but the rainfall has no obvious trend with significant interannual fluctuations, and potential evapotranspiration exhibits a weekly decreasing trend, particularly in summer. (2) The runoff series can be divided into two periods, i.e., the baseline (1956–1969) and change (1970–2020) periods, and the change period can also be divided into two stages, i.e., stage I (1970–1999) and stage II (2000–2020). (3) Human activities are the dominant factors in the runoff decline in the LRB, with the contribution rates being greater than 80% in the change period, particularly for stage II. The analysis of this study can provide a reference for the rational utilization of water resources in the LRB. Full article
Show Figures

Figure 1

25 pages, 2339 KB  
Article
Projected Hydrological Regime Shifts in Kazakh Rivers Under CMIP6 Climate Scenarios: Integrated Modeling and Seasonal Flow Analysis
by Aliya Nurbatsina, Aisulu Tursunova, Lyazzat Makhmudova, Zhanat Salavatova and Fredrik Huthoff
Atmosphere 2025, 16(9), 1020; https://doi.org/10.3390/atmos16091020 - 29 Aug 2025
Cited by 1 | Viewed by 1704
Abstract
The article presents an analysis of current (during the period 1985–2022) and projected (during the period 2025–2099) changes in the hydrological regime of the Buktyrma, Yesil, and Zhaiyk river basins in Kazakhstan under the conditions of global climate change. This study is based [...] Read more.
The article presents an analysis of current (during the period 1985–2022) and projected (during the period 2025–2099) changes in the hydrological regime of the Buktyrma, Yesil, and Zhaiyk river basins in Kazakhstan under the conditions of global climate change. This study is based on the integration of data from General Circulation Models (GCMs) of the sixth phase of the CMIP6 project, socio-economic development scenarios SSP2-4.5 and SSP5-8.5, as well as the results of hydrological modelling using the SWIM model. The studies were carried out with an integrated approach to hydrological change assessment, taking into account scenario modelling, uncertainty analysis and the use of bias correction methods for climate data. A calculation method was used to analyse the intra-annual distribution of runoff, taking into account climate change. Detailed forecasts of changes in runoff and intra-annual water distribution up to the end of the 21st century for key water bodies in Kazakhstan were obtained. While the projections of river flow and hydrological parameters under CMIP6 scenarios are actively pursued worldwide, few studies have explicitly focused on forecasting intra-annual flow distribution in Central Asia, calculated using a methodology appropriate for this region and using CMIP6 ensemble scenarios. There have been studies on changes in the intra-annual distribution of runoff for individual river basins or local areas, but for the historical period, there have also been studies on modelling runoff forecasts using CMIP6 climate models, but have been very few systematic publications on the distribution of predicted intra-annual runoff in Central Asia, and this issue has not been fully studied. The projections suggest an intensification of flow seasonality (1), earlier flood peaks (2), reduced summer discharges (3) and an increased likelihood of extreme hydrological events under future climatic conditions. Changes in the seasonal structure of river flow in Central Asia are caused by both climatic factors—temperature, precipitation and glacier degradation—and significant anthropogenic influences, including irrigation and water management structures. These changes directly affect the risks of flooding and water shortages, as well as the adaptive capacity of water management systems. Given the high level of water management challenges and interregional conflicts over water use, the intra-annual distribution of runoff is important for long-term planning, the development of adaptation measures, and the formulation of public policy on sustainable water management in the face of growing climate challenges. This is critically important for water, agricultural, energy, and environmental planning in a region that already faces annual water management challenges and conflicts due to the uneven seasonal distribution of resources. Full article
(This article belongs to the Special Issue The Water Cycle and Climate Change (3rd Edition))
Show Figures

Figure 1

29 pages, 37535 KB  
Article
Evolution of the Hydrological Regime at the Outlet of West Dongting Lake Since 1955
by Shuai Yuan, Changbo Jiang, Yuan Ma and Shanshan Li
Water 2025, 17(16), 2487; https://doi.org/10.3390/w17162487 - 21 Aug 2025
Viewed by 1187
Abstract
To quantitatively evaluate the hydrological regime dynamics in West Dongting Lake over the past seven decades, this study utilizes daily average water level series (1955–2024) from key control stations (Nanzui and Xiaohezui) to analyze variations in water level and discharge through change-point detection [...] Read more.
To quantitatively evaluate the hydrological regime dynamics in West Dongting Lake over the past seven decades, this study utilizes daily average water level series (1955–2024) from key control stations (Nanzui and Xiaohezui) to analyze variations in water level and discharge through change-point detection methods, adopting the water level difference between Xiaohezui and Nanzui as a pivotal indicator of hydrological changes; the IHA–RVA framework is then applied to comprehensively assess the degree of alteration in hydrological indicators before and after identifying change points, demonstrating the following: (1) declining trends in water level/discharge at both stations—primarily attributable to reduced inflows from the Songzi and Hudu Rivers—underwent abrupt shifts in 1983 and 2003, while the water level difference displayed an increasing trend with a change point in 1991; (2) the overall degree of hydrologic alteration (DHA) was moderate, with enhanced variability during T2 (2003–2024) relative to T1 (1983–2003), notably for discharge at Nanzui and water level at Xiaohezui; (3) reduced discharge in the Songzi and Hudu Rivers primarily drives the decreased outflow from West Dongting Lake. In the Li and Yuan basins during period T1, anthropogenic factors dominated runoff alterations. During T2, anthropogenic contributions accounted for 76.27% and 48.67% of runoff changes, respectively, resulting in reduced runoff volumes under equivalent precipitation inputs. (4) Under fixed water level differences, a significant positive correlation exists between discharges at Xiaohezui and Nanzui stations. Greater discharge flows downstream through the flow channel adjacent to NZ at West Dongting Lake’s outlet. Collectively, these findings establish a technical foundation for assessing the impact of hydrological regimes and aquatic ecological security in Dongting Lake, thereby advancing sustainable water resource utilization across the basin. Full article
Show Figures

Figure 1

21 pages, 12252 KB  
Article
Changes in Intra-Annual River Runoff in the Ile and Zhetysu Alatau Mountains Under Climate Change Conditions
by Rustam G. Abdrakhimov, Victor P. Blagovechshenskiy, Sandugash U. Ranova, Aigul N. Akzharkynova, Sezar Gülbaz, Ulzhan R. Aldabergen and Aidana N. Kamalbekova
Water 2025, 17(14), 2165; https://doi.org/10.3390/w17142165 - 21 Jul 2025
Cited by 1 | Viewed by 1449
Abstract
This paper presents the results of studies on intra-annual runoff changes in the Ile River basin based on data from gauging stations up to 2021. Changes in climatic characteristics that determine runoff formation in the mountainous and foothill areas of the river catchment [...] Read more.
This paper presents the results of studies on intra-annual runoff changes in the Ile River basin based on data from gauging stations up to 2021. Changes in climatic characteristics that determine runoff formation in the mountainous and foothill areas of the river catchment have led to alterations in the water regime of the watercourses. The analysis of the temporal and spatial patterns of river flow formation in the basin, as well as its distribution by seasons and months, is essential for solving applied water management problems and assessing the risks of hazardous hydrological phenomena, such as high floods and low water levels. The statistical analysis of annual and monthly river runoff fluctuations enabled the identification of relatively homogeneous estimation periods during stationary observations under varying climatic conditions. The obtained characteristics of annual and intra-annual river runoff in the Ile River basin for the modern period provide insights into changes in average monthly water discharge and, more broadly, runoff volume during different phases of the water regime. In the future, these characteristics are expected to guide the design of hydraulic structures and the rational use of surface runoff in this intensively developing region of Kazakhstan. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

18 pages, 3532 KB  
Article
Anticipating Future Hydrological Changes in the Northern River Basins of Pakistan: Insights from the Snowmelt Runoff Model and an Improved Snow Cover Data
by Urooj Khan, Romana Jamshed, Adnan Ahmad Tahir, Faizan ur Rehman Qaisar, Kunpeng Wu, Awais Arifeen, Sher Muhammad, Asif Javed and Muhammad Abrar Faiz
Water 2025, 17(14), 2104; https://doi.org/10.3390/w17142104 - 15 Jul 2025
Cited by 1 | Viewed by 1235
Abstract
The water regime in Pakistan’s northern region has experienced significant changes regarding hydrological extremes like floods because of climate change. Coupling hydrological models with remote sensing data can be valuable for flow simulation in data-scarce regions. This study focused on simulating the snow- [...] Read more.
The water regime in Pakistan’s northern region has experienced significant changes regarding hydrological extremes like floods because of climate change. Coupling hydrological models with remote sensing data can be valuable for flow simulation in data-scarce regions. This study focused on simulating the snow- and glacier-melt runoff using the snowmelt runoff model (SRM) in the Gilgit and Kachura River Basins of the upper Indus basin (UIB). The SRM was applied by coupling it with in situ and improved cloud-free MODIS snow and glacier composite satellite data (MOYDGL06) to simulate the flow under current and future climate scenarios. The SRM showed significant results: the Nash–Sutcliffe coefficient (NSE) for the calibration and validation period was between 0.93 and 0.97, and the difference in volume (between the simulated and observed flow) was in the range of −1.5 to 2.8% for both catchments. The flow tends to increase by 0.3–10.8% for both regions (with a higher increase in Gilgit) under mid- and late-21st-century climate scenarios. The Gilgit Basin’s higher hydrological sensitivity to climate change, compared to the Kachura Basin, stems from its lower mean elevation, seasonal snow dominance, and greater temperature-induced melt exposure. This study concludes that the simple temperature-based models, such as the SRM, coupled with improved satellite snow cover data, are reliable in simulating the current and future flows from the data-scarce mountainous catchments of Pakistan. The outcomes are valuable and can be used to anticipate and lessen any threat of flooding to the local community and the environment under the changing climate. This study may support flood assessment and mapping models in future flood risk reduction plans. Full article
Show Figures

Figure 1

32 pages, 24319 KB  
Article
Long-Term Water Level Projections for Lake Balkhash Using Scenario-Based Water Balance Modeling Under Climate and Socioeconomic Uncertainties
by Sayat Alimkulov, Lyazzat Makhmudova, Elmira Talipova, Gaukhar Baspakova, Akhan Myrzakhmetov, Zhanibek Smagulov and Alfiya Zagidullina
Water 2025, 17(13), 2021; https://doi.org/10.3390/w17132021 - 4 Jul 2025
Viewed by 3419
Abstract
The study presents a scenario analysis of the long-term dynamics of the water level of Lake Balkhash, one of the largest closed lakes in Central Asia, taking into account climate change according to CMIP6 scenarios (SSP2-4.5 and SSP5-8.5) and socio-economic factors of water [...] Read more.
The study presents a scenario analysis of the long-term dynamics of the water level of Lake Balkhash, one of the largest closed lakes in Central Asia, taking into account climate change according to CMIP6 scenarios (SSP2-4.5 and SSP5-8.5) and socio-economic factors of water use. Based on historical data (1947–2021) and a water balance model, the contribution of surface runoff, precipitation and evaporation to the formation of the lake’s hydrological regime was assessed. It was established that the main source of water resources for the lake is the flow of the Ile River, which feeds the western part of the reservoir. The eastern part is characterized by extremely limited water inflow, while evaporation remains the main element of water consumption, having increased significantly in recent decades due to rising air temperatures. Increasing intra-seasonal and interannual fluctuations in water levels have been recorded: The amplitude of short-term fluctuations reached 0.7–0.8 m, which exceeds previously characteristic values. The results of water balance modeling up to 2050 show a trend towards a 30% reduction in surface inflow and an increase in evaporation by 25% compared to the 1981–2010 climate norm, which highlights the high sensitivity of the lake’s hydrological regime to climatic and anthropogenic influences. The results obtained justify the need for the comprehensive and adaptive management of water resources in the Balkhash Lake basin, taking into account the transboundary nature of water use and changing climatic conditions. Full article
(This article belongs to the Special Issue Advance in Hydrology and Hydraulics of the River System Research 2025)
Show Figures

Figure 1

22 pages, 8798 KB  
Article
Climate Warming-Induced Hydrological Regime Shifts in Cold Northeast Asia: Insights from the Heilongjiang-Amur River Basin
by Jiaoyang Li, Ruixin Wang, Qiwei Huang, Jun Xia, Ping Wang, Yuanhao Fang, Vladimir V. Shamov, Natalia L. Frolova and Dunxian She
Land 2025, 14(5), 980; https://doi.org/10.3390/land14050980 - 1 May 2025
Cited by 3 | Viewed by 1024
Abstract
Rapid climate warming and intensified human activities are causing profound alterations in terrestrial hydrological systems. Understanding shifts in hydrological regimes and the underlying mechanisms driving these changes is crucial for effective water resource management, watershed planning, and flood disaster mitigation. This study examines [...] Read more.
Rapid climate warming and intensified human activities are causing profound alterations in terrestrial hydrological systems. Understanding shifts in hydrological regimes and the underlying mechanisms driving these changes is crucial for effective water resource management, watershed planning, and flood disaster mitigation. This study examines the hydrological regimes of the Heilongjiang-Amur River Basin, a transboundary river basin characterized by extensive permafrost distribution in northeastern Asia, by analyzing long-term daily meteorological (temperature, precipitation, evaporation) and hydrological data from the Komsomolsk, Khabarovsk, and Bogorodskoye stations. Missing daily runoff data were reconstructed using three machine learning methods: Convolutional Neural Networks (CNN), Long Short-Term Memory Networks (LSTM), and Convolutional Long Short-Term Memory Networks (CNN-LSTM). Trend analysis, abrupt change detection, and regression techniques revealed significant warming and increased actual evapotranspiration in the basin from 1950 to 2022, whereas precipitation and snow water equivalent showed no significant trends. Climate warming is significantly altering hydrological regimes by changing precipitation patterns and accelerating permafrost thaw. At the Komsomolsk station, an increase of 1 mm in annual precipitation resulted in a 0.48 mm rise in annual runoff depth, while a 1 °C rise in temperature led to an increase of 1.65 mm in annual runoff depth. Although annual runoff exhibited no significant long-term trend, low-flow runoff demonstrated substantial increases, primarily driven by temperature and precipitation. These findings provide critical insights into the hydrological responses of permafrost-dominated river basins to climate change, offering a scientific basis for sustainable water resource management and strategies to mitigate climate-induced hydrological risks. Full article
Show Figures

Figure 1

17 pages, 7071 KB  
Article
Sustainability Challenges in Kazakhstan’s River Systems: Assessing Climate-Induced Hydrological Changes
by Aisulu Tursunova, Aliya Nurbatsina, Zhanat Salavatova and Fredrik Huthoff
Sustainability 2025, 17(8), 3405; https://doi.org/10.3390/su17083405 - 11 Apr 2025
Cited by 3 | Viewed by 1140
Abstract
Global and regional climate change and their water-related impacts are a key component in future development scenarios to guide sustainable water management. Climatic changes may lead to an undesirable redistribution of water supplies and potentially harmful extremities in river flows throughout the year. [...] Read more.
Global and regional climate change and their water-related impacts are a key component in future development scenarios to guide sustainable water management. Climatic changes may lead to an undesirable redistribution of water supplies and potentially harmful extremities in river flows throughout the year. If we add to this the uneven spatial distribution of water resources in Kazakhstan, the importance of assessment of the intra-annual distribution of river flows under historical and present climatic conditions becomes evident. The presented scientific study analyzes decadal regional trends from 1985 to 2022 in the intra-annual distribution of river runoff in selected catchments in Kazakhstan, including Buktyrma River, Zhabay River, and Ulken-Kobda River. The river basins were selected to cover diverse regions in terms of geographical features and hydrological conditions, significantly affected by climate change. We applied statistical analysis methods using multiyear values of mean monthly and mean annual river flows, mean monthly air temperatures, and mean monthly precipitation. To analyze the intra-annual distribution of annual river flow in the context of climate change, a computational method was used, in which the actual current river flow (modern river flow taking into account non-stationarity of climatic changes) was compared with the conditionally natural flow obtained by modeling and corresponding to the natural regime of the river. The long-term dynamics of flow-forming factors and runoff parameters with regard to phases of different water content (25%, 50%, and 75%) were considered. Statistical analysis of seasonal changes in water content of modeled and actual river flow, taking into account climatic non-stationarity, allowed us to identify significant trends of flow redistribution within the year: indicating a decrease in the volume of spring floods, an increase in winter flow and increase in seasonal variability, especially for the Ulken Kobda River. It appears that atmospheric circulation significantly affects annual and seasonal variations of water availability. The shift in western circulation type (W) contributes to increased average annual river flow, while the shift in eastern circulation type (E) is associated with amplification of extreme flood-type events. The results obtained are important for adapting sustainable water management practices under a changing climate, helping to anticipate the availability of water resources and allowing pro-active measures to mitigate hydrological extremes. Full article
Show Figures

Figure 1

Back to TopTop