Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = cfb gene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 269 KiB  
Article
Genetic Susceptibility in Sinusoidal Obstruction Syndrome/Veno-Occlusive Disease: A Case–Control Study
by Ioulia Mavrikou, Marta Castelli, Tasoula Touloumenidou, Zoi Bousiou, Evangelia-Evdoxia Koravou, Anna Vardi, Apostolia Papalexandri, Christos Demosthenous, Maria Koutra, Paschalis Evangelidis, Alkistis-Kyra Panteliadou, Ioannis Batsis, Dimitrios Chatzidimitriou, Emmanouil Nikolousis, Alessandro Rambaldi, Ioanna Sakellari and Eleni Gavriilaki
Int. J. Mol. Sci. 2025, 26(14), 6712; https://doi.org/10.3390/ijms26146712 - 12 Jul 2025
Viewed by 374
Abstract
Sinusoidal Obstruction Syndrome/Veno-Occlusive Disease (SOS/VOD) is a severe complication of hematopoietic cell transplantation (HCT). Furthermore, emerging evidence suggests the potential role of complement activation and endothelial injury in SOS/VOD pathogenesis. In this study, we aimed to identify potential distinct pathogenic genetic variants between [...] Read more.
Sinusoidal Obstruction Syndrome/Veno-Occlusive Disease (SOS/VOD) is a severe complication of hematopoietic cell transplantation (HCT). Furthermore, emerging evidence suggests the potential role of complement activation and endothelial injury in SOS/VOD pathogenesis. In this study, we aimed to identify potential distinct pathogenic genetic variants between SOS/VOD and other endothelial injury syndromes following HCT, such as transplant-associated thrombotic microangiopathy (TA-TMA). For this aim, genomic DNA from 30 SOS/VOD patients and 30 controls with TA-TMA was analyzed. Using Next-Generation Sequencing (NGS), variants in complement-related genes (CFH, CFI, CFB, CFD, C3, CD55, C5, CD46, and thrombomodulin/THBD) and ADAMTS13 were examined. Out of 426 detected variants, 20 were classified as pathogenic. In SOS/VOD patients, variants were identified in ADAMTS13 (4), CFH (3), C3 (2), and CFB (1) genes. One of the variants has been recognized as the strongest genetic predictor of ADAMTS13 activity. Controls exhibited more variants in complement-related genes, particularly CFH, CFI, and C3. The genetic differences between SOS/VOD and TA-TMA highlight different pathogenic mechanisms, offering the potential for targeted risk assessment and therapy in HCT recipients. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
13 pages, 1973 KiB  
Article
Complement and Coagulation Cascade Activation Regulates the Early Inflammatory Mechanism of Resistance of Suckling Lambs Against Haemonchus contortus
by José Gabriel G. Lins and Alessandro F. T. Amarante
Pathogens 2025, 14(5), 447; https://doi.org/10.3390/pathogens14050447 - 1 May 2025
Viewed by 521
Abstract
Haemonchus contortus is a highly pathogenic blood-sucking nematode from the abomasum of small ruminants. To develop effective control strategies, it is essential to understand the initial mechanisms involved in host resistance to this parasite. In this study, we used computational tools to analyze [...] Read more.
Haemonchus contortus is a highly pathogenic blood-sucking nematode from the abomasum of small ruminants. To develop effective control strategies, it is essential to understand the initial mechanisms involved in host resistance to this parasite. In this study, we used computational tools to analyze the complement and coagulation pathways generated from RNA sequencing of abomasal tissue from resistant (Santa Ines) and susceptible (Ile de France) young sheep artificially infected with H. contortus. Thirty-two differentially expressed genes annotated to the ovine genome were associated with the complement and coagulation cascades, of which 29 of them were overexpressed in Santa Ines. Our data identified potential markers for resistance trait selection in sheep, such as C3 (complement C3), F3 (tissue factor), F5 (coagulation factor V), CFB (complement factor B), and CFI (complement factor I). Santa Ines may have a more robust coagulation system, being activated by extrinsic pathways associated with tissue damage. The complement may act as a mediator of the innate immunity, and its activation in Santa Ines is associated with the classical, the lectin, and the alternative pathway. Finally, resistant Santa Ines lambs had a polygenic overexpressed architecture controlling both complement and coagulation cascades, which probably contributed to the early-onset protection against H. contortus. Full article
Show Figures

Figure 1

10 pages, 542 KiB  
Article
First Report of Streptococcus agalactiae Meningitis in a Non-Pregnant Adult in Italy
by Giorgia Borriello, Giovanna Fusco, Francesca Greco, Maria Vittoria Mauro, Lorella Barca, Antonio Limone, Maria Garzi Cosentino, Agata Campione, Antonio Rinaldi, Saveria Dodaro, Esterina De Carlo, Sonia Greco, Valeria Vangeli, Rubina Paradiso and Antonio Mastroianni
Microorganisms 2025, 13(5), 978; https://doi.org/10.3390/microorganisms13050978 - 24 Apr 2025
Viewed by 574
Abstract
This study, for the first time in Italy, analyses by WGS a Streptococcus agalactiae strain isolated from a non-pregnant adult affected by Meningitis and without common risk factors. The S. agalactiae strain was classified as a serotype II (SS2), sequence type ST569. Molecular [...] Read more.
This study, for the first time in Italy, analyses by WGS a Streptococcus agalactiae strain isolated from a non-pregnant adult affected by Meningitis and without common risk factors. The S. agalactiae strain was classified as a serotype II (SS2), sequence type ST569. Molecular characterization evidenced the presence of resistance genes to tetracycline and macrolide (tet(M) and mre(A)) and several virulence genes coding for adhesion and immune evasion factors (bca, cps family, neu family, scpB, gbs family, pil family and hylB), toxins (cfa/cfb, cyl family), pro-inflammatory factors (lepA), and two homologous genes that contributed to bacterial escape from the host immune system (lmb, luxS). SNP analysis showed 18 different alleles, with 9 missense SNP mutations related to genes involved in cellular metabolism (dhaS, ftsE, ligA, nrdD and secA), virulence (bgrR and galE) and antimicrobial resistance (glpK and mutL). SNPs in glpK and mutL genes might reduce susceptibility to drugs. The SNP analysis highlighted the presence of mutations conferring pathogenicity to the strain. The evidence in this study could explain the development of Meningitis in a healthy patient. This case highlights the importance of using molecular methods to characterize the complete genome of a bacterial species that could seriously affect human health. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

18 pages, 5441 KiB  
Article
Proteomic and In Silico Analyses Highlight Complement System’s Role in Bladder Cancer Immune Regulation
by Tuğcan Korak, İbrahim Halil Baloğlu, Murat Kasap, Elif Damla Arisan, Gurler Akpinar and Serdar Arisan
Medicina 2025, 61(4), 735; https://doi.org/10.3390/medicina61040735 - 16 Apr 2025
Cited by 1 | Viewed by 905
Abstract
Background and Objectives: Bladder cancer (BLCA), intimately associated with the immune system, represents a substantial global health burden due to its high recurrence rates and limited therapeutic effectiveness. Although immunotherapy shows promise, challenges persist due to the lack of reliable therapeutic targets. [...] Read more.
Background and Objectives: Bladder cancer (BLCA), intimately associated with the immune system, represents a substantial global health burden due to its high recurrence rates and limited therapeutic effectiveness. Although immunotherapy shows promise, challenges persist due to the lack of reliable therapeutic targets. This study aims to investigate potential immune-related biomarkers that could influence the tumor microenvironment in BLCA, using proteomic and in silico approaches. Materials and Methods: Tissue samples from BLCA patients (n = 27) and controls (n = 27) were collected from Şişli Hamidiye Etfal Training and Research Hospital. Proteomic analysis was performed by liquid chromatography/mass spectrometry (LC-MS)/MS to reveal the identities of differentially regulated proteins. Protein network analysis and hub protein detection were performed using Cytoscape (v.3.10.3), while functional annotation was carried out using EnrichR. The immunological analysis of hub proteins was performed in Sangerbox platform, and prognostic associations were evaluated through the Kaplan–Meier Plotter tool. Results: LC-MS/MS analysis identified 120 differentially regulated immune-related proteins. STRING analysis, using an immune response dataset (GO:0006955), highlighted the complement cascade as a significantly enriched pathway (p < 0.05). Proteins, namely C4A, CFB, C4B, C8B, CFH, CFI, C5, C4BPA, C3, and C2, that are known to play key roles in the complement system were identified. Immunological analysis with these proteins revealed the phenomena of immune infiltration and immune checkpoint gene associations (p < 0.05). Four hub genes—CFB, C4B, CFI, and C2—demonstrated a significant prognostic value for BLCA (p < 0.05). Conclusions: This study highlights the pivotal role of the complement system in the immune regulation of BLCA. CFI, C4A, and C4B emerged as potential target proteins for BLCA treatment, particularly in immunotherapy, for enhancing survival. Future research on these proteins and the complement system specifically focusing on BLCA may facilitate the development of targeted immunotherapies, ultimately improving treatment outcomes. Full article
(This article belongs to the Special Issue Diagnosis and Treatment of Urologic Oncology)
Show Figures

Figure 1

23 pages, 766 KiB  
Review
Nutritional Genomics: Implications for Age-Related Macular Degeneration
by Inês Figueiredo, Cláudia Farinha, Patrícia Barreto, Rita Coimbra, Pedro Pereira, João Pedro Marques, Isabel Pires, Maria Luz Cachulo and Rufino Silva
Nutrients 2024, 16(23), 4124; https://doi.org/10.3390/nu16234124 - 28 Nov 2024
Cited by 1 | Viewed by 2632
Abstract
Background: Age-related macular degeneration (AMD) is a leading cause of vision loss in older individuals, driven by a multifactorial etiology involving genetic, environmental, and dietary factors. Nutritional genomics, which studies gene-nutrient interactions, has emerged as a promising field for AMD prevention and management. [...] Read more.
Background: Age-related macular degeneration (AMD) is a leading cause of vision loss in older individuals, driven by a multifactorial etiology involving genetic, environmental, and dietary factors. Nutritional genomics, which studies gene-nutrient interactions, has emerged as a promising field for AMD prevention and management. Genetic predispositions, such as variants in CFH, C3, C2/CFB, APOE, and oxidative stress pathways, significantly affect the risk and progression of AMD. Methods: This narrative review synthesizes findings from randomized controlled trials and recent advances in nutritional genomics research. It examines the interplay between genetic predispositions and dietary interventions, exploring how personalized nutritional strategies can optimize AMD management. Results and Discussion: The AREDS and AREDS2 trials demonstrated that supplements, including vitamins C, E, zinc, copper, lutein, and zeaxanthin, can reduce the progression to advanced AMD. Nutritional interventions tailored to genetic profiles show promise: CFH risk alleles may enhance zinc supplementation’s anti-inflammatory effects, while APOE variants influence the response to omega-3 fatty acids. Adjusting carotenoid intake, such as lutein and zeaxanthin, based on genetic susceptibility exemplifies emerging precision nutritional approaches. Ongoing research seeks to integrate nutrigenomic testing into clinical settings, enabling clinicians to tailor interventions to individual genetic profiles. Conclusions: Further studies are needed to assess the long-term effects of personalized interventions, investigate additional genetic variants, and develop tools for clinical implementation of nutrigenomics. Advancing these strategies holds the potential to improve patient outcomes, optimize AMD management, and pave the way for precision nutrition in ophthalmology. Full article
(This article belongs to the Special Issue Diet and Supplements in the Prevention and Treatment of Eye Diseases)
Show Figures

Graphical abstract

16 pages, 1009 KiB  
Review
Genetic Susceptibility in Endothelial Injury Syndromes after Hematopoietic Cell Transplantation and Other Cellular Therapies: Climbing a Steep Hill
by Paschalis Evangelidis, Nikolaos Evangelidis, Panagiotis Kalmoukos, Maria Kourti, Athanasios Tragiannidis and Eleni Gavriilaki
Curr. Issues Mol. Biol. 2024, 46(5), 4787-4802; https://doi.org/10.3390/cimb46050288 - 15 May 2024
Cited by 4 | Viewed by 2222
Abstract
Hematopoietic stem cell transplantation (HSCT) remains a cornerstone in the management of patients with hematological malignancies. Endothelial injury syndromes, such as HSCT-associated thrombotic microangiopathy (HSCT-TMA), veno-occlusive disease/sinusoidal obstruction syndrome (SOS/VOD), and capillary leak syndrome (CLS), constitute complications after HSCT. Moreover, endothelial damage is [...] Read more.
Hematopoietic stem cell transplantation (HSCT) remains a cornerstone in the management of patients with hematological malignancies. Endothelial injury syndromes, such as HSCT-associated thrombotic microangiopathy (HSCT-TMA), veno-occlusive disease/sinusoidal obstruction syndrome (SOS/VOD), and capillary leak syndrome (CLS), constitute complications after HSCT. Moreover, endothelial damage is prevalent after immunotherapy with chimeric antigen receptor-T (CAR-T) and can be manifested with cytokine release syndrome (CRS) or immune effector cell-associated neurotoxicity syndrome (ICANS). Our literature review aims to investigate the genetic susceptibility in endothelial injury syndromes after HSCT and CAR-T cell therapy. Variations in complement pathway- and endothelial function-related genes have been associated with the development of HSCT-TMA. In these genes, CFHR5, CFHR1, CFHR3, CFI, ADAMTS13, CFB, C3, C4, C5, and MASP1 are included. Thus, patients with these variations might have a predisposition to complement activation, which is also exaggerated by other factors (such as acute graft-versus-host disease, infections, and calcineurin inhibitors). Few studies have examined the genetic susceptibility to SOS/VOD syndrome, and the implicated genes include CFH, methylenetetrahydrofolate reductase, and heparinase. Finally, specific mutations have been associated with the onset of CRS (PFKFB4, CX3CR1) and ICANS (PPM1D, DNMT3A, TE2, ASXL1). More research is essential in this field to achieve better outcomes for our patients. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

21 pages, 3412 KiB  
Article
Cordyceps militaris Extract and Cordycepin Alleviate Oxidative Stress, Modulate Gut Microbiota and Ameliorate Intestinal Damage in LPS-Induced Piglets
by Shijie Xiong, Jiajia Jiang, Fan Wan, Ding Tan, Haibo Zheng, Huiqin Xue, Yiqiong Hang, Yang Lu and Yong Su
Antioxidants 2024, 13(4), 441; https://doi.org/10.3390/antiox13040441 - 8 Apr 2024
Cited by 6 | Viewed by 3026
Abstract
Cordycepin is considered a major bioactive component in Cordyceps militaris extract. This study was performed to evaluate the ameliorative effect of Cordyceps militaris extract (CME) and cordycepin (CPN) supplementation on intestinal damage in LPS-challenged piglets. The results showed that CPN or CME supplementation [...] Read more.
Cordycepin is considered a major bioactive component in Cordyceps militaris extract. This study was performed to evaluate the ameliorative effect of Cordyceps militaris extract (CME) and cordycepin (CPN) supplementation on intestinal damage in LPS-challenged piglets. The results showed that CPN or CME supplementation significantly increased the villus height (p < 0.01) and villus height/crypt depth ratio (p < 0.05) in the jejunum and ileum of piglets with LPS-induced intestinal inflammation. Meanwhile, CPN or CME supplementation alleviated oxidative stress and inflammatory responses by reducing the levels of MDA (p < 0.05) and pro-inflammatory cytokines in the serum. Additionally, supplementation with CPN or CME modulated the structure of the intestinal microbiota by enriching short-chain fatty acid-producing bacteria, and increased the level of butyrate (p < 0.05). The RNA-seq results demonstrated that CME or CPN altered the complement and coagulation-cascade-related genes (p < 0.05), including upregulating gene KLKB1 while downregulating the genes CFD, F2RL2, CFB, C4BPA, F7, C4BPB, CFH, C3 and PROS1, which regulate the complement activation involved in inflammatory and immune responses. Correlation analysis further demonstrated the potential relation between the gut microbiota and intestinal inflammation, oxidative stress, and butyrate in piglets. In conclusion, CPN or CME supplementation might inhibit LPS-induced inflammation and oxidative stress by modulating the intestinal microbiota and its metabolite butyrate in piglets. Full article
Show Figures

Figure 1

11 pages, 248 KiB  
Article
Increased Complement Activation and Decreased ADAMTS13 Activity Are Associated with Genetic Susceptibility in Patients with Preeclampsia/HELLP Syndrome Compared to Healthy Pregnancies: An Observational Case-Controlled Study
by Theodora-Maria Venou, Evangelia Vetsiou, Christos Varelas, Angelos Daniilidis, Kyriakos Psarras, Evaggelia-Evdoxia Koravou, Maria Koutra, Tasoula Touloumenidou, Vasilis Tsolakidis, Apostolia Papalexandri, Fani Minti, Evdokia Mandala, Konstantinos Dinas, Efthymia Vlachaki and Eleni Gavriilaki
J. Pers. Med. 2024, 14(4), 387; https://doi.org/10.3390/jpm14040387 - 3 Apr 2024
Cited by 4 | Viewed by 1855
Abstract
Preeclampsia is a progressive multi-systemic disorder characterized by proteinuria, critical organ damage, and new-onset hypertension. It can be further complicated by HELLP syndrome (hemolysis, elevated liver enzymes, low platelets), resulting in critical liver or renal damage, disseminated coagulation, and grand mal seizures. This [...] Read more.
Preeclampsia is a progressive multi-systemic disorder characterized by proteinuria, critical organ damage, and new-onset hypertension. It can be further complicated by HELLP syndrome (hemolysis, elevated liver enzymes, low platelets), resulting in critical liver or renal damage, disseminated coagulation, and grand mal seizures. This study aimed to examine the involvement of ADAMTS13, von Willebrand, and the complement system in the pathogenesis of preeclampsia/HELLP syndrome. We studied 30 Caucasian preeclamptic pregnant women and a control group of 15 healthy pregnancies. Genetic sequencing of ADAMTS13 and complement regulatory genes (MiniSeq System, Illumina) was performed. The modified Ham test was used to check for complement activation, ADAMTS13 activity, von Willebrand antigen (vWFAg) levels, and soluble C5b-9 levels were measured. Patients with preeclampsia had a decreased ADAMTS13 activity and increased C5b-9 levels. The vWFAg was significantly correlated with ADAMTS13 activity (r = 0.497, p = 0.003). Risk-factor variants were found in the genes of ADAMTS13, C3, thrombomodulin, CFB, CFH, MBL2, and, finally, MASP2. A portion of pregnant women with preeclampsia showed a decline in ADAMTS13 activity, correlated with vWFAg levels. These patients also exhibited an elevated complement activation and high-risk genetic variants in regulatory genes. Further research is needed to determine if these factors can serve as reliable biomarkers. Full article
16 pages, 1981 KiB  
Review
CRISPR Manipulation of Age-Related Macular Degeneration Haplotypes in the Complement System: Potential Future Therapeutic Applications/Avenues
by Ahmed Salman, Michelle E. McClements and Robert E. MacLaren
Int. J. Mol. Sci. 2024, 25(3), 1697; https://doi.org/10.3390/ijms25031697 - 30 Jan 2024
Cited by 3 | Viewed by 2414
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible vision loss among the elderly in the developed world. Whilst AMD is a multifactorial disease, the involvement of the complement system in its pathology is well documented, with single-nucleotide polymorphisms (SNPs) in different [...] Read more.
Age-related macular degeneration (AMD) is the leading cause of irreversible vision loss among the elderly in the developed world. Whilst AMD is a multifactorial disease, the involvement of the complement system in its pathology is well documented, with single-nucleotide polymorphisms (SNPs) in different complement genes representing an increased risk factor. With several complement inhibitors explored in clinical trials showing limited success, patients with AMD are still without a reliable treatment option. This indicates that there is still a gap of knowledge in the functional implications and manipulation of the complement system in AMD, hindering the progress towards translational treatments. Since the discovery of the CRISPR/Cas system and its development into a powerful genome engineering tool, the field of molecular biology has been revolutionised. Genetic variants in the complement system have long been associated with an increased risk of AMD, and a variety of haplotypes have been identified to be predisposing/protective, with variation in complement genes believed to be the trigger for dysregulation of the cascade leading to inflammation. AMD-haplotypes (SNPs) alter specific aspects of the activation and regulation of the complement cascade, providing valuable insights into the pathogenic mechanisms of AMD with important diagnostic and therapeutic implications. The effect of targeting these AMD-related SNPs on the regulation of the complement cascade has been poorly explored, and the CRISPR/Cas system provides an ideal tool with which to explore this avenue. Current research concentrates on the association events of specific AMD-related SNPs in complement genes without looking into the effect of targeting these SNPs and therefore influencing the complement system in AMD pathogenesis. This review will explore the current understanding of manipulating the complement system in AMD pathogenesis utilising the genomic manipulation powers of the CRISPR/Cas systems. A number of AMD-related SNPs in different complement factor genes will be explored, with a particular emphasis on factor H (CFH), factor B (CFB), and complement C3 (C3). Full article
Show Figures

Figure 1

20 pages, 3850 KiB  
Article
TRPV4 Channels Promote Pathological, but Not Physiological, Cardiac Remodeling through the Activation of Calcineurin/NFAT and TRPC6
by Laia Yáñez-Bisbe, Mar Moya, Antonio Rodríguez-Sinovas, Marisol Ruiz-Meana, Javier Inserte, Marta Tajes, Montserrat Batlle, Eduard Guasch, Aleksandra Mas-Stachurska, Elisabet Miró, Nuria Rivas, Ignacio Ferreira González, Anna Garcia-Elias and Begoña Benito
Int. J. Mol. Sci. 2024, 25(3), 1541; https://doi.org/10.3390/ijms25031541 - 26 Jan 2024
Cited by 3 | Viewed by 2549
Abstract
TRPV4 channels, which respond to mechanical activation by permeating Ca2+ into the cell, may play a pivotal role in cardiac remodeling during cardiac overload. Our study aimed to investigate TRPV4 involvement in pathological and physiological remodeling through Ca2+-dependent signaling. TRPV4 [...] Read more.
TRPV4 channels, which respond to mechanical activation by permeating Ca2+ into the cell, may play a pivotal role in cardiac remodeling during cardiac overload. Our study aimed to investigate TRPV4 involvement in pathological and physiological remodeling through Ca2+-dependent signaling. TRPV4 expression was assessed in heart failure (HF) models, induced by isoproterenol infusion or transverse aortic constriction, and in exercise-induced adaptive remodeling models. The impact of genetic TRPV4 inhibition on HF was studied by echocardiography, histology, gene and protein analysis, arrhythmia inducibility, Ca2+ dynamics, calcineurin (CN) activity, and NFAT nuclear translocation. TRPV4 expression exclusively increased in HF models, strongly correlating with fibrosis. Isoproterenol-administered transgenic TRPV4−/− mice did not exhibit HF features. Cardiac fibroblasts (CFb) from TRPV4+/+ animals, compared to TRPV4−/−, displayed significant TRPV4 overexpression, elevated Ca2+ influx, and enhanced CN/NFATc3 pathway activation. TRPC6 expression paralleled that of TRPV4 in all models, with no increase in TRPV4−/− mice. In cultured CFb, the activation of TRPV4 by GSK1016790A increased TRPC6 expression, which led to enhanced CN/NFATc3 activation through synergistic action of both channels. In conclusion, TRPV4 channels contribute to pathological remodeling by promoting fibrosis and inducing TRPC6 upregulation through the activation of Ca2+-dependent CN/NFATc3 signaling. These results pose TRPV4 as a primary mediator of the pathological response. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

10 pages, 1496 KiB  
Article
Validation of a Gene Expression Approach for the Cytological Diagnosis of Epithelioid and Biphasic Pleural Mesothelioma on a Consecutive Series
by Rossella Bruno, Anello Marcello Poma, Greta Alì, Agnese Proietti, Alessandro Ribechini, Antonio Chella and Gabriella Fontanini
Cancers 2023, 15(23), 5534; https://doi.org/10.3390/cancers15235534 - 22 Nov 2023
Viewed by 1364
Abstract
Cytological diagnosis of pleural mesothelioma (PM) is controversial, even using ancillary markers (BAP1, MTAP and CDKN2A). Here, we aimed to prospectively validate a previously developed 117-gene expression panel for the differential cytological diagnosis of epithelioid, biphasic PM and mesothelial hyperplasia. Seventy-seven pleural effusions [...] Read more.
Cytological diagnosis of pleural mesothelioma (PM) is controversial, even using ancillary markers (BAP1, MTAP and CDKN2A). Here, we aimed to prospectively validate a previously developed 117-gene expression panel for the differential cytological diagnosis of epithelioid, biphasic PM and mesothelial hyperplasia. Seventy-seven pleural effusions were classified using the 117-gene expression levels (NanoString system). Sixty-eight cases were also screened for ancillary markers. The performance of both gene panel and ancillary markers was evaluated using ROC metrics. A score using the top consistently deregulated genes between epithelioid and biphasic PM was built to subtype malignant effusions. The panel alone reached a diagnostic accuracy (0.89) comparable to the best marker combination (BAP1 plus MTAP: 0.88). Ancillary tests missed 8 PMs, 7 of which were correctly classified by the panel. The score built by averaging the expression levels of MSLN, CLDN15 and CFB showed an accuracy of 0.80 in subtyping epithelioid and biphasic effusions. The 117-gene panel is effective for PM cytological diagnosis of epithelioid and biphasic PM. This tool can be complementary to ancillary markers, reducing invasive procedures and allowing an earlier diagnosis. Finally, the possibility to subtype PM on effusions strengthens the panel’s role in PM diagnosis and management. Full article
(This article belongs to the Special Issue Innovation in the Treatment of Thoracic Cancers)
Show Figures

Figure 1

12 pages, 3032 KiB  
Article
New Immunohistochemical Markers for Pleural Mesothelioma Subtyping
by Iosè Di Stefano, Greta Alì, Anello Marcello Poma, Rossella Bruno, Agnese Proietti, Cristina Niccoli, Carmelina Cristina Zirafa, Franca Melfi, Maria Giovanna Mastromarino, Marco Lucchi and Gabriella Fontanini
Diagnostics 2023, 13(18), 2945; https://doi.org/10.3390/diagnostics13182945 - 14 Sep 2023
Cited by 2 | Viewed by 2582
Abstract
Pleural mesothelioma (PM) comprises three main subtypes: epithelioid, biphasic and sarcomatoid, which have different impacts on prognosis and treatment definition. However, PM subtyping can be complex given the inter- and intra-tumour morphological heterogeneity. We aim to use immunohistochemistry (IHC) to evaluate five markers [...] Read more.
Pleural mesothelioma (PM) comprises three main subtypes: epithelioid, biphasic and sarcomatoid, which have different impacts on prognosis and treatment definition. However, PM subtyping can be complex given the inter- and intra-tumour morphological heterogeneity. We aim to use immunohistochemistry (IHC) to evaluate five markers (Mesothelin, Claudin-15, Complement Factor B, Plasminogen Activator Inhibitor 1 and p21-activated Kinase 4), whose encoding genes have been previously reported as deregulated among PM subtypes. Immunohistochemical expressions were determined in a case series of 73 PMs, and cut-offs for the epithelioid and non-epithelioid subtypes were selected. Further validation was performed on an independent cohort (30 PMs). For biphasic PM, the percentage of the epithelioid component was assessed, and IHC evaluation was also performed on the individual components separately. Mesothelin and Claudin-15 showed good sensitivity (79% and 84%) and specificity (84% and 73%) for the epithelioid subtype. CFB and PAK4 had inferior performance, with higher sensitivity (89% and 84%) but lower specificity (64% and 36%). In the biphasic group, all markers showed different expression when comparing epithelioid with sarcomatoid areas. Mesothelin, Claudin-15 and CFB can be useful in subtype discrimination. PAI1 and PAK4 can improve component distinction in biphasic PM. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

21 pages, 6461 KiB  
Article
Transcriptional Landscape of 3D vs. 2D Ovarian Cancer Cell Models
by Rachel Kerslake, Birhanu Belay, Suzana Panfilov, Marcia Hall, Ioannis Kyrou, Harpal S. Randeva, Jari Hyttinen, Emmanouil Karteris and Cristina Sisu
Cancers 2023, 15(13), 3350; https://doi.org/10.3390/cancers15133350 - 26 Jun 2023
Cited by 16 | Viewed by 4837
Abstract
Three-dimensional (3D) cancer models are revolutionising research, allowing for the recapitulation of an in vivo-like response through the use of an in vitro system, which is more complex and physiologically relevant than traditional monolayer cultures. Cancers such as ovarian (OvCa) are prone to [...] Read more.
Three-dimensional (3D) cancer models are revolutionising research, allowing for the recapitulation of an in vivo-like response through the use of an in vitro system, which is more complex and physiologically relevant than traditional monolayer cultures. Cancers such as ovarian (OvCa) are prone to developing resistance, are often lethal, and stand to benefit greatly from the enhanced modelling emulated by 3D cultures. However, the current models often fall short of the predicted response, where reproducibility is limited owing to the lack of standardised methodology and established protocols. This meta-analysis aims to assess the current scope of 3D OvCa models and the differences in the genetic profiles presented by a vast array of 3D cultures. An analysis of the literature (Pubmed.gov) spanning 2012–2022 was used to identify studies with paired data of 3D and 2D monolayer counterparts in addition to RNA sequencing and microarray data. From the data, 19 cell lines were found to show differential regulation in their gene expression profiles depending on the bio-scaffold (i.e., agarose, collagen, or Matrigel) compared to 2D cell cultures. The top genes differentially expressed in 2D vs. 3D included C3, CXCL1, 2, and 8, IL1B, SLP1, FN1, IL6, DDIT4, PI3, LAMC2, CCL20, MMP1, IFI27, CFB, and ANGPTL4. The top enriched gene sets for 2D vs. 3D included IFN-α and IFN-γ response, TNF-α signalling, IL-6-JAK-STAT3 signalling, angiogenesis, hedgehog signalling, apoptosis, epithelial–mesenchymal transition, hypoxia, and inflammatory response. Our transversal comparison of numerous scaffolds allowed us to highlight the variability that can be induced by these scaffolds in the transcriptional landscape and identify key genes and biological processes that are hallmarks of cancer cells grown in 3D cultures. Future studies are needed to identify which is the most appropriate in vitro/preclinical model to study tumour microenvironments. Full article
(This article belongs to the Special Issue 3D Cell Culture Cancer Models: Development and Applications 2.0)
Show Figures

Figure 1

15 pages, 5331 KiB  
Article
RIPK1-Induced A1 Reactive Astrocytes in Brain in MPTP-Treated Murine Model of Parkinson’s Disease
by Chenmeng Qiao, Guyu Niu, Weijiang Zhao, Wei Quan, Yu Zhou, Meixuan Zhang, Ting Li, Shengyang Zhou, Wenyan Huang, Liping Zhao, Jian Wu, Chun Cui and Yanqin Shen
Brain Sci. 2023, 13(5), 733; https://doi.org/10.3390/brainsci13050733 - 27 Apr 2023
Cited by 6 | Viewed by 2817
Abstract
Neuroinflammation is one of the hallmarks of Parkinson’s disease, including the massive activation of microglia and astrocytes and the release of inflammatory factors. Receptor-interacting protein kinase 1 (RIPK1) is reported to mediate cell death and inflammatory signaling, and is markedly elevated in the [...] Read more.
Neuroinflammation is one of the hallmarks of Parkinson’s disease, including the massive activation of microglia and astrocytes and the release of inflammatory factors. Receptor-interacting protein kinase 1 (RIPK1) is reported to mediate cell death and inflammatory signaling, and is markedly elevated in the brain in PD mouse models. Here, we aim to explore the role of RIPK1 in regulating the neuroinflammation of PD. C57BL/6J mice were intraperitoneally injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 20 mg/kg four times/day), followed by necrostatin-1 treatment (Nec-1, RIPK1 inhibitor; 1.65 mg/kg once daily for seven days. Notably, the first Nec-1 was given 12 h before MPTP modeling). Behavioral tests indicated that inhibition of RIPK1 greatly relieved motor dysfunction and anxiety-like behaviors of PD mice. It also increased striatal TH expression, rescue the loss of dopaminergic neurons, and reduce activation of astrocytes in the striatum of PD mice. Furthermore, inhibition of RIPK1 expression reduced A1 astrocytes’ relative gene expression (CFB, H2-T23) and inflammatory cytokine or chemokine production (CCL2, TNF-α, IL-1β) in the striatum of PD mice. Collectively, inhibition of RIPK1 expression can provide neuroprotection to PD mice, probably through inhibition of the astrocyte A1 phenotype, and thus RIPK1 might be an important target in PD treatment. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Graphical abstract

13 pages, 2394 KiB  
Article
Do NAAT-Based Methods Increase the Diagnostic Sensitivity of Streptococcus agalactiae Carriage Detection in Pregnant Women?
by Agnieszka Sroka-Oleksiak, Wojciech Pabian, Joanna Sobońska, Kamil Drożdż, Tomasz Bogiel and Monika Brzychczy-Włoch
Diagnostics 2023, 13(5), 863; https://doi.org/10.3390/diagnostics13050863 - 23 Feb 2023
Cited by 3 | Viewed by 3924
Abstract
The aim of the study was to evaluate particular polymerase chain reaction primers targeting selected representative genes and the influence of a preincubation step in a selective broth on the sensitivity of group B Streptococcus (GBS) detection by nucleic acid amplification techniques (NAAT). [...] Read more.
The aim of the study was to evaluate particular polymerase chain reaction primers targeting selected representative genes and the influence of a preincubation step in a selective broth on the sensitivity of group B Streptococcus (GBS) detection by nucleic acid amplification techniques (NAAT). Research samples were vaginal and rectal swabs collected in duplicate from 97 pregnant women. They were used for enrichment broth culture-based diagnostics, bacterial DNA isolation, and amplification, using primers based on species-specific 16S rRNA, atr and cfb genes. To assess the sensitivity of GBS detection, additional isolation of samples preincubated in Todd-Hewitt broth with colistin and nalidixic acid was performed and then subjected to amplification again. The introduction of the preincubation step increased the sensitivity of GBS detection by about 33–63%. Moreover, NAAT made it possible to identify GBS DNA in an additional six samples that were negative in culture. The highest number of true positive results compared to the culture was obtained with the atr gene primers, as compared to cfb and 16S rRNA primers. Isolation of bacterial DNA after preincubation in enrichment broth significantly increases the sensitivity of NAAT-based methods applied for the detection of GBS from vaginal and rectal swabs. In the case of the cfb gene, the use of an additional gene to ensure the appropriate results should be considered. Full article
(This article belongs to the Special Issue Infectious Disease in Pregnancy)
Show Figures

Figure 1

Back to TopTop