Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = cerium (IV) oxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3855 KiB  
Article
Comprehensive Dissolution Study on Two Double Ce(IV) Phosphates with Evidence of Secondary CeO2 Nanoparticle Formation
by Anastasiia L. Listova, Anastasiia S. Kuzenkova, Mikhail A. Gerasimov, Elizaveta S. Kulikova, Roman D. Svetogorov, Daniil A. Novichkov, Alexei A. Averin, Vasiliy O. Yapaskurt, Anna Yu. Romanchuk, Stepan N. Kalmykov and Tatiana V. Plakhova
Molecules 2025, 30(10), 2105; https://doi.org/10.3390/molecules30102105 - 9 May 2025
Viewed by 475
Abstract
Herein, we present a comprehensive study on the dissolution behaviour of two sodium–cerium(IV) phosphate phases synthesised hydrothermally from CeO2 nanoparticles: crystalline Na2Ce(PO4)2 and nanocrystalline NaCe2(PO4)3. For the first time, experimental dissolution [...] Read more.
Herein, we present a comprehensive study on the dissolution behaviour of two sodium–cerium(IV) phosphate phases synthesised hydrothermally from CeO2 nanoparticles: crystalline Na2Ce(PO4)2 and nanocrystalline NaCe2(PO4)3. For the first time, experimental dissolution data were obtained for both compounds over a wide pH range (1.5–10) under long-term equilibration. The crystalline phase undergoes pH-dependent transformation, including recrystallisation at a near-neutral pH and the formation of secondary CeO2 nanoparticles above pH 7. In contrast, the nanophase NaCe2(PO4)3 exhibits exceptional structural and chemical stability, showing no signs of recrystallisation, phase transformation, or CeO2 formation, even after extended ageing. The experimental results help refine the thermodynamic stability conditions for cerium phosphate and oxide phases, providing insights into the reversible transformation pathways between CeO2 and Ce(IV) phosphates as governed by pH. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

18 pages, 2735 KiB  
Article
Determination of Phosphate as an Ion-Association Complex of 11-Molybdovanadophosphate and Diindodicarbocyanine Based on Selective Oxidation of Excess Dye
by Andriy B. Vishnikin, Svitlana V. Khlyntseva, Yaroslav Bazel, Ioseph Balogh and Ihor E. Barchiy
Molecules 2025, 30(9), 1872; https://doi.org/10.3390/molecules30091872 - 22 Apr 2025
Viewed by 499
Abstract
The elimination of absorbance of excess dye by selective oxidation was first proposed for analytical methods using the formation of ion-association complexes (IAs). On this basis, a new sensitive and selective spectrophotometric method for the determination of phosphate in the form of the [...] Read more.
The elimination of absorbance of excess dye by selective oxidation was first proposed for analytical methods using the formation of ion-association complexes (IAs). On this basis, a new sensitive and selective spectrophotometric method for the determination of phosphate in the form of the IA of 11-molybdovanadophosphate with diindodicarbocyanine (DIDC) was developed. Symmetric diindodicarbocyanine and diindotricarbocyanine dyes can be completely oxidized by sufficiently strong oxidizing agents such as permanganate, dichromate, cerium (IV), and vanadate. Of the three dyes investigated (DIDC, N,N’-dipropyldiindodicarbocyanine, and diindotricarbocyanine), the best results were obtained with DIDC. A mixture of molybdate, vanadate, and nitric acid was preferably used as an oxidizing agent. Selective decolorization of only free dye ions, as well as changes in the IA spectrum compared to the dye spectrum, were explained by the isolation of the dye due to the formation of poorly soluble IA nanoparticles and changes in the redox potential of the dye due to its aggregation. The following optimal conditions for phosphate determination were found: 0.3 M nitric acid, 0.43 mM sodium molybdate, 0.041 mM sodium vanadate, 0.015 mM DIDC, and 18 min for the reaction time. The molar absorptivity of the IA was 1.86 × 105 mol−1·L·cm−1 at 600 nm, and the detection limit for phosphate was 0.013 µM. The developed method was applied to the determination of phosphate in natural water samples. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

18 pages, 3943 KiB  
Article
The Potential Application of AZ31-Mg(OH)2/CeO2 as Temporary Medical Implants: Evaluation of the Corrosion Resistance and Biocompatibility Properties
by Edgar Onofre-Bustamante, Rosa M. Lozano, María L. Escudero, Ana C. Espíndola-Flores and Sandra E. Benito-Santiago
Coatings 2025, 15(4), 450; https://doi.org/10.3390/coatings15040450 - 10 Apr 2025
Viewed by 818
Abstract
Magnesium-based alloys are considered to be promising materials for the fabrication of temporary bone repair medical implants. The AZ31 magnesium-based (AZ31-Mg) alloy contains 3% aluminum and 1% zinc in its microstructure, which gives it mechanical strength and corrosion resistance. Nonetheless, the corrosion rate [...] Read more.
Magnesium-based alloys are considered to be promising materials for the fabrication of temporary bone repair medical implants. The AZ31 magnesium-based (AZ31-Mg) alloy contains 3% aluminum and 1% zinc in its microstructure, which gives it mechanical strength and corrosion resistance. Nonetheless, the corrosion rate is high, which can lead to implant failure due to rapid degradation, which triggers the release of harmful metal ions. In the present work, a passive layer was obtained on the AZ31-Mg alloy, and subsequently, a cerium oxide (CeO2) coating was deposited through a chemical conversion treatment using 0.01 M CeO2 as a precursor. Based on X-ray photoelectron spectroscopy, the calculated amount of Ce(IV) and Ce(III) present in AZ31-Mg(OH)2/CeO2 was 93.6% and 6.4%, respectively. AZ31-Mg(OH)2/CeO2 showed improved corrosion resistance compared with the bare sample. The in vitro assessment of MC3T3-E1 pre-osteoblast cell viability showed that AZ31-Mg(OH)2/CeO2 was biocompatible after incubation for 24 and 72 h. The results revealed that the CeO2 coating confers greater electrochemical stability and biocompatibility properties, mostly due to the presence of Ce4+ ions. Full article
(This article belongs to the Special Issue Electrochemistry and Corrosion Science for Coatings)
Show Figures

Figure 1

13 pages, 6810 KiB  
Article
Open-Source Equipment Design for Cost-Effective Redox Flow Battery Research
by Trinh V. Dung, Nguyen T. T. Huyen, Nguyen L. T. Huynh, Nguyen T. Binh, Nguyen T. Dat, Nguyen T. T. Nga, Nguyen T. Lan, Hoang V. Tran, Nguyen T. T. Mai and Chinh D. Huynh
ChemEngineering 2024, 8(6), 120; https://doi.org/10.3390/chemengineering8060120 - 28 Nov 2024
Viewed by 1504
Abstract
Redox flow batteries (RFBs), with distinct characteristics that are suited for grid-scale applications, stand at the forefront of potential energy solutions. However, progress in RFB technology is often impeded by their prohibitive cost and the limited availability of essential research and development test [...] Read more.
Redox flow batteries (RFBs), with distinct characteristics that are suited for grid-scale applications, stand at the forefront of potential energy solutions. However, progress in RFB technology is often impeded by their prohibitive cost and the limited availability of essential research and development test cells. Addressing this bottleneck, we present herein an open-source device tailored for RFB laboratory research. Our proposed device significantly lowers the financial barriers to research and enhances the accessibility of vital equipment for RFB studies. Employing innovative fabrication methods such as laser cutting, 3D printing, and CNC machining, a versatile and efficient flow cell has been designed and fabricated. Furthermore, our open laboratory research equipment comprises the Opensens potentiostat, charge/discharge testing devices, peristaltic pumps, and inexpensive rotating electrodes. Every individual element contributes significantly to the establishment of an all-encompassing experimental configuration that is both economical and efficient, thereby facilitating expedited progress in RFB research and development. Full article
Show Figures

Figure 1

20 pages, 6964 KiB  
Article
Adding Rare Earth Oxide Markers to Polyoxymethylene to Improve Plastic Recycling through Tracer-Based Sorting
by Aleksander Jandric, Christoph Olscher, Christian Zafiu, Robert Lielacher, Christoph Lechner, Andrea Lassenberger and Florian Part
Polymers 2024, 16(18), 2591; https://doi.org/10.3390/polym16182591 - 13 Sep 2024
Cited by 2 | Viewed by 1457
Abstract
Engineering plastics, such as polyoxymethylene (POM), are high-performance thermoplastics designed to withstand high temperature or mechanical stress and are used in electronic equipment, the automotive industry, construction, or specific household utensils. POM is immiscible with other plastics but due to a low volume [...] Read more.
Engineering plastics, such as polyoxymethylene (POM), are high-performance thermoplastics designed to withstand high temperature or mechanical stress and are used in electronic equipment, the automotive industry, construction, or specific household utensils. POM is immiscible with other plastics but due to a low volume of production, no methods were developed to separate it from the residual plastic waste stream. Therefore, POM recycling is minimal despite its high market value. This paper provides a proof of concept for tracer-based sorting (TBS) as a potential solution for increasing the separation efficiency of low-volume, high-quality polymers. For this purpose, yttrium oxide (Y2O3) and cerium (IV) oxide (CeO2) have been embedded into the POM matrix. Mechanical tests of samples at varying concentrations (0.1 to 1000 ppm) of both tracers were conducted, followed by an analysis of detectability and dispersibility using a portable X-ray fluorescence spectrometer (p-XRF), subsequently optimizing detection time and tracer concentration. Finally, an experimental scenario was developed to test the fate and potential recovery of the tracer material after the thermal treatment of plastics. A low detectable concentration, short measurement time, low influence on mechanical parameters of the compound, and low loss ratio after simulated recycling prove Y2O3 to be a suitable tracer for the industrial implementation of TBS. Full article
(This article belongs to the Special Issue Recycling of Plastic and Rubber Wastes, 2nd Edition)
Show Figures

Figure 1

21 pages, 9280 KiB  
Article
Thin Layers of Cerium Oxynitride Deposited via RF Sputtering
by Gloria Carolina Numpaque, Manuel Bethencourt and Gloria Ivonne Cubillos
Materials 2024, 17(13), 3142; https://doi.org/10.3390/ma17133142 - 27 Jun 2024
Viewed by 1177
Abstract
Thin films of transition metal oxides and oxynitrides have proven highly effective in protecting stainless steels against corrosion in both chemically aggressive environments and biological fluids. In the present work, cerium zirconium oxynitride thin films were deposited to enhance the corrosion resistance of [...] Read more.
Thin films of transition metal oxides and oxynitrides have proven highly effective in protecting stainless steels against corrosion in both chemically aggressive environments and biological fluids. In the present work, cerium zirconium oxynitride thin films were deposited to enhance the corrosion resistance of surgical-grade stainless steel to be used in osteosynthesis processes. Two techniques were employed: co-sputtering and radiofrequency (RF) sputtering, and the morphology and corrosion efficiency of the coatings deposited by each technique were evaluated. X-ray diffraction, X-ray photoelectron spectroscopy and field emission transmission electron microscopy were used to characterize the morphological and chemical structure, respectively. Additionally, the corrosion resistance of the oxynitride-coated surgical grade stainless steel system (ZrCeOxNy-AISI 316L) was assessed using Hank’s solution as the corrosive electrolyte, to determine its resistance to corrosion in biological media. The results show that ZrCeOxNy coatings increase the corrosion resistance of surgical grade stainless steel by two orders of magnitude and that the Ce(III)/Ce(IV) equilibrium decreases the corrosion rate, thereby increasing the durability of the steel in a biological environment. The results show that Ce coatings increase the corrosion resistance of surgical grade stainless steel by two orders of magnitude and that the Ce(III)/Ce(IV) equilibrium decreases the corrosion rate, thereby increasing the durability of the steel in a biological environment. Full article
(This article belongs to the Special Issue Recent Progress on Thin 2D Materials)
Show Figures

Figure 1

7 pages, 1276 KiB  
Article
Facile Access to Solifenacin Impurity K: One-Step Synthesis and an HPLC-MS Method for Its Determination
by Raúl Xifra, Andrés E. Lukach and Andreea L. Turcu
Molecules 2024, 29(13), 3011; https://doi.org/10.3390/molecules29133011 - 25 Jun 2024
Viewed by 1618
Abstract
Solifenacin (SFC) is a potent muscarinic antagonist that effectively reduces bladder muscle contraction, thereby alleviating symptoms such as frequency of micturition and urgency. Oxidation of SFC leads to the formation of impurities like Impurity K. Effective analysis and control of this impurity is [...] Read more.
Solifenacin (SFC) is a potent muscarinic antagonist that effectively reduces bladder muscle contraction, thereby alleviating symptoms such as frequency of micturition and urgency. Oxidation of SFC leads to the formation of impurities like Impurity K. Effective analysis and control of this impurity is crucial for ensuring compliance with regulatory standards and safeguarding patient health. To address these challenges, we propose a novel one-step synthesis of Impurity K from SFC. Impurity K was synthesized using cerium(IV) ammonium nitrate (CAN) in water/acetonitrile as the solvent. Additionally, we describe a new HPLC-MS method for the detection of Impurity K in solifenacin succinate tablets. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

19 pages, 4375 KiB  
Article
Diatom Biosilica Functionalised with Metabolically Deposited Cerium Oxide Nanoparticles
by Izabela Wojtczak, Weronika Brzozowska, Grzegorz Trykowski and Myroslav Sprynskyy
Materials 2024, 17(10), 2390; https://doi.org/10.3390/ma17102390 - 16 May 2024
Cited by 1 | Viewed by 1569
Abstract
This study introduces a novel approach to synthesising a three-dimensional (3D) micro-nanostructured amorphous biosilica. The biosilica is coated with cerium oxide nanoparticles obtained from laboratory-grown unicellular photosynthetic algae (diatoms) doped metabolically with cerium. This unique method utilises the ability of diatom cells to [...] Read more.
This study introduces a novel approach to synthesising a three-dimensional (3D) micro-nanostructured amorphous biosilica. The biosilica is coated with cerium oxide nanoparticles obtained from laboratory-grown unicellular photosynthetic algae (diatoms) doped metabolically with cerium. This unique method utilises the ability of diatom cells to absorb cerium metabolically and deposit it on their silica exoskeleton as cerium oxide nanoparticles. The resulting composite (Ce-DBioSiO2) combines the unique structural and photonic properties of diatom biosilica (DBioSiO2) with the functionality of immobilised CeO2 nanoparticles. The kinetics of the cerium metabolic insertion by diatom cells and the physicochemical properties of the obtained composites were thoroughly investigated. The resulting Ce-DBioSiO2 composite exhibits intense Stokes fluorescence in the violet–blue region under ultraviolet (UV) irradiation and anti-Stokes intense violet and faint green emissions under the 800 nm near-infrared excitation with a xenon lamp at room temperature in an ambient atmosphere. Full article
Show Figures

Figure 1

24 pages, 7844 KiB  
Article
Influence of the Synthesis Scheme of Nanocrystalline Cerium Oxide and Its Concentration on the Biological Activity of Cells Providing Wound Regeneration
by Ekaterina V. Silina, Victor A. Stupin, Natalia E. Manturova, Olga S. Ivanova, Anton L. Popov, Elena A. Mysina, Elena B. Artyushkova, Alexey A. Kryukov, Svetlana A. Dodonova, Maria P. Kruglova, Alexey A. Tinkov, Anatoly V. Skalny and Vladimir K. Ivanov
Int. J. Mol. Sci. 2023, 24(19), 14501; https://doi.org/10.3390/ijms241914501 - 24 Sep 2023
Cited by 12 | Viewed by 2633
Abstract
In the ongoing search for practical uses of rare-earth metal nanoparticles, cerium dioxide nanoparticles (nanoceria) have received special attention. The purpose of this research was to study the biomedical effects of nanocrystalline forms of cerium oxide obtained by different synthesis schemes and to [...] Read more.
In the ongoing search for practical uses of rare-earth metal nanoparticles, cerium dioxide nanoparticles (nanoceria) have received special attention. The purpose of this research was to study the biomedical effects of nanocrystalline forms of cerium oxide obtained by different synthesis schemes and to evaluate the effect of different concentrations of nanoceria (from 10−2 to 10−6 M) on cells involved in the regeneration of skin cell structures such as fibroblasts, mesenchymal stem cells, and keratinocytes. Two different methods of nanoceria preparation were investigated: (1) CeO-NPs-1 by precipitation from aqueous solutions of cerium (III) nitrate hexahydrate and citric acid and (2) CeO-NPs-2 by hydrolysis of ammonium hexanitratocerate (IV) under conditions of thermal autoclaving. According to the X-ray diffraction, transmission electron microscopy, and dynamic light scattering data, CeO2-1 consists of individual particles of cerium dioxide (3–5 nm) and their aggregates with diameters of 60–130 nm. CeO2-2 comprises small aggregates of 8–20 nm in diameter, which consist of particles of 2–3 nm in size. Cell cultures of human fibroblasts, human mesenchymal stem cells, and human keratinocytes were cocultured with different concentrations of nanoceria sols (10−2, 10−3, 10−4, 10−5, and 10−6 mol/L). The metabolic activity of all cell types was investigated by MTT test after 48 and 72 h, whereas proliferative activity and cytotoxicity were determined by quantitative cell culture counting and live/dead test. A dependence of biological effects on the method of nanoceria preparation and concentration was revealed. Data were obtained with respect to the optimal concentration of sol to achieve the highest metabolic effect in the used cell cultures. Hypotheses about the mechanisms of the obtained effects and the structure of a fundamentally new medical device for accelerated healing of skin wounds were formulated. The method of nanoceria synthesis and concentration fundamentally and significantly change the biological activity of cell cultures of different types—from suppression to pronounced stimulation. The best biological activity of cell cultures was determined through cocultivation with sols of citrate nanoceria (CeO-NPs-1) at a concentration of 10−3–10−4 M. Full article
(This article belongs to the Special Issue Nanoparticles in Nanobiotechnology and Nanomedicine)
Show Figures

Figure 1

13 pages, 2329 KiB  
Article
Effect of Cerium (IV) Oxide Particle Size on Polydimethylsiloxane Polymer to Form Flexible Materials against Ionizing Radiation
by Haifa M. Almutairi, Wafa M. Al-Saleh, Mohammad Ibrahim Abualsayed and Mohamed Elsafi
Polymers 2023, 15(13), 2883; https://doi.org/10.3390/polym15132883 - 29 Jun 2023
Cited by 14 | Viewed by 1746
Abstract
This study aims to investigate the impact of CeO2 content and particle size on the radiation shielding abilities of polydimethylsiloxane, also known as silicon rubber (SR). We prepared different SR samples with 10, 30, and 50% of micro and nano CeO2 [...] Read more.
This study aims to investigate the impact of CeO2 content and particle size on the radiation shielding abilities of polydimethylsiloxane, also known as silicon rubber (SR). We prepared different SR samples with 10, 30, and 50% of micro and nano CeO2 and we measured the linear attenuation coefficient (LAC) for these samples. We found that the LAC of the SR increases by increasing the CeO2 and all prepared SR samples had higher LACs than the pure SR. We examined the effect of the size of the particles on the LAC and the results demonstrated that the LAC for nano CeO2 is higher than that of micro CeO2. We investigated the half value layer (HVL) for the prepared SR samples and the results revealed that the SR with 10% micro CeO2 had a greater HVL than the SR with 10% nano CeO2. The HVL results demonstrated that the SR containing nanoparticles had higher attenuation effectiveness than the SR with micro CeO2. We also prepared SR samples containing CeO2 in both sizes (i.e., micro and nano) and we found that the HVL of the SR containing both sizes was lower than the HVL of the SR with nano CeO2. The radiation protection efficiency (RPE) at 0.059 MeV for the SR with 10% micro and nano CeO2 was 94.2 and 95.6%, respectively, while the RPE of SR containing both sizes (5% micro CeO2 + 5% micro CeO2) was 96.1% at the same energy. The RPE results also indicated that the attenuation ability was improved when utilizing the micro and nano CeO2 as opposed to the micro CeO2 or nano CeO2 at 0.662, 1.173, and 1.333 MeV. Full article
(This article belongs to the Special Issue Nanopolymers and Nanocomposites)
Show Figures

Figure 1

17 pages, 4565 KiB  
Article
Direct Oxidation of Hibiscus cannabinus Stalks to Vanillin Using CeO2 Nanostructure Catalysts
by Anita Ramli, Nur Akila Syakida Idayu Khairul Anuar, Nur Aielia Amira Bakhtiar, Normawati Mohamad Yunus and Alina Rahayu Mohamed
Molecules 2023, 28(13), 4963; https://doi.org/10.3390/molecules28134963 - 24 Jun 2023
Cited by 3 | Viewed by 1725
Abstract
Biomass lignin can be used to produce vanillin through an oxidation process. Although its purity is high, the processing time and separation efficiency are not ideal. This research aims to produce vanillin directly from Kenaf stalks without separating the lignin first from the [...] Read more.
Biomass lignin can be used to produce vanillin through an oxidation process. Although its purity is high, the processing time and separation efficiency are not ideal. This research aims to produce vanillin directly from Kenaf stalks without separating the lignin first from the lignocellulosic biomass. This method is greener because it does not require the separation of cellulose and hemicellulose from the biomass, thus minimizing the use of acid and alkaline solutions and saving time. A high oxygen storage capacity and release capacity of ceria as an oxidation catalyst contribute to the reversable redox properties between Ce4+ and Ce3+ in ceria lattice. Cerium oxide nanostructures were synthesized using a hydrothermal method treated under alkaline NaOH, followed by drying at 120 °C for 16 h and calcining at different temperatures between 400 and 600 °C for the direct oxidation of Kenaf stalks to vanillin under microwave irradiation. The catalysts were characterized for their physicochemical properties using XRD, N2 adsorption–desorption isotherms and TEM. All synthesized CeO2 nanostructures showed the presence of diffraction peaks assigned to the presence of cubic fluorite. The N2 adsorption–desorption isotherms showed that all catalysts possess a Type IV isotherm, indicating a mesoporous structure. The TEM image shows the uniform shape of the CeO2 nanostructures, while HRTEM images show that the CeO2 nanostructures are single-crystalline in nature. All catalysts were tested for the direct oxidation of Kenaf stalks using H2O2 as the oxidizing agent in temperatures ranging from 160 to 180 °C for 10–30 min with 0.1–0.3 g catalyst loading under 100–500 W of microwave irradiation. The CeO2-Nps-400 catalyst produced the highest vanillin yields of 3.84% and 4.32% for the direct oxidation of Kenaf stalks and extraction of lignin from Kenaf stalks, respectively. Compared to our earlier study, the highest vanillin yields of 2.90% and 3.70% for direct biomass and extracted lignin were achieved using a Ce/MgO catalyst. Full article
Show Figures

Graphical abstract

16 pages, 6304 KiB  
Article
Biocompatible, Resilient, and Tough Nanocellulose Tunable Hydrogels
by Amir Rudich, Sunaina Sapru and Oded Shoseyov
Nanomaterials 2023, 13(5), 853; https://doi.org/10.3390/nano13050853 - 24 Feb 2023
Cited by 8 | Viewed by 2672
Abstract
Hydrogels have been proposed as potential candidates for many different applications. However, many hydrogels exhibit poor mechanical properties, which limit their applications. Recently, various cellulose-derived nanomaterials have emerged as attractive candidates for nanocomposite-reinforcing agents due to their biocompatibility, abundance, and ease of chemical [...] Read more.
Hydrogels have been proposed as potential candidates for many different applications. However, many hydrogels exhibit poor mechanical properties, which limit their applications. Recently, various cellulose-derived nanomaterials have emerged as attractive candidates for nanocomposite-reinforcing agents due to their biocompatibility, abundance, and ease of chemical modification. Due to abundant hydroxyl groups throughout the cellulose chain, the grafting of acryl monomers onto the cellulose backbone by employing oxidizers such as cerium(IV) ammonium nitrate ([NH4]2[Ce(NO3)6], CAN) has proven a versatile and effective method. Moreover, acrylic monomers such as acrylamide (AM) may also polymerize by radical methods. In this work, cerium-initiated graft polymerization was applied to cellulose-derived nanomaterials, namely cellulose nanocrystals (CNC) and cellulose nanofibrils (CNF), in a polyacrylamide (PAAM) matrix to fabricate hydrogels that display high resilience (~92%), high tensile strength (~0.5 MPa), and toughness (~1.9 MJ/m3). We propose that by introducing mixtures of differing ratios of CNC and CNF, the composite’s physical behavior can be fine-tuned across a wide range of mechanical and rheological properties. Moreover, the samples proved to be biocompatible when seeded with green fluorescent protein (GFP)-transfected mouse fibroblasts (3T3s), showing a significant increase in cell viability and proliferation compared to samples comprised of acrylamide alone. Full article
(This article belongs to the Special Issue Functional Nanomaterials and Polymer Big Data)
Show Figures

Figure 1

13 pages, 4288 KiB  
Article
Synthesis of Nanoceria with Varied Ratios of Ce3+/Ce4+ Utilizing Soluble Borate Glass
by Kisa S. Ranasinghe, Rajnish Singh, Denis Leshchev, Angel Vasquez, Eli Stavitski and Ian Foster
Nanomaterials 2022, 12(14), 2363; https://doi.org/10.3390/nano12142363 - 10 Jul 2022
Cited by 13 | Viewed by 2602
Abstract
Mixed-valence cerium oxide nanoparticles (nanoceria) have been investigated with pronounced interest due to a wide range of biomedical and industrial applications that arises from its remarkable redox catalytic properties. However, there is no understanding of how to control the formation of these two [...] Read more.
Mixed-valence cerium oxide nanoparticles (nanoceria) have been investigated with pronounced interest due to a wide range of biomedical and industrial applications that arises from its remarkable redox catalytic properties. However, there is no understanding of how to control the formation of these two types of nanoceria to obtain Ce3+/Ce4+ ratios required in various applications. In this work, using a soluble borate glass, nanoceria with specific ratios of Ce3+/Ce4+ are created and extracted via controlled glass-melting parameters. Glass embedded with nanoceria as well as nanoceria extracted from the glass were studied via XANES and fitted with the Multivariate Curve Resolution (MCR) technique to calculate the ratio of Ce3+/Ce4+. Results show that mixed-valence nanoceria with specific ratios are hermetically sealed within the glass for long durations. When the glass dissolves, the mixed-valence nanoceria are released, and the extracted nanoceria have unchanged Ce3+/Ce4+ ratios. Furthermore, TEM investigation on released nanoceria show that the nanoceria consist of several different structures. Although nanocrystal structures of Ce7O12, Ce11O20, and Ce2O3 contribute to the reduced state, a new quasi-stable phase of CeO1.66 has been observed as well. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

9 pages, 2496 KiB  
Communication
Poisoning Effects of Cerium Oxide (CeO2) on the Performance of Proton Exchange Membrane Fuel Cells (PEMFCs)
by Hossein Pourrahmani, Mardit Matian and Jan Van herle
ChemEngineering 2022, 6(3), 36; https://doi.org/10.3390/chemengineering6030036 - 9 May 2022
Cited by 13 | Viewed by 4085
Abstract
In this study, the poisoning effects of cerium oxide (CeO2) as the contaminant on the performance of proton exchange membrane fuel cells (PEMFCs) are evaluated. An experimental setup was developed to analyze the performance characteristic (I-V) curves in contaminated and [...] Read more.
In this study, the poisoning effects of cerium oxide (CeO2) as the contaminant on the performance of proton exchange membrane fuel cells (PEMFCs) are evaluated. An experimental setup was developed to analyze the performance characteristic (I-V) curves in contaminated and non-contaminated conditions. Focused ion-beam scanning electron microscopy (FIB-SEM) cross-section images were obtained as an input for the energy dispersive X-ray (EDX) analysis. The results of the EDX analysis verified the presence of CeO2 in the contaminated membrane electrode assembly (MEA), in addition to fluorine and sulfur. EDX analysis also revealed that as a result of CeO2 contamination, sulfur and fluorine would be distributed all around the MEA, instead of being only in the membrane. The results illustrate that hydrofluoric acid (HF), sulfuric acid (H2SO4), and fluorinated polymer fragments are released, which enhance the crossover of the reactant gases through the membrane, hence reducing the cell’s performance. The I-V characteristic curves proved that the non-contaminated PEMFC setup had double the performance of the contaminated PEMFC. Full article
Show Figures

Figure 1

18 pages, 5232 KiB  
Review
Recent Advances in MnOx/CeO2-Based Ternary Composites for Selective Catalytic Reduction of NOx by NH3: A Review
by Hao Sun and Soo-Jin Park
Catalysts 2021, 11(12), 1519; https://doi.org/10.3390/catal11121519 - 14 Dec 2021
Cited by 10 | Viewed by 3452
Abstract
Recently, manganese oxides (MnOx)/cerium(IV) oxide (CeO2) composites have attracted widespread attention for the selective catalytic reduction (SCR) of nitrogen oxides (NOx) with ammonia (NH3), which exhibit outstanding catalytic performance owing to unique features, such as [...] Read more.
Recently, manganese oxides (MnOx)/cerium(IV) oxide (CeO2) composites have attracted widespread attention for the selective catalytic reduction (SCR) of nitrogen oxides (NOx) with ammonia (NH3), which exhibit outstanding catalytic performance owing to unique features, such as a large oxygen storage capacity, excellent low-temperature activity, and strong mechanical strength. The intimate contact between the components can effectively accelerate the charge transfer to enhance the electron–hole separation efficiency. Nevertheless, MnOx/CeO2 still reveals some deficiencies in the practical application process because of poor thermal stability, and a low reduction efficiency. Constructing MnOx/CeO2 with other semiconductors is the most effective strategy to further improve catalytic performance. In this article, we discuss progress in the field of MnOx/CeO2-based ternary composites with an emphasis on the SCR of NOx by NH3. Recent progress in their fabrication and application, including suitable examples from the relevant literature, are analyzed and summarized. In addition, the interaction mechanisms between MnOx/CeO2 catalysts and NOx pollutants are comprehensively dissected. Finally, the review provides basic insights into prospects and challenges for the advancement of MnOx/CeO2-based ternary catalysts. Full article
Show Figures

Figure 1

Back to TopTop