Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = cereal phenology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1258 KiB  
Review
Seed Priming Beyond Stress Adaptation: Broadening the Agronomic Horizon
by Mujo Hasanović, Adaleta Durmić-Pašić and Erna Karalija
Agronomy 2025, 15(8), 1829; https://doi.org/10.3390/agronomy15081829 - 28 Jul 2025
Viewed by 229
Abstract
Seed priming, traditionally viewed as a method for enhancing crop resilience to abiotic stress, has evolved into a multifaceted agronomic strategy. This review synthesizes the current findings demonstrating that priming influences plant development, metabolic regulation, and yield enhancement even under optimal conditions. By [...] Read more.
Seed priming, traditionally viewed as a method for enhancing crop resilience to abiotic stress, has evolved into a multifaceted agronomic strategy. This review synthesizes the current findings demonstrating that priming influences plant development, metabolic regulation, and yield enhancement even under optimal conditions. By covering a wide range of crops, including cereals (e.g., wheat, maize, rice, and barley) as well as vegetables and horticultural species (e.g., tomato, carrot, spinach, and lettuce), we highlight the broad applicability of priming across agricultural systems. The underlying mechanisms include hormonal modulation, altered source–sink dynamics, accelerated phenology, and epigenetic memory. Various priming techniques are discussed, including hydropriming, osmopriming, biopriming, chemopriming, and nanopriming, with attention to their physiological and molecular effects. Special focus is given to the role of seed priming in advancing climate-smart and precision agriculture. By shifting the narrative from stress mitigation to holistic crop performance optimization, seed priming emerges as a key tool for sustainable agriculture in the face of global challenges. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

21 pages, 3305 KiB  
Article
Unlocking Potato Phenology: Harnessing Sentinel-1 and Sentinel-2 Synergy for Precise Crop Stage Detection
by Diego Gomez, Pablo Salvador, Jorge Gil and Juan Fernando Rodrigo
Remote Sens. 2025, 17(14), 2336; https://doi.org/10.3390/rs17142336 - 8 Jul 2025
Viewed by 431
Abstract
Global challenges such as climate change and population growth require improvements in crop monitoring models. To address these issues, this study advances the identification of potato crop phenological stages using satellite remote sensing, a field where cereals have been the primary focus. We [...] Read more.
Global challenges such as climate change and population growth require improvements in crop monitoring models. To address these issues, this study advances the identification of potato crop phenological stages using satellite remote sensing, a field where cereals have been the primary focus. We introduce a methodology using Sentinel-1 (S1) and Sentinel-2 (S2) time series data to pinpoint critical phenological stages—emergence, canopy closure, flowering, senescence onset, and harvest timing—at the field scale. Our approach utilizes analysis of NDVI, fAPAR, and IRECI2 from S2, alongside VH and VV polarizations from S1, informed by domain knowledge of the spectral and morphological responses of potato crops. We propose the integration of NDVI and VH indices, NDVI_VH, to improve stage detection accuracy. Comparative analysis with ground-observed stages validated the method’s effectiveness, with NDVI proving to be one of the most informative indices, achieving RMSEs of 12 and 14 days for emergence and closure, and 17 days for the onset of senescence. The integrated NDVI_VH approach complemented NDVI, particularly in harvest and flowering stages, where VH enhanced accuracy, achieving an overall R2 value of 0.80. The study demonstrates the potential of combining SAR and optical data for post-season crop phenology analysis, providing insights that can inform the development of new methods and strategies to enhance on-season crop monitoring and yield forecasting. Full article
(This article belongs to the Special Issue Remote Sensing for Precision Farming and Crop Phenology)
Show Figures

Figure 1

16 pages, 1890 KiB  
Article
Evaluation of Hybrid Sorghum Parents for Morphological, Physiological and Agronomic Traits Under Post-Flowering Drought
by Kadiatou Touré, MacDonald Bright Jumbo, Sory Sissoko, Baloua Nebie, Hamidou Falalou, Madina Diancoumba, Harou Abdou, Joseph Sékou B. Dembele, Boubacar Gano and Bernard Sodio
Agronomy 2025, 15(6), 1399; https://doi.org/10.3390/agronomy15061399 - 6 Jun 2025
Viewed by 494
Abstract
Sorghum (Sorghum bicolor, (L.) Moench.), is one of the most important cereals in semi-arid and subtropical regions of Africa. However, in these regions, sorghum cultivation is often faced with several constraints. In Mali, terminal or post-flowering drought, caused by the early [...] Read more.
Sorghum (Sorghum bicolor, (L.) Moench.), is one of the most important cereals in semi-arid and subtropical regions of Africa. However, in these regions, sorghum cultivation is often faced with several constraints. In Mali, terminal or post-flowering drought, caused by the early cessation of rains towards the end of the rainy season, is one of the most common constraints. Sorghum is generally adapted to harsh conditions. However, drought combined to heat reduce its yield and production in tropical and subtropical regions. To identify parents of sorghum hybrids tolerant to post-flowering drought for commercial hybrids development and deployment, a total of 200 genotypes, including male and female parents of the hybrids, were evaluated in 2022 by lysimeters under two water regimes, well-irrigated and water-stressed, at ICRISAT in Niger. Agronomic traits such as phenological stages, physiological traits including transpiration efficiency, and morphological traits such as green leaf number were recorded. Genotype × environment (G × E) interaction was significant for harvest index (HI), green leaf number (GLN), and transpiration efficiency (TE), indicating different responses of genotypes under varying water conditions. Transpiration efficiency (TE) was significantly and positively correlated with total biomass (BT), harvest index (HI), and grain weight (GW) under both stress conditions. Genotypes ICSV216094, ICSB293, ICSV1049, ICSV1460016, and ICSV216074 performed better under optimal and stress conditions. The Principal Component Analysis (PCA) results led to the identification of three groups of genotypes. The Groups 1 and 3 are characterized by their yield stability and better performance under stress and optimal conditions. These two groups could be used by breeding programs to develop high yield and drought tolerant hybrids. Full article
Show Figures

Figure 1

20 pages, 1768 KiB  
Article
Unlocking Nitrogen Use Efficiency in Tritordeum: A Holistic Evaluation of Enhanced-Efficiency Fertilisers Under Mediterranean Conditions
by George Papadopoulos, Ioannis Zafeiriou, Evgenia Georgiou, Sotirios Papanikolaou, Antonios Mavroeidis, Panteleimon Stavropoulos, Ioannis Roussis, Ioanna Kakabouki and Dimitrios Bilalis
Sustainability 2025, 17(11), 4919; https://doi.org/10.3390/su17114919 - 27 May 2025
Viewed by 380
Abstract
Improving nitrogen use efficiency (NUE) is critical to advancing sustainable cereal production, particularly under Mediterranean conditions where environmental pressures challenge input-intensive practises. This study evaluates NUE in Tritordeum, a climate-resilient wheat–barley hybrid, using a holistic experimental approach that integrates pre- and post-harvest soil [...] Read more.
Improving nitrogen use efficiency (NUE) is critical to advancing sustainable cereal production, particularly under Mediterranean conditions where environmental pressures challenge input-intensive practises. This study evaluates NUE in Tritordeum, a climate-resilient wheat–barley hybrid, using a holistic experimental approach that integrates pre- and post-harvest soil analyses, including an electrical conductivity (EC) assessment, plant and seed nutrient profiling, and an evaluation of yield performance and nitrogen ratio dynamics. Four treatments were tested: conventional urea (T1), urea with an urease inhibitor (NBPT) (T2), urea with a nitrification inhibitor (DCD) (T3), and an unfertilised control (C). While conventional urea achieved the highest yield (1366 kg ha−1), enhanced-efficiency fertilisers (EEFs) improved nutrient synchronisation and seed nutritional quality. Specifically, EEFs increased seed zinc (T2: 34.93 mg/kg), iron (T1: 33.77 mg/kg), and plant potassium (T2: 1.66%; T3: 1.61%) content, and also improved nitrogen remobilisation (elevated Nplant/Nseed ratios). EEFs also influenced soil properties, increasing organic matter (T3: 2.75%) and EC (T3: 290.78 μS/cm). These findings suggest that while EEFs may not always boost yield in the short term, they contribute to long-term soil fertility and nutrient density in grain. This study underscores the importance of synchronising nitrogen availability with Tritordeum’s phenological stages and highlights the crop’s suitability for sustainable, low-input agriculture under climate variability. Full article
Show Figures

Figure 1

13 pages, 9176 KiB  
Technical Note
Evaluating Sentinel-2 for Monitoring Drought-Induced Crop Failure in Winter Cereals
by Adrià Descals, Karen Torres, Aleixandre Verger and Josep Peñuelas
Remote Sens. 2025, 17(2), 340; https://doi.org/10.3390/rs17020340 - 20 Jan 2025
Cited by 1 | Viewed by 1725
Abstract
Extreme climate events can threaten food production and disrupt supply chains. For instance, the 2023 drought in Catalonia caused large areas of winter cereals to wilt and die early, yielding no grain. This study examined whether Sentinel-2 can detect total crop losses of [...] Read more.
Extreme climate events can threaten food production and disrupt supply chains. For instance, the 2023 drought in Catalonia caused large areas of winter cereals to wilt and die early, yielding no grain. This study examined whether Sentinel-2 can detect total crop losses of winter cereals using ground truth data on crop failure. The methodology explored which Sentinel-2 phenological and greenness variables could best predict three drought impact classes: normal growth, moderate impact, and high impact, where the crop failed to produce grain. The results demonstrate that winter cereals affected by drought exhibit a premature decline in several vegetation indices. As a result, the best predictors for detecting total crop losses were metrics associated with the later stages of crop development. Specifically, the mean Normalized Difference Vegetation Index (NDVI) for the first half of May showed the highest correlation with drought impact classes (R2 = 0.66). This study is the first to detect total crop losses at the plantation level using field data combined with Sentinel-2 imagery. It also offers insights into rapid monitoring methods for crop failure, an event likely to become more frequent as the climate warms. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Crop Monitoring and Food Security)
Show Figures

Graphical abstract

32 pages, 15160 KiB  
Article
Analyzing Temporal Characteristics of Winter Catch Crops Using Sentinel-1 Time Series
by Shanmugapriya Selvaraj, Damian Bargiel, Abdelaziz Htitiou and Heike Gerighausen
Remote Sens. 2024, 16(19), 3737; https://doi.org/10.3390/rs16193737 - 8 Oct 2024
Cited by 1 | Viewed by 1603
Abstract
Catch crops are intermediate crops sown between two main crop cycles. Their adoption into the cropping system has increased considerably in the last years due to its numerous benefits, in particular its potential in carbon fixation and preventing nitrogen leaching during winter. The [...] Read more.
Catch crops are intermediate crops sown between two main crop cycles. Their adoption into the cropping system has increased considerably in the last years due to its numerous benefits, in particular its potential in carbon fixation and preventing nitrogen leaching during winter. The growth period of catch crops in Germany is often marked by dense cloud cover, which limits land surface monitoring through optical remote sensing. In such conditions, synthetic aperture radar (SAR) emerges as a viable option. Despite the known advantages of SAR, the understanding of temporal behavior of radar parameters in relation to catch crops remains largely unexplored. Hence, in this study, we exploited the dense time series of Sentinel-1 data within the Copernicus Space Component to study the temporal characteristics of catch crops over a test site in the center of Germany. Radar parameters such as VV, VH, VH/VV backscatter, dpRVI (dual-pol Radar Vegetation Index) and VV coherence were extracted, and temporal profiles were interpreted for catch crops and preceding main crops along with in situ, temperature, and precipitation data. Additionally, we examined the temporal profiles of winter main crops (winter oilseed rape and winter cereals), that are grown parallel to the catch crop growing cycle. Based on the analyzed temporal patterns, we defined 22 descriptive features from VV, VH, VH/VV and dpRVI, which are specific to catch crop identification. Then, we conducted a Kruskal–Wallis test on the extracted parameters, both crop-wise and group-wise, to assess the significance of statistical differences among different catch crop groups. Our results reveal that there exists a unique temporal pattern for catch crops compared to main crops, and each of these extracted parameters possess a different sensitivity to catch crops. Parameters VV and VH are sensitive to phenological stages and crop structure. On the other hand, VH/VV and dpRVI were found to be highly sensitive to crop biomass. Coherence can be used to detect the sowing and harvest events. The preceding main crop analysis reveals that winter wheat and winter barley are the two dominant main crops grown before catch crops. Moreover, winter main crops (winter oilseed rape, winter cereals) cultivated during the catch crop cycle can be distinguished by exploiting the observed sowing window differences. The extracted descriptive features provide information about sowing, harvest, vigor, biomass, and early/late die-off nature specific to catch crop types. In the Kruskal–Wallis test, the observed high H-statistic and low p-value in several predictors indicates significant variability at 0.001 level. Furthermore, Dunn’s post hoc test among catch crop group pairs highlights the substantial differences between cold-sensitive and legume groups (p < 0.001). Full article
Show Figures

Figure 1

23 pages, 3508 KiB  
Article
Interactive Effect of Cover Crop, Irrigation Regime, and Crop Phenology on Thrips Population Dynamics and Plant Growth Parameters in Upland Cotton
by Raju Sapkota, Megha N. Parajulee and Kenwyn R. Cradock
Agriculture 2024, 14(7), 1128; https://doi.org/10.3390/agriculture14071128 - 12 Jul 2024
Viewed by 1195
Abstract
Cotton (Gossypium hirsutum) requires a long growing period for fruit and fiber maturation, making it vulnerable to insect pests, thus affecting the seed cotton yield and fiber quality. Cotton-feeding thrips (Thysanoptera: Thripidae) are one of the major insects impacting cotton yield [...] Read more.
Cotton (Gossypium hirsutum) requires a long growing period for fruit and fiber maturation, making it vulnerable to insect pests, thus affecting the seed cotton yield and fiber quality. Cotton-feeding thrips (Thysanoptera: Thripidae) are one of the major insects impacting cotton yield throughout the U.S. cotton belt and worldwide. A two-year field research conducted at Texas A&M AgriLife Research farm in west Texas, USA quantified the interactive effect of three cover crops [wheat (Triticum aestivum), rye (Secale cereale), and no cover] and three irrigation regimes [rainfed, deficit irrigation (30%) and full irrigation] on thrips population dynamics across the phenologically susceptible stages of upland cotton and resulting impact on plant growth and yield parameters. Temporal densities of thrips, feeding injury from thrips, cotton growth and reproductive profiles, yield, and fiber quality varied with cover crops and irrigation levels. Thrips densities were conspicuously low due to harsh weather conditions, but the densities decreased with an increase in plant age. Terminated rye and wheat cover versus conventional-tilled, no-cover treatments showed marginal effects on thrips colonization and population dynamics. Similarly, full irrigation treatment supported higher thrips densities compared to rainfed and deficit irrigation treatments. Immature thrips densities increased through the successive sampling periods, indicating increased thrips reproduction following the initial colonization. Thrips feeding injury was significantly greater in no-cover plots in the early seedling stage, but the effect was insignificant across all cover crop treatments in subsequent sampling dates. The results of this study demonstrated increased seedling vigor, plant height, and flower densities in terminated cover crop plots across all irrigation regimes compared to that in no-cover plots. However, the cover crop x irrigation interaction significantly impacted the cotton lint yield, with increased lint yield on cover crop treatments. This study clearly demonstrates the value of cover crops in semi-arid agricultural production systems that are characterized by low rainfall, reduced irrigation capacity, and wind erosion of topsoil. Full article
(This article belongs to the Special Issue Insect–Plant Interaction in Agroecosystems)
Show Figures

Figure 1

35 pages, 522 KiB  
Review
Plant Genetic Resources for Food and Agriculture: The Role and Contribution of CREA (Italy) within the National Program RGV-FAO
by Patrizia Vaccino, Maurizio Antonetti, Carlotta Balconi, Andrea Brandolini, Silvia Cappellozza, Angelo Raffaele Caputo, Andrea Carboni, Marco Caruso, Andrea Copetta, Giovanbattista de Dato, Pasquale De Vita, Giancarlo Fascella, Luca Ferretti, Nadia Ficcadenti, Pietro Fusani, Massimo Gardiman, Daniela Giovannini, Jessica Giovinazzi, Angela Iori, Rita Leogrande, Vincenzo Montalbano, Maria Antonietta Palombi, Luciano Pecetti, Enzo Perri, Milena Petriccione, Tea Sala, Paolo Storchi, Alessandro Tondelli, Pasquale Tripodi, Nino Virzì and Ignazio Verdeadd Show full author list remove Hide full author list
Agronomy 2024, 14(6), 1263; https://doi.org/10.3390/agronomy14061263 - 12 Jun 2024
Cited by 10 | Viewed by 4905
Abstract
Conservation, characterization and exploitation of agrobiodiversity are key factors to guarantee food security and face future challenges such as climate changes. These issues are the subject of a series of international agreements, such as the Convention of Biological Diversity, with its Nagoya Protocol, [...] Read more.
Conservation, characterization and exploitation of agrobiodiversity are key factors to guarantee food security and face future challenges such as climate changes. These issues are the subject of a series of international agreements, such as the Convention of Biological Diversity, with its Nagoya Protocol, and the International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA) adopted in 2001 and entered into force in 2004. Italy ratified the Treaty in 2004 and instituted a long-lasting program, RGV-FAO, to implement it. CREA is one of the three organizations involved in the RGV-FAO Program, together with the National Research Council (CNR) and Reti Semi Rurali. CREA maintains a total of 40,186 accessions including cereals, vegetables, fruits, forages, industrial crops, forest and woody crops, medicinal and aromatic plants, and their wild relatives. Accessions are conserved using different ex situ conservation systems (seeds, in vivo plants, vegetative organs and in vitro plantlets), and characterized using genetic, morpho-phenological and/or biochemical methods. Herein, we will present the CREA long-lasting program RGV-FAO with some examples of the use of plant genetic resources in breeding programs, including molecular approaches. Some critical issues related to access and benefit sharing in PGRFA, such as the Nagoya Protocol and the Digital Sequence Information, will be discussed, highlighting their potential impact on food security and on the advancement of knowledge. Full article
(This article belongs to the Special Issue Novel Studies in Crop Breeding for Promoting Agro-Biodiversity)
22 pages, 4232 KiB  
Article
Recent Cereal Phenological Variations under Mediterranean Conditions
by Pilar Benito-Verdugo, Ángel González-Zamora and José Martínez-Fernández
Remote Sens. 2024, 16(11), 1879; https://doi.org/10.3390/rs16111879 - 24 May 2024
Viewed by 1030
Abstract
This study analyzes the temporal patterns of rainfed cereal phenology extracted from the GIMMS NDVI3g dataset in the main cereal-growing regions under a Mediterranean climate in Spain, Portugal, France and Italy during the period 1982–2022. The series before and after the beginning of [...] Read more.
This study analyzes the temporal patterns of rainfed cereal phenology extracted from the GIMMS NDVI3g dataset in the main cereal-growing regions under a Mediterranean climate in Spain, Portugal, France and Italy during the period 1982–2022. The series before and after the beginning of the 21st century were analyzed separately. Phenological parameters were extracted using the modified dynamic threshold method, and their trends were analyzed. Correlation analyses were performed to study the relationships among these parameters and to analyze the influence of hydroclimatic variables on the start (SOS) and end (EOS) of the growing season. Results showed a temporal reversal in phenological trends between both study periods, coinciding with the global warming hiatus. In the first period (1982–2002), SOS and EOS advanced (−7.5 and −3.1 days, respectively), and the length of growing season (LOS) increased. However, during the second stage (2003–2022), SOS and EOS were delayed (7.5 and 1.7 days, respectively), and LOS decreased. Similar dynamics were observed for the influence of the hydroclimatic variables on SOS and EOS, stronger in the first period and weaker in the second. This study provides valuable information on the phenological dynamics of rainfed cereals that may be useful for their management and planning in climate change scenarios. Full article
(This article belongs to the Special Issue Advanced Sensing and Image Processing in Agricultural Applications)
Show Figures

Figure 1

17 pages, 4349 KiB  
Article
Infrared Thermography Monitoring of Durum and Common Wheat for Adaptability Assessing and Yield Performance Prediction
by Massimo Rippa, Ida Di Mola, Lucia Ottaiano, Eugenio Cozzolino, Pasquale Mormile and Mauro Mori
Plants 2024, 13(6), 836; https://doi.org/10.3390/plants13060836 - 14 Mar 2024
Cited by 3 | Viewed by 1709
Abstract
Wheat is one of the most cultivated cereals thanks to both its nutritional value and its versatility to technological transformation. Nevertheless, the growth and yield of wheat, as well as of the other food crops, can be strongly limited by many abiotic and [...] Read more.
Wheat is one of the most cultivated cereals thanks to both its nutritional value and its versatility to technological transformation. Nevertheless, the growth and yield of wheat, as well as of the other food crops, can be strongly limited by many abiotic and biotic stress factors. To face this need, new methodological approaches are required to optimize wheat cultivation from both a qualitative and quantitative point of view. In this context, crop analysis based on imaging techniques has become an important tool in agriculture. Thermography is an appealing method that represents an outstanding approach in crop monitoring, as it is well suited to the emerging needs of the precision agriculture management strategies. In this work, we performed an on-field infrared monitoring of several durum and common wheat varieties to evaluate their adaptability to the internal Mediterranean area chosen for cultivation. Two new indices based on the thermal data useful to estimate the agronomical response of wheat subjected to natural stress conditions during different phenological stages of growth have been introduced. The comparison with some productive parameters collected at harvest highlighted the correlation of the indices with the wheat yield (ranging between p < 0.001 and p < 0.05), providing interesting information for their early prediction. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

16 pages, 903 KiB  
Article
Remote Sensing Evaluation Drone Herbicide Application Effectiveness for Controlling Echinochloa spp. in Rice Crop in Valencia (Spain)
by Alberto San Bautista, Daniel Tarrazó-Serrano, Antonio Uris, Marta Blesa, Vicente Estruch-Guitart, Sergio Castiñeira-Ibáñez and Constanza Rubio
Sensors 2024, 24(3), 804; https://doi.org/10.3390/s24030804 - 25 Jan 2024
Cited by 3 | Viewed by 2806
Abstract
Rice (Oryza sativa L.) is a staple cereal in the diet of more than half of the world’s population. Within the European Union, Spain is a leader in rice production due to its climate and tradition, accounting for 26% of total EU [...] Read more.
Rice (Oryza sativa L.) is a staple cereal in the diet of more than half of the world’s population. Within the European Union, Spain is a leader in rice production due to its climate and tradition, accounting for 26% of total EU production in 2020. The Valencian rice area covers around 15,000 hectares and is strongly influenced by biotic and abiotic factors. An important biotic factor affecting rice production is weeds, which compete with rice for sunlight, water and nutrients. The dominant weed in Spain is Echinochloa spp., although wild rice is becoming increasingly important. Rice cultivation in Valencia takes place in the area of L’Albufera de Valencia, which is a natural park, i.e., a special protection area. In this natural area, the use of phytosanitary products is limited, so it is necessary to use the minimum amount possible. Therefore, the objective of this work is to evaluate the possibility of using remote sensing effectively to determine the effectiveness of the application of the herbicide cyhalofop-butyl by drone for the control of Echinochloa spp. in rice crops in Valencia. The results will be compared with those obtained by using sterilisation machines (electric backpack sprayers) to apply the herbicide. To evaluate the effectiveness of the application, the reflectance obtained by the satellite sensors in the red and near infrared (NIR) wavelengths, as well as the normalised difference vegetation index (NDVI), were used. The remote sensing results were analysed and complemented by the number of rice plants and weeds per area, plant dry weight, leaf area, BBCH phenological state, SPAD index values, chlorophyll content and relative growth rate. Remote sensing is validated as an effective tool for determining the efficacy of an herbicide in controlling weeds applied by both the drone and the electric backpack sprayer. The weeds slowed down their development after the treatment. Depending on the phenological state of the crop and the active ingredient of the herbicide, these results are applicable to other areas with different climatic and environmental conditions. Full article
Show Figures

Figure 1

23 pages, 2812 KiB  
Article
Interpreting the Interaction of Genotype with Environmental Factors in Barley Using Partial Least Squares Regression Model
by Kamenko Bratković, Kristina Luković, Vladimir Perišić, Jasna Savić, Jelena Maksimović, Slađan Adžić, Aleksandra Rakonjac and Mirela Matković Stojšin
Agronomy 2024, 14(1), 194; https://doi.org/10.3390/agronomy14010194 - 16 Jan 2024
Cited by 4 | Viewed by 2581
Abstract
Genotype by environment interaction (GEI) is a complex problem that complicates the barley selection and breeding process. The knowledge of the relationship between cereal phenology and climatic data is important for understanding GEI and the physiological pathways responsible for the interaction effect. The [...] Read more.
Genotype by environment interaction (GEI) is a complex problem that complicates the barley selection and breeding process. The knowledge of the relationship between cereal phenology and climatic data is important for understanding GEI and the physiological pathways responsible for the interaction effect. The grain yield of twenty winter barley genotypes in six environments was observed. Factors influencing the variability were analyzed using a linear mixed model. The partial least squares regression (PLSR) model was applied to determine the most relevant environmental variables in certain stages of development that explained GEI effects. Biplot with environmental variables explained 43.7% of the GEI. The barley was generally the most sensitive to the environmental conditions (relative humidity, maximum temperature and its variation, sun hours, and precipitation) during the anthesis and filling stage (May) which caused GEI. Temperature variables did not show significance only in the vegetative phase. Different genotypes responded differently to environmental factors. Genotypes NS-525, NS-589, and J-103 were highlighted as widely adaptable, and Zaječar was a suitable and reliable location for yield testing. The GEI information presented in this paper can be useful in traditional plant breeding and future breeding programs through molecular research of crop developmental genes and examination of physiological processes in two-row barley. Full article
(This article belongs to the Special Issue Crop Biology and Breeding under Environmental Stress)
Show Figures

Figure 1

21 pages, 5183 KiB  
Article
Evaluation of Morpho-Physiological and Yield-Associated Traits of Rice (Oryza sativa L.) Landraces Combined with Marker-Assisted Selection under High-Temperature Stress and Elevated Atmospheric CO2 Levels
by Merentoshi Mollier, Rajib Roychowdhury, Lanunola Tzudir, Radheshyam Sharma, Ujjal Barua, Naseema Rahman, Sikandar Pal, Bhabesh Gogoi, Prakash Kalita, Devendra Jain and Ranjan Das
Plants 2023, 12(20), 3655; https://doi.org/10.3390/plants12203655 - 23 Oct 2023
Cited by 5 | Viewed by 2706
Abstract
Rice (Oryza sativa L.) is an important cereal crop worldwide due to its long domestication history. North-Eastern India (NEI) is one of the origins of indica rice and contains various native landraces that can withstand climatic changes. The present study compared NEI [...] Read more.
Rice (Oryza sativa L.) is an important cereal crop worldwide due to its long domestication history. North-Eastern India (NEI) is one of the origins of indica rice and contains various native landraces that can withstand climatic changes. The present study compared NEI rice landraces to a check variety for phenological, morpho-physiological, and yield-associated traits under high temperatures (HTs) and elevated CO2 (eCO2) levels using molecular markers. The first experiment tested 75 rice landraces for HT tolerance. Seven better-performing landraces and the check variety (N22) were evaluated for the above traits in bioreactors for two years (2019 and 2020) under control (T1) and two stress treatments [mild stress or T2 (eCO2 550 ppm + 4 °C more than ambient temperature) and severe stress or T3 (eCO2 750 ppm + 6 °C more than ambient temperature)]. The findings showed that moderate stress (T2) improved plant height (PH), leaf number (LN), leaf area (LA), spikelets panicle−1 (S/P), thousand-grain weight (TGW), harvest index (HI), and grain production. HT and eCO2 in T3 significantly decreased all genotypes’ metrics, including grain yield (GY). Pollen traits are strongly and positively associated with spikelet fertility at maturity and GY under stress conditions. Shoot biomass positively affected yield-associated traits including S/P, TGW, HI, and GY. This study recorded an average reduction of 8.09% GY across two seasons in response to the conditions simulated in T3. Overall, two landraces—Kohima special and Lisem—were found to be more responsive compared to other the landraces as well as N22 under stress conditions, with a higher yield and biomass increment. SCoT-marker-assisted genotyping amplified 77 alleles, 55 of which were polymorphic, with polymorphism information content (PIC) values from 0.22 to 0.67. The study reveals genetic variation among the rice lines and supports Kohima Special and Lisem’s close relationship. These two better-performing rice landraces are useful pre-breeding resources for future rice-breeding programs to increase stress tolerance, especially to HT and high eCO2 levels under changing climatic situations. Full article
(This article belongs to the Special Issue Advances in Genetics and Breeding of Grain Crops)
Show Figures

Figure 1

15 pages, 2170 KiB  
Article
Evaluation of Genotypic Variability and Analysis of Yield and Its Components in Irrigated Rice to Stabilize Yields in the Senegal River Valley Affected by Climate Change
by Yonnelle Dea Moukoumbi, Sandrine Mariella Bayendi Loudit, Mouritala Sikirou, Daouda Mboj, Tajamul Hussain, Roland Bocco and Baboucarr Manneh
Agronomy 2023, 13(9), 2218; https://doi.org/10.3390/agronomy13092218 - 24 Aug 2023
Cited by 6 | Viewed by 2369
Abstract
Rice is an important cereal crop in many countries, but its production in the Senegal River Valley is hampered by adverse climatic conditions. This study was aimed at evaluating the diversity among genotypes and the association between several phenological and yield attributes of [...] Read more.
Rice is an important cereal crop in many countries, but its production in the Senegal River Valley is hampered by adverse climatic conditions. This study was aimed at evaluating the diversity among genotypes and the association between several phenological and yield attributes of irrigated rice to mitigate the consequences of climate change. During the dry season of 2013–2014, 300 irrigated high yielding oryza sativa indica panel were used in an Alpha-lattice experiment at the Ndiaye research station in Senegal. Results revealed considerable differences between genotypes in yield and yield attributes. Grain yields ranged between 1378 and 9776 kg/ha. There were also substantial differences in the genotypic and phenotypic coefficients of variation, broad-sense heritability, genetic advance, and genetic advance as a percentage of the mean between evaluated traits. Days to heading (DH) had a higher broad-sense heritability (67.31%), indicating that the chances of transferring this trait for selection purposes will be higher, and genotypes may be used to generate early or late flowering lines. Significant positive and negative correlations were found between the studied traits and grain yield. Path analysis indicated that the maximum positive direct impact was observed with the harvest index (0.256), and the maximum negative direct effect was observed with the days to heading (−0.142). Results showed that 56 accessions outperformed the local check Giza 178, whose yield was 8987 kg/ha. Using principal component analysis and a dendrogram, genotypes were classified into four groups. The plant materials had significant variability and may be utilized to develop desired features in rice-breeding programs. Full article
Show Figures

Figure 1

10 pages, 444 KiB  
Article
Effects of Nitrogen Fertilization and Plant Density on Proso Millet (Panicum miliaceum L.) Growth and Yield under Mediterranean Pedoclimatic Conditions
by Enrico Palchetti, Michele Moretta, Alessandro Calamai, Marco Mancini, Matteo Dell’Acqua, Lorenzo Brilli, Paolo Armanasco and Alberto Masoni
Agriculture 2023, 13(9), 1657; https://doi.org/10.3390/agriculture13091657 - 22 Aug 2023
Cited by 1 | Viewed by 2210
Abstract
In recent years, the dry-land cereal proso millet has become an interesting crop for cultivation in the Mediterranean environment due to the consequences of climate change. It can be considered a resilient crop because it is particularly successful in extreme drought and high-temperature [...] Read more.
In recent years, the dry-land cereal proso millet has become an interesting crop for cultivation in the Mediterranean environment due to the consequences of climate change. It can be considered a resilient crop because it is particularly successful in extreme drought and high-temperature conditions. The goals of this research study were to compare different plant densities (D) and nitrogen fertilization rates (N) in millet (Panicum miliaceum), evaluating morphological, productive, and phenological traits. A 2-year field experiment was carried out in Italy, and millet (var. Sunrise) was subjected to four nitrogen fertilization rates (0, 50, 100, and 150 kg N ha−1) in interaction with three plant densities (55, 111, and 222 plants m2). Significant differences were found in all the investigated plant traits. The highest grain yield data (i.e., 3.211 kg ha−1 and 3.263 kg ha−1) and total biomass (i.e., 11.464 kg ha−1 and 11.760 kg ha−1) were obtained with the N rate of 150 kg ha−1 and density of 222 plants m2. Regarding protein content, the highest values were observed using N50, N100, and N150 (ranging from 10.03% to 10.14%) and with D55 (10.43%). Phenological parameters were affected by both plant density and nitrogen amount and decreased when higher levels of these two factors were employed. Full article
(This article belongs to the Special Issue Agronomic Management of Crops in Arid and Semi-arid Environments)
Show Figures

Figure 1

Back to TopTop