Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = centrifugal spinning technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 12067 KiB  
Article
Preparation and Performance of PAN/PS/PMMA Ternary Blend-Modified Fiber Membranes via Centrifugal Spinning for Lithium-Ion Batteries
by Shunqi Mei, Feng Luo, Yi Xie, Bin Xu and Quan Zheng
Nanomaterials 2025, 15(11), 789; https://doi.org/10.3390/nano15110789 - 24 May 2025
Cited by 1 | Viewed by 542
Abstract
Addressing the issues of poor thermal resistance in conventional polyolefin separators and the low production efficiency of electrospinning, this study innovatively employed high-efficiency centrifugal spinning technology to fabricate a ternary blended modified fiber membrane composed of polyacrylonitrile (PAN), polystyrene (PS), and polymethyl methacrylate [...] Read more.
Addressing the issues of poor thermal resistance in conventional polyolefin separators and the low production efficiency of electrospinning, this study innovatively employed high-efficiency centrifugal spinning technology to fabricate a ternary blended modified fiber membrane composed of polyacrylonitrile (PAN), polystyrene (PS), and polymethyl methacrylate (PMMA). By precisely adjusting the polymer ratio (8:2:2) and fine-tuning the spinning process parameters, a separator with a three-dimensional network structure was successfully produced. The research results indicate that the separator exhibited excellent overall performance, with a porosity of 75.87%, an electrolyte absorption rate of up to 346%, and a thermal shrinkage of less than 3% after 1 h at 150 °C, along with a tensile strength reaching 23.48 MPa. A lithium-ion battery assembled with this separator delivered an initial discharge capacity of 159 mAh/g at a 0.2 C rate and maintained a capacity retention of 98.11% after 25 cycles. Moreover, under current rates of 0.5, 1.0, and 2.0 C, the battery assembled with the ASM-14 configuration achieved high discharge capacities of 148, 136, and 116 mAh/g, respectively. This study offers a novel design strategy for modifying multi-component polymer battery separators. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

30 pages, 6991 KiB  
Article
Evaluation of Polymeric Micro/Nanofibrous Hybrid Scaffolds Prepared via Centrifugal Nozzleless Spinning for Tissue Engineering Applications
by Miloš Beran, Jana Musílková, Antonín Sedlář, Petr Slepička, Martin Veselý, Zdeňka Kolská, Ondřej Vltavský, Martin Molitor and Lucie Bačáková
Polymers 2025, 17(3), 386; https://doi.org/10.3390/polym17030386 - 31 Jan 2025
Cited by 1 | Viewed by 1194
Abstract
We compared the applicability of 3D fibrous scaffolds, produced by our patented centrifugal spinning technology, in soft tissue engineering. The scaffolds were prepared from four different biocompatible and biodegradable thermoplastics, namely, polylactide (PLA), polycaprolactone (PCL), poly(3-hydroxybutyrate) (PHB), and poly(1,4-butylene succinate) (PBS) and their [...] Read more.
We compared the applicability of 3D fibrous scaffolds, produced by our patented centrifugal spinning technology, in soft tissue engineering. The scaffolds were prepared from four different biocompatible and biodegradable thermoplastics, namely, polylactide (PLA), polycaprolactone (PCL), poly(3-hydroxybutyrate) (PHB), and poly(1,4-butylene succinate) (PBS) and their blends. The combined results of SEM and BET analyses revealed an internal hierarchically organized porosity of the polymeric micro/nanofibers. Both nanoporosity and capillary effect are crucial for the water retention capacity of scaffolds designed for tissue engineering. The increased surface area provided by nanoporosity enhances water retention, while the capillary effect facilitates the movement of water and nutrients within the scaffolds. When the scaffolds were seeded with adipose-derived stem cells (ASCs), the ingrowth of these cells was the deepest in the PLA/PCL 13.5/4 (w/w) composite scaffolds. This result is consistent with the relatively large pore size in the fibrous networks, the high internal porosity, and the large specific surface area found in these scaffolds, which may therefore be best suited as a component of adipose tissue substitutes that could reduce postoperative tissue atrophy. Adipose tissue constructs produced in this way could be used in the future instead of conventional fat grafts, for example, in breast reconstruction following cancer ablation. Full article
(This article belongs to the Special Issue Advances in Synthesis and Application of Biomedical Polymer Materials)
Show Figures

Figure 1

33 pages, 7096 KiB  
Review
Processing and Properties of Polyhydroxyalkanoate/ZnO Nanocomposites: A Review of Their Potential as Sustainable Packaging Materials
by Mieke Buntinx, Chris Vanheusden and Dries Hermans
Polymers 2024, 16(21), 3061; https://doi.org/10.3390/polym16213061 - 30 Oct 2024
Cited by 3 | Viewed by 2627
Abstract
The escalating environmental concerns associated with conventional plastic packaging have accelerated the development of sustainable alternatives, making food packaging a focus area for innovation. Bioplastics, particularly polyhydroxyalkanoates (PHAs), have emerged as potential candidates due to their biobased origin, biodegradability, and biocompatibility. PHAs stand [...] Read more.
The escalating environmental concerns associated with conventional plastic packaging have accelerated the development of sustainable alternatives, making food packaging a focus area for innovation. Bioplastics, particularly polyhydroxyalkanoates (PHAs), have emerged as potential candidates due to their biobased origin, biodegradability, and biocompatibility. PHAs stand out for their good mechanical and medium gas permeability properties, making them promising materials for food packaging applications. In parallel, zinc oxide (ZnO) nanoparticles (NPs) have gained attention for their antimicrobial properties and ability to enhance the mechanical and barrier properties of (bio)polymers. This review aims to provide a comprehensive introduction to the research on PHA/ZnO nanocomposites. It starts with the importance and current challenges of food packaging, followed by a discussion on the opportunities of bioplastics and PHAs. Next, the synthesis, properties, and application areas of ZnO NPs are discussed to introduce their potential use in (bio)plastic food packaging. Early research on PHA/ZnO nanocomposites has focused on solvent-assisted production methods, whereas novel technologies can offer additional possibilities with regard to industrial upscaling, safer or cheaper processing, or more specific incorporation of ZnO NPs in the matrix or on the surface of PHA films or fibers. Here, the use of solvent casting, melt processing, electrospinning, centrifugal fiber spinning, miniemulsion encapsulation, and ultrasonic spray coating to produce PHA/ZnO nanocomposites is explained. Finally, an overview is given of the reported effects of ZnO NP incorporation on thermal, mechanical, gas barrier, UV barrier, and antimicrobial properties in ZnO nanocomposites based on poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). We conclude that the functionality of PHA materials can be improved by optimizing the ZnO incorporation process and the complex interplay between intrinsic ZnO NP properties, dispersion quality, matrix–filler interactions, and crystallinity. Further research regarding the antimicrobial efficiency and potential migration of ZnO NPs in food (simulants) and the End-of-Life will determine the market potential of PHA/ZnO nanocomposites as active packaging material. Full article
(This article belongs to the Special Issue Processing, Characterization and Modeling of Polymer Nanocomposites)
Show Figures

Figure 1

46 pages, 8589 KiB  
Review
Advances in Light-Responsive Smart Multifunctional Nanofibers: Implications for Targeted Drug Delivery and Cancer Therapy
by Ahmed M. Agiba, Nihal Elsayyad, Hala N. ElShagea, Mahmoud A. Metwalli, Amin Orash Mahmoudsalehi, Saeed Beigi-Boroujeni, Omar Lozano, Alan Aguirre-Soto, Jose Luis Arreola-Ramirez, Patricia Segura-Medina and Raghda Rabe Hamed
Pharmaceutics 2024, 16(8), 1017; https://doi.org/10.3390/pharmaceutics16081017 - 31 Jul 2024
Cited by 12 | Viewed by 4313
Abstract
Over the last decade, scientists have shifted their focus to the development of smart carriers for the delivery of chemotherapeutics in order to overcome the problems associated with traditional chemotherapy, such as poor aqueous solubility and bioavailability, low selectivity and targeting specificity, off-target [...] Read more.
Over the last decade, scientists have shifted their focus to the development of smart carriers for the delivery of chemotherapeutics in order to overcome the problems associated with traditional chemotherapy, such as poor aqueous solubility and bioavailability, low selectivity and targeting specificity, off-target drug side effects, and damage to surrounding healthy tissues. Nanofiber-based drug delivery systems have recently emerged as a promising drug delivery system in cancer therapy owing to their unique structural and functional properties, including tunable interconnected porosity, a high surface-to-volume ratio associated with high entrapment efficiency and drug loading capacity, and high mass transport properties, which allow for controlled and targeted drug delivery. In addition, they are biocompatible, biodegradable, and capable of surface functionalization, allowing for target-specific delivery and drug release. One of the most common fiber production methods is electrospinning, even though the relatively two-dimensional (2D) tightly packed fiber structures and low production rates have limited its performance. Forcespinning is an alternative spinning technology that generates high-throughput, continuous polymeric nanofibers with 3D structures. Unlike electrospinning, forcespinning generates fibers by centrifugal forces rather than electrostatic forces, resulting in significantly higher fiber production. The functionalization of nanocarriers on nanofibers can result in smart nanofibers with anticancer capabilities that can be activated by external stimuli, such as light. This review addresses current trends and potential applications of light-responsive and dual-stimuli-responsive electro- and forcespun smart nanofibers in cancer therapy, with a particular emphasis on functionalizing nanofiber surfaces and developing nano-in-nanofiber emerging delivery systems for dual-controlled drug release and high-precision tumor targeting. In addition, the progress and prospective diagnostic and therapeutic applications of light-responsive and dual-stimuli-responsive smart nanofibers are discussed in the context of combination cancer therapy. Full article
Show Figures

Figure 1

19 pages, 5152 KiB  
Article
Computational Fluid Dynamics Numerical Simulation on Flow Behavior of Molten Slag–Metal Mixture over a Spinning Cup
by Jun Wang, Yuhua Pan, Ming Zhao, Ping Ma, Shali Lv and Yawei Huang
Processes 2024, 12(2), 372; https://doi.org/10.3390/pr12020372 - 12 Feb 2024
Cited by 2 | Viewed by 1759
Abstract
Centrifugal granulation technology using a spinning cup opens a potential way to recycle steel slag that is currently difficult to reuse. The objective of this research was to study the flow characteristics of a molten slag–metal mixture that was produced during smelting reduction [...] Read more.
Centrifugal granulation technology using a spinning cup opens a potential way to recycle steel slag that is currently difficult to reuse. The objective of this research was to study the flow characteristics of a molten slag–metal mixture that was produced during smelting reduction in molten steel slag, passing over a spinning cup, so as to explore the feasibility of using centrifugal granulation technology to treat the steel slag. This was achieved by developing and implementing a computational fluid dynamics (CFD) model that incorporated free-surface multiphase flow to predict the thickness of the liquid slag film at the edge of the spinning cup (slag film thickness for short), which was an important parameter for estimating the size of the slag particles resulting from centrifugal granulation of the molten slag–metal mixture. The influences of various relevant parameters, including spinning cup diameter, slag feeding rate, cup spinning speed, etc., on the slag film thickness were analyzed. Additionally, hot experiments on centrifugal granulation of a molten slag–metal mixture were conducted to verify the results of the numerical simulations. The experimental results indicated a progressive reduction in the Sauter mean diameter of the slag particles as the metallic iron content in the slag increased. Specifically, when the iron content rose from 5% to 15% at a cup spinning speed of 2500 RPM, the Sauter mean diameter decreased by 13.77%. The numerical simulation results showed that the slag film thickness had a positive relationship to the slag feeding rate but a negative relationship to the spinning cup diameter and the cup spinning speed. Furthermore, the ratio between the mean slag particle diameter and the slag film thickness decreased nearly linearly with the increase in the metallic iron content in slag, with the average ratio being approximately 4.25, and this relationship was useful for estimating the slag particle size from the slag film thickness. Therefore, the present research results can provide theoretical guidance for the industrial application of spinning cup centrifugal granulation technology to effectively treat and recycle steel slags. Full article
Show Figures

Figure 1

16 pages, 6692 KiB  
Article
Optimization Mechanism of Nozzle Parameters and Characterization of Nanofibers in Centrifugal Spinning
by Qinghua Guo, Peiyan Ye, Zhiming Zhang and Qiao Xu
Nanomaterials 2023, 13(23), 3057; https://doi.org/10.3390/nano13233057 - 30 Nov 2023
Cited by 3 | Viewed by 1501
Abstract
Nanofibers are an emerging kind of nano-material, widely used in several application domains such as biomedicine, high-efficiency filtration media, precision electronics, and optical devices. Centrifugal spinning, which is a novel nanofiber production technology, has been widely studied. This paper proposes a structural parameter [...] Read more.
Nanofibers are an emerging kind of nano-material, widely used in several application domains such as biomedicine, high-efficiency filtration media, precision electronics, and optical devices. Centrifugal spinning, which is a novel nanofiber production technology, has been widely studied. This paper proposes a structural parameter optimization design method of a bent-tube nozzle. The mathematical model of the spinning solution motion in the nozzle is first developed. The optimization function of the structure parameters of the bent-tube nozzle is then obtained by calculation. Afterwards, these parameters are optimized using a neural network algorithm. The obtained results show that, when the bending angle is 15°, the curvature radius is 10 mm, the outlet radius is 0.205 mm, and the head loss of the solution can be minimized. Finally, centrifugal spinning experiments are conducted and the influence of the centrifugal spinning parameters on the nanofibers is analyzed. In addition, the optimized bent-tube nozzle improves the surface morphology of the nanofibers as their diameter distribution becomes more uniform. Full article
Show Figures

Figure 1

12 pages, 7440 KiB  
Article
Study on the Adsorption Deformation of a Substrate via Spin Coating Based on the 3D-DIC Method and Its Effect on the Homogeneity of Perovskite Films
by Chunhua Ren, Zhishun Zhou, Shuming Cao, Mengting Jiao and Dongyang Xue
Materials 2023, 16(15), 5454; https://doi.org/10.3390/ma16155454 - 3 Aug 2023
Cited by 1 | Viewed by 1534
Abstract
The physical and chemical stability of perovskite films has always been a key issue for their industrialization, which has been extensively studied in terms of materials, environment, and encapsulation. Spin coating is one of the most commonly used methods for the preparation of [...] Read more.
The physical and chemical stability of perovskite films has always been a key issue for their industrialization, which has been extensively studied in terms of materials, environment, and encapsulation. Spin coating is one of the most commonly used methods for the preparation of perovskite films in research. However, little attention has been paid to the deformation state of the substrate when it is fixed by means of adsorption and its impact. In this work, the three-dimensional digital image correlation (3D-DIC) method and hyperspectral technology are used to acquire and analyze the adsorption deformation characteristics of the substrate during spin coating, as well as the resulting inhomogeneity. Plastic and four different thicknesses of float glass (0.2, 0.5, 0.7, 1.1 mm) were selected as substrates, and they were tested separately on two suction cups with different structures. The results show that the plastic and 0.2 mm specimens exhibit obvious strain localization behavior. The distribution and magnitude of the strain are affected by the size of the sucker structure, especially the width of the groove. For glass specimens, this effect shows a nonlinear decrease with increasing substrate thickness. Compared to the strain value, the irregularity of local deformation has a greater impact on the non-uniform distribution of materials. Finally, inhomogeneities in the perovskite films were observed through optical lens and hyperspectral data. Obviously, the deformation of the substrate caused by adsorption should attract the attention of researchers, especially for flexible or rigid substrates with low thickness. This may affect the centrifugal diffusion path of the precursor, causing microstructure inhomogeneity and residual stress, etc. Full article
Show Figures

Figure 1

25 pages, 5271 KiB  
Review
Alumina Ceramic Nanofibers: An Overview of the Spinning Gel Preparation, Manufacturing Process, and Application
by Meng Xia, Shuyu Ji, Yijun Fu, Jiamu Dai, Junxiong Zhang, Xiaomin Ma and Rong Liu
Gels 2023, 9(8), 599; https://doi.org/10.3390/gels9080599 - 25 Jul 2023
Cited by 6 | Viewed by 4544
Abstract
As an important inorganic material, alumina ceramic nanofibers have attracted more and more attention because of their excellent thermal stability, high melting point, low thermal conductivity, and good chemical stability. In this paper, the preparation conditions for alumina spinning gel, such as the [...] Read more.
As an important inorganic material, alumina ceramic nanofibers have attracted more and more attention because of their excellent thermal stability, high melting point, low thermal conductivity, and good chemical stability. In this paper, the preparation conditions for alumina spinning gel, such as the experimental raw materials, spin finish aid, aging time, and so on, are briefly introduced. Then, various methods for preparing the alumina ceramic nanofibers are described, such as electrospinning, solution blow spinning, centrifugal spinning, and some other preparation processes. In addition, the application of alumina ceramic nanofibers in thermal insulation, high-temperature filtration, catalysis, energy storage, water restoration, sound absorption, bioengineering, and other fields are described. The wide application prospect of alumina ceramic nanofibers highlights its potential as an advanced functional material with various applications. This paper aims to provide readers with valuable insights into the design of alumina ceramic nanofibers and to explore their potential applications, contributing to the advancement of various technologies in the fields of energy, environment, and materials science. Full article
(This article belongs to the Special Issue Gels as High-Performance Thermal Insulation Materials)
Show Figures

Graphical abstract

14 pages, 4834 KiB  
Article
Rapid Reverse Purification DNA Extraction Approaches to Identify Microbial Pathogens in Wastewater
by Sarah Schurig, Rea Kobialka, Andy Wende, Md Anik Ashfaq Khan, Phillip Lübcke, Elias Eger, Katharina Schaufler, Arwid Daugschies, Uwe Truyen and Ahmed Abd El Wahed
Microorganisms 2023, 11(3), 813; https://doi.org/10.3390/microorganisms11030813 - 22 Mar 2023
Cited by 5 | Viewed by 6186
Abstract
Wastewater monitoring became a promising solution in the early detection of outbreaks. Despite the achievements in the identification of pathogens in wastewater using real-time PCR, there is still a lack of reliable rapid nucleic acid extraction protocols. Therefore, in this study, samples were [...] Read more.
Wastewater monitoring became a promising solution in the early detection of outbreaks. Despite the achievements in the identification of pathogens in wastewater using real-time PCR, there is still a lack of reliable rapid nucleic acid extraction protocols. Therefore, in this study, samples were subjected to alkali, proteinase K and/or bead-beating followed by reverse purification magnetic beads-based separation. Wastewater samples spiked with S. aureus, E. coli and C. parvum were used as examples for Gram-positive and -negative bacteria and protozoa, respectively. All results were compared with a spin column technology as a reference method. Proteinase K with bead beating (vortexing with 0.1 mm glass beads for three minutes) was particularly successful for bacterial DNA extraction (three- to five-fold increase). The most useful extraction protocol for protozoa was pre-treatment with proteinase K (eight-fold increase). The selected methods were sensitive as far as detecting one bacterial cell per reaction for S. aureus, ten bacterial cells for E. coli and two oocysts for C. parvum. The extraction reagents are cold chain independent and no centrifuge or other large laboratory equipment is required to perform DNA extraction. A controlled validation trial is needed to test the effectiveness at field levels. Full article
(This article belongs to the Special Issue Microbial Ecosystems in Water and Wastewater Treatment)
Show Figures

Figure 1

12 pages, 6576 KiB  
Article
Optimization of the Spinneret Rotation Speed and Airflow Parameters for the Nozzleless Forcespinning of a Polymer Solution
by Josef Skrivanek, Pavel Holec, Ondrej Batka, Martin Bilek and Pavel Pokorny
Polymers 2022, 14(5), 1042; https://doi.org/10.3390/polym14051042 - 5 Mar 2022
Cited by 11 | Viewed by 3455
Abstract
This paper addresses the changing of the process parameters of nozzleless centrifugal spinning (forcespinning). The primary aim of this study was to determine the dependence of the final product on the dosing of the polymer, the rotation speed of the spinneret and the [...] Read more.
This paper addresses the changing of the process parameters of nozzleless centrifugal spinning (forcespinning). The primary aim of this study was to determine the dependence of the final product on the dosing of the polymer, the rotation speed of the spinneret and the airflow in order to determine the extent of the technological applicability of aqueous polyvinyl alcohol (PVA) and its modifications. PVA was chosen because it is a widely used polymeric solution with environmentally friendly properties and good biodegradability. It is used in the health care and food packaging sectors. The nanofibrous layers were produced by means of a mobile handheld spinning device of our own construction. This mobile application of the spinning machine has several limitations compared to stationary laboratory equipment, mainly due to dimensional limitations. The uniqueness of our device lies in the possibility of its actual use outside the laboratory. In addition to improved mobility, another exciting feature is the combination of nozzleless forcespinning and fiber application using airflow. Dosing, the rotation speed of the spinnerets and the targeted and controlled use of air comprise the fundamental technological parameters for many devices that operate on a centrifugal force system. The rotation rate of the spinnerets primarily affects the production of fibers and their quality, while the airflow acts as a fiber transport and drying medium. The quality of the fibers was evaluated following the preparation of a testing set for the fiber layers. The most suitable combinations of rotation speed and airflow were then used in subsequent experiments to determine the ideal settings for the device. The solution was then modified by reducing the concentration to 16% and adding a surfactant, thus leading to a reduction in the diameters of the resulting fibers. The nanofiber layers so produced were examined using a scanning electron microscope (SEM) in order to analyze the number of defects and to statistically evaluate the fiber diameters. Full article
(This article belongs to the Special Issue Advances in Polymeric Electrospinning)
Show Figures

Figure 1

26 pages, 2335 KiB  
Review
Circulatory Management of Polymer Waste: Recycling into Fine Fibers and Their Applications
by Alena Opálková Šišková, Petra Peer, Anita Eckstein Andicsová, Igor Jordanov and Piotr Rychter
Materials 2021, 14(16), 4694; https://doi.org/10.3390/ma14164694 - 20 Aug 2021
Cited by 27 | Viewed by 5447
Abstract
In modern society, it is impossible to imagine life without polymeric materials. However, managing the waste composed of these materials is one of the most significant environmental issues confronting us in the present day. Recycling polymeric waste is the most important action currently [...] Read more.
In modern society, it is impossible to imagine life without polymeric materials. However, managing the waste composed of these materials is one of the most significant environmental issues confronting us in the present day. Recycling polymeric waste is the most important action currently available to reduce environmental impacts worldwide and is one of the most dynamic areas in industry today. Utilizing this waste could not only benefit the environment but also promote sustainable development and circular economy management. In its program statement, the European Union has committed to support the use of sorted polymeric waste. This study reviews recent attempts to recycle this waste and convert it by alternative technologies into fine, nano-, and microscale fibers using electrospinning, blowing, melt, or centrifugal spinning. This review provides information regarding applying reprocessed fine fibers in various areas and a concrete approach to mitigate the threat of pollution caused by polymeric materials. Full article
(This article belongs to the Special Issue Advances in the Circularity of Polymeric and Composite Materials)
Show Figures

Figure 1

15 pages, 2218 KiB  
Article
Siphon-Controlled Automation on a Lab-on-a-Disc Using Event-Triggered Dissolvable Film Valves
by Brian D. Henderson, David J. Kinahan, Jeanne Rio, Rohit Mishra, Damien King, Sarai M. Torres-Delgado, Dario Mager, Jan G. Korvink and Jens Ducrée
Biosensors 2021, 11(3), 73; https://doi.org/10.3390/bios11030073 - 6 Mar 2021
Cited by 14 | Viewed by 4814
Abstract
Within microfluidic technologies, the centrifugal microfluidic “Lab-on-a-Disc” (LoaD) platform offers great potential for use at the PoC and in low-resource settings due to its robustness and the ability to port and miniaturize ‘wet bench’ laboratory protocols. We present the combination of ‘event-triggered dissolvable [...] Read more.
Within microfluidic technologies, the centrifugal microfluidic “Lab-on-a-Disc” (LoaD) platform offers great potential for use at the PoC and in low-resource settings due to its robustness and the ability to port and miniaturize ‘wet bench’ laboratory protocols. We present the combination of ‘event-triggered dissolvable film valves’ with a centrifugo-pneumatic siphon structure to enable control and timing, through changes in disc spin-speed, of the release and incubations of eight samples/reagents/wash buffers. Based on these microfluidic techniques, we integrated and automated a chemiluminescent immunoassay for detection of the CVD risk factor marker C-reactive protein displaying a limit of detection (LOD) of 44.87 ng mL−1 and limit of quantitation (LoQ) of 135.87 ng mL−1. Full article
(This article belongs to the Special Issue Biosensors for Rapid Diagnostics)
Show Figures

Figure 1

14 pages, 19473 KiB  
Article
Influence of Polymer Concentration and Nozzle Material on Centrifugal Fiber Spinning
by Jorgo Merchiers, Willem Meurs, Wim Deferme, Roos Peeters, Mieke Buntinx and Naveen K. Reddy
Polymers 2020, 12(3), 575; https://doi.org/10.3390/polym12030575 - 5 Mar 2020
Cited by 44 | Viewed by 5786
Abstract
Centrifugal fiber spinning has recently emerged as a highly promising alternative technique for the production of nonwoven, ultrafine fiber mats. Due to its high production rate, it could provide a more technologically relevant fiber spinning technique than electrospinning. In this contribution, we examine [...] Read more.
Centrifugal fiber spinning has recently emerged as a highly promising alternative technique for the production of nonwoven, ultrafine fiber mats. Due to its high production rate, it could provide a more technologically relevant fiber spinning technique than electrospinning. In this contribution, we examine the influence of polymer concentration and nozzle material on the centrifugal spinning process and the fiber morphology. We find that increasing the polymer concentration transforms the process from a beaded-fiber regime to a continuous-fiber regime. Furthermore, we find that not only fiber diameter is strongly concentration-dependent, but also the nozzle material plays a significant role, especially in the continuous-fiber regime. This was evaluated by the use of a polytetrafluoroethylene (PTFE) and an aluminum nozzle. We discuss the influence of polymer concentration on fiber morphology and show that the choice of nozzle material has a significant influence on the fiber diameter. Full article
(This article belongs to the Special Issue Colloid and Interface)
Show Figures

Graphical abstract

13 pages, 3834 KiB  
Article
High Efficiency Fabrication of Chitosan Composite Nanofibers with Uniform Morphology via Centrifugal Spinning
by Zhen Li, Shunqi Mei, Yajie Dong, Fenghua She and Lingxue Kong
Polymers 2019, 11(10), 1550; https://doi.org/10.3390/polym11101550 - 24 Sep 2019
Cited by 61 | Viewed by 5805
Abstract
While electrospinning has been widely employed to spin nanofibers, its low production rate has limited its potential for industrial applications. Comparing with electrospinning, centrifugal spinning technology is a prospective method to fabricate nanofibers with high productivity. In the current study, key parameters of [...] Read more.
While electrospinning has been widely employed to spin nanofibers, its low production rate has limited its potential for industrial applications. Comparing with electrospinning, centrifugal spinning technology is a prospective method to fabricate nanofibers with high productivity. In the current study, key parameters of the centrifugal spinning system, including concentration, rotational speed, nozzle diameter and nozzle length, were studied to control fiber diameter. An empirical model was established to determine the final diameters of nanofibers via controlling various parameters of the centrifugal spinning process. The empirical model was validated via fabrication of carboxylated chitosan (CCS) and polyethylene oxide (PEO) composite nanofibers. DSC and TGA illustrated that the thermal properties of CCS/PEO nanofibers were stable, while FTIR-ATR indicated that the chemical structures of CCS and PEO were unchanged during composite fabrication. The empirical model could provide an insight into the fabrication of nanofibers with desired uniform diameters as potential biomedical materials. This study demonstrated that centrifugal spinning could be an alternative method for the fabrication of uniform nanofibers with high yield. Full article
Show Figures

Graphical abstract

14 pages, 4596 KiB  
Article
A Rotational Gyroscope with a Water-Film Bearing Based on Magnetic Self-Restoring Effect
by Dianzhong Chen, Xiaowei Liu, Haifeng Zhang, Hai Li, Rui Weng, Ling Li, Wanting Rong and Zhongzhao Zhang
Sensors 2018, 18(2), 415; https://doi.org/10.3390/s18020415 - 31 Jan 2018
Cited by 6 | Viewed by 5151
Abstract
Stable rotor levitation is a challenge for rotational gyroscopes (magnetically suspended gyroscopes (MSG) and electrostatically suspended gyroscopes (ESG)) with a ring- or disk-shaped rotor, which restricts further improvement of gyroscope performance. In addition, complicated pick-up circuits and feedback control electronics propose high requirement [...] Read more.
Stable rotor levitation is a challenge for rotational gyroscopes (magnetically suspended gyroscopes (MSG) and electrostatically suspended gyroscopes (ESG)) with a ring- or disk-shaped rotor, which restricts further improvement of gyroscope performance. In addition, complicated pick-up circuits and feedback control electronics propose high requirement on fabrication technology. In the proposed gyroscope, a ball-disk shaped rotor is supported by a water-film bearing, formed by centrifugal force to deionized water at the cavity of the lower supporting pillar. Water-film bearing provides stable mechanical support, without the need for complicated electronics and control system for rotor suspension. To decrease sliding friction between the rotor ball and the water-film bearing, a supherhydrophobic surface (SHS) with nano-structures is fabricated on the rotor ball, resulting in a rated spinning speed increase of 12.4% (under the same driving current). Rotor is actuated by the driving scheme of brushless direct current motor (BLDCM). Interaction between the magnetized rotor and the magnetic-conducted stator produces a sinusoidal rotor restoring torque, amplitude of which is proportional to the rotor deflection angle inherently. Utilization of this magnetic restoring effect avoids adding of a high amplitude voltage for electrostatic feedback, which may cause air breakdown. Two differential capacitance pairs are utilized to measure input angular speeds at perpendicular directions of the rotor plane. The bias stability of the fabricated gyroscope is as low as 0.5°/h. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop