Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (898)

Search Parameters:
Keywords = central nervous system inflammation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 286 KiB  
Review
Drug Repurposing and Artificial Intelligence in Multiple Sclerosis: Emerging Strategies for Precision Therapy
by Pedro Henrique Villar-Delfino, Paulo Pereira Christo and Caroline Maria Oliveira Volpe
Sclerosis 2025, 3(3), 28; https://doi.org/10.3390/sclerosis3030028 (registering DOI) - 6 Aug 2025
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated disorder of the central nervous system (CNS) characterized by inflammation, demyelination, axonal degeneration, and gliosis. Its pathophysiology involves a complex interplay of genetic susceptibility, environmental triggers, and immune dysregulation, ultimately leading to progressive neurodegeneration and functional [...] Read more.
Multiple sclerosis (MS) is a chronic, immune-mediated disorder of the central nervous system (CNS) characterized by inflammation, demyelination, axonal degeneration, and gliosis. Its pathophysiology involves a complex interplay of genetic susceptibility, environmental triggers, and immune dysregulation, ultimately leading to progressive neurodegeneration and functional decline. Although significant advances have been made in disease-modifying therapies (DMTs), many patients continue to experience disease progression and unmet therapeutic needs. Drug repurposing—the identification of new indications for existing drugs—has emerged as a promising strategy in MS research, offering a cost-effective and time-efficient alternative to traditional drug development. Several compounds originally developed for other diseases, including immunomodulatory, anti-inflammatory, and neuroprotective agents, are currently under investigation for their efficacy in MS. Repurposed agents, such as selective sphingosine-1-phosphate (S1P) receptor modulators, kinase inhibitors, and metabolic regulators, have demonstrated potential in promoting neuroprotection, modulating immune responses, and supporting remyelination in both preclinical and clinical settings. Simultaneously, artificial intelligence (AI) is transforming drug discovery and precision medicine in MS. Machine learning and deep learning models are being employed to analyze high-dimensional biomedical data, predict drug–target interactions, streamline drug repurposing workflows, and enhance therapeutic candidate selection. By integrating multiomics and neuroimaging data, AI tools facilitate the identification of novel targets and support patient stratification for individualized treatment. This review highlights recent advances in drug repurposing and discovery for MS, with a particular emphasis on the emerging role of AI in accelerating therapeutic innovation and optimizing treatment strategies. Full article
Show Figures

Graphical abstract

21 pages, 546 KiB  
Review
The Inflammatory Bridge Between Type 2 Diabetes and Neurodegeneration: A Molecular Perspective
by Housem Kacem, Michele d’Angelo, Elvira Qosja, Skender Topi, Vanessa Castelli and Annamaria Cimini
Int. J. Mol. Sci. 2025, 26(15), 7566; https://doi.org/10.3390/ijms26157566 - 5 Aug 2025
Abstract
Chronic low-grade inflammation is a hallmark of both metabolic and neurodegenerative diseases. In recent years, several studies have highlighted the pivotal role of systemic metabolic dysfunction, particularly insulin resistance, in shaping neuroinflammatory processes and contributing to impaired cognitive performance. Among metabolic disorders, type [...] Read more.
Chronic low-grade inflammation is a hallmark of both metabolic and neurodegenerative diseases. In recent years, several studies have highlighted the pivotal role of systemic metabolic dysfunction, particularly insulin resistance, in shaping neuroinflammatory processes and contributing to impaired cognitive performance. Among metabolic disorders, type 2 diabetes mellitus has emerged as a major risk factor for the development of age-related neurodegenerative conditions, suggesting a complex and bidirectional crosstalk between peripheral metabolic imbalance and central nervous system function. This review aims to explore the cellular and molecular mechanisms underlying the interaction between metabolic dysregulation and brain inflammation. By integrating current findings from endocrinology, immunology, and neuroscience, this work provides a comprehensive overview of how chronic metabolic inflammation may contribute to the onset and progression of neurodegenerative conditions. This interdisciplinary approach could offer novel insights into potential therapeutic strategies targeting both metabolic and neuroinflammatory pathways. Full article
(This article belongs to the Collection Latest Review Papers in Endocrinology and Metabolism)
Show Figures

Figure 1

16 pages, 1247 KiB  
Review
When Bone Forms Where It Shouldn’t: Heterotopic Ossification in Muscle Injury and Disease
by Anthony Facchin, Sophie Lemaire, Li Gang Toner, Anteneh Argaw and Jérôme Frenette
Int. J. Mol. Sci. 2025, 26(15), 7516; https://doi.org/10.3390/ijms26157516 - 4 Aug 2025
Viewed by 30
Abstract
Heterotopic ossification (HO) refers to the pathological formation of bone in soft tissues, typically following trauma, surgical procedures, or as a result of genetic disorders. Notably, injuries to the central nervous system significantly increase the risk of HO, a condition referred to as [...] Read more.
Heterotopic ossification (HO) refers to the pathological formation of bone in soft tissues, typically following trauma, surgical procedures, or as a result of genetic disorders. Notably, injuries to the central nervous system significantly increase the risk of HO, a condition referred to as neurogenic HO (NHO). This review outlines the cellular and molecular mechanisms driving HO, focusing on the inflammatory response, progenitor cell reprogramming, and current treatment strategies. HO is primarily fuelled by a prolonged and dysregulated inflammatory response, characterized by sustained expression of osteoinductive cytokines secreted by M1 macrophages. These cytokines promote the aberrant differentiation of fibro-adipogenic progenitor cells (FAPs) into osteoblasts, leading to ectopic mineralization. Additional factors such as hypoxia, BMP signalling, and mechanotransduction pathways further contribute to extracellular matrix (ECM) remodelling and osteogenic reprogramming of FAPs. In the context of NHO, neuroendocrine mediators enhance ectopic bone formation by influencing both local inflammation and progenitor cell fate decisions. Current treatment options such as nonsteroidal anti-inflammatory drugs (NSAIDs), radiation therapy, and surgical excision offer limited efficacy and are associated with significant risks. Novel therapeutic strategies targeting inflammation, neuropeptide signalling, and calcium metabolism may offer more effective approaches to preventing or mitigating HO progression. Full article
Show Figures

Graphical abstract

9 pages, 477 KiB  
Opinion
Underlying Piezo2 Channelopathy-Induced Neural Switch of COVID-19 Infection
by Balázs Sonkodi
Cells 2025, 14(15), 1182; https://doi.org/10.3390/cells14151182 - 31 Jul 2025
Viewed by 174
Abstract
The focal “hot spot” neuropathologies in COVID-19 infection are revealing footprints of a hidden underlying collapse of a novel ultrafast ultradian Piezo2 signaling system within the nervous system. Paradoxically, the same initiating pathophysiology may underpin the systemic findings in COVID-19 infection, namely the [...] Read more.
The focal “hot spot” neuropathologies in COVID-19 infection are revealing footprints of a hidden underlying collapse of a novel ultrafast ultradian Piezo2 signaling system within the nervous system. Paradoxically, the same initiating pathophysiology may underpin the systemic findings in COVID-19 infection, namely the multiorgan SARS-CoV-2 infection-induced vascular pathologies and brain–body-wide systemic pro-inflammatory signaling, depending on the concentration and exposure to infecting SARS-CoV-2 viruses. This common initiating microdamage is suggested to be the primary damage or the acquired channelopathy of the Piezo2 ion channel, leading to a principal gateway to pathophysiology. This Piezo2 channelopathy-induced neural switch could not only explain the initiation of disrupted cell–cell interactions, metabolic failure, microglial dysfunction, mitochondrial injury, glutamatergic synapse loss, inflammation and neurological states with the central involvement of the hippocampus and the medulla, but also the initiating pathophysiology without SARS-CoV-2 viral intracellular entry into neurons as well. Therefore, the impairment of the proposed Piezo2-induced quantum mechanical free-energy-stimulated ultrafast proton-coupled tunneling seems to be the principal and critical underlying COVID-19 infection-induced primary damage along the brain axes, depending on the loci of SARS-CoV-2 viral infection and intracellular entry. Moreover, this initiating Piezo2 channelopathy may also explain resultant autonomic dysregulation involving the medulla, hippocampus and heart rate regulation, not to mention sleep disturbance with altered rapid eye movement sleep and cognitive deficit in the short term, and even as a consequence of long COVID. The current opinion piece aims to promote future angles of science and research in order to further elucidate the not entirely known initiating pathophysiology of SARS-CoV-2 infection. Full article
(This article belongs to the Special Issue Insights into the Pathophysiology of NeuroCOVID: Current Topics)
Show Figures

Figure 1

24 pages, 6108 KiB  
Review
Angiogenic Cell Precursors and Neural Cell Precursors in Service to the Brain–Computer Interface
by Fraser C. Henderson and Kelly Tuchman
Cells 2025, 14(15), 1163; https://doi.org/10.3390/cells14151163 - 29 Jul 2025
Viewed by 495
Abstract
The application of artificial intelligence through the brain–computer interface (BCI) is proving to be one of the great advances in neuroscience today. The development of surface electrodes over the cortex and very fine electrodes that can be stereotactically implanted in the brain have [...] Read more.
The application of artificial intelligence through the brain–computer interface (BCI) is proving to be one of the great advances in neuroscience today. The development of surface electrodes over the cortex and very fine electrodes that can be stereotactically implanted in the brain have moved the science forward to the extent that paralyzed people can play chess and blind people can read letters. However, the introduction of foreign bodies into deeper parts of the central nervous system results in foreign body reaction, scarring, apoptosis, and decreased signaling. Implanted electrodes activate microglia, causing the release of inflammatory factors, the recruitment of systemic inflammatory cells to the site of injury, and ultimately glial scarring and the encapsulation of the electrode. Recordings historically fail between 6 months and 1 year; the longest BCI in use has been 7 years. This article proposes a biomolecular strategy provided by angiogenic cell precursors (ACPs) and nerve cell precursors (NCPs), administered intrathecally. This combination of cells is anticipated to sustain and promote learning across the BCI. Together, through the downstream activation of neurotrophic factors, they may exert a salutary immunomodulatory suppression of inflammation, anti-apoptosis, homeostasis, angiogenesis, differentiation, synaptogenesis, neuritogenesis, and learning-associated plasticity. Full article
Show Figures

Graphical abstract

16 pages, 694 KiB  
Review
Modulating Benign Prostatic Hyperplasia Through Physical Activity—The Emerging Role of Myokines: A Narrative Review
by Saad Alshahrani
Medicina 2025, 61(8), 1362; https://doi.org/10.3390/medicina61081362 - 28 Jul 2025
Viewed by 324
Abstract
Benign prostatic hyperplasia (BPH) is a multifactorial condition that is highly prevalent and affects aging males. It frequently results in lower urinary tract symptoms (LUTS) and a reduced quality of life. While hormonal dysregulation and chronic inflammation have long been implicated in BPH [...] Read more.
Benign prostatic hyperplasia (BPH) is a multifactorial condition that is highly prevalent and affects aging males. It frequently results in lower urinary tract symptoms (LUTS) and a reduced quality of life. While hormonal dysregulation and chronic inflammation have long been implicated in BPH pathogenesis, recent evidence highlights the role of physical activity in modulating prostate health. In this narrative review, evidence from quantitative studies examining the effect of exercise on BPH risk and symptom severity was first synthesized. Collectively, these studies suggest that regular physical activity is associated with a lower incidence and reduced progression of BPH. The potential mechanisms through which exercise may exert protective effects on the prostate were then explored. These include modulation of sympathetic nervous system activity, alterations in hormonal profiles (e.g., testosterone and insulin), suppression of chronic inflammation and oxidative stress, and the promotion of autophagy within prostatic tissue. Central to these mechanisms is the role of myokines—signaling molecules secreted by skeletal muscle during exercise. Key myokines, such as irisin, interleukin-6 (IL-6), brain-derived neurotrophic factor (BDNF), and myostatin, are reviewed in the context of prostate health. These molecules regulate inflammatory pathways, metabolic processes, and tissue remodeling. For instance, exercise-induced reductions in myostatin are linked to improved insulin sensitivity and decreased fat accumulation, while elevated irisin and BDNF levels may exert anti-inflammatory and metabolic benefits relevant to BPH pathophysiology. Although direct causal evidence linking myokines to BPH is still emerging, their biological plausibility and observed systemic effects suggest a promising avenue for non-pharmacological intervention. Future research should focus on identifying the specific myokines involved, elucidating their molecular mechanisms within the prostate, and evaluating their therapeutic potential in clinical trials. Full article
(This article belongs to the Section Urology & Nephrology)
Show Figures

Figure 1

17 pages, 21259 KiB  
Article
Plumbagin Improves Cognitive Function via Attenuating Hippocampal Inflammation in Valproic Acid-Induced Autism Model
by Nasrin Nosratiyan, Maryam Ghasemi-Kasman, Mohsen Pourghasem, Farideh Feizi and Farzin Sadeghi
Brain Sci. 2025, 15(8), 798; https://doi.org/10.3390/brainsci15080798 - 27 Jul 2025
Viewed by 365
Abstract
Background/Objectives: The hippocampus is an essential part of the central nervous system (CNS); it plays a significant role in social–cognitive memory processing. Prenatal exposure to valproic acid (VPA) can lead to impaired hippocampal functions. In this study, we evaluated the effect of plumbagin [...] Read more.
Background/Objectives: The hippocampus is an essential part of the central nervous system (CNS); it plays a significant role in social–cognitive memory processing. Prenatal exposure to valproic acid (VPA) can lead to impaired hippocampal functions. In this study, we evaluated the effect of plumbagin (PLB) as a natural product on spatial learning and memory, neuro-morphological changes, and inflammation levels in a VPA-induced autism model during adolescence. Methods: Pregnant Wistar rats received a single intraperitoneal (i.p.) injection of VPA (600 mg/kg) or saline on gestational day 12.5. The male offspring were then categorized and assigned to five groups: Saline+DMSO-, VPA+DMSO-, and VPA+PLB-treated groups at doses of 0.25, 0.5, or 1 mg/kg. Spatial learning and memory were evaluated using the Morris water maze. Histopathological evaluations of the hippocampus were performed using Nissl and hematoxylin–eosin staining, as well as immunofluorescence. The pro-inflammatory cytokine levels were also quantified by quantitative real-time PCR. Results: The findings revealed that a VPA injection on gestational day 12.5 is associated with cognitive impairments in male pups, including a longer escape latency and traveled distance, as well as decreased time spent in the target quadrant. Treatment with PLB significantly enhanced the cognitive function, reduced dark cells, and ameliorated neuronal–morphological alterations in the hippocampus of VPA-exposed rats. Moreover, PLB was found to reduce astrocyte activation and the expression levels of pro-inflammatory cytokines. Conclusions: These findings suggest that PLB partly mitigates VPA-induced cognitive deficits by ameliorating hippocampal inflammation levels. Full article
(This article belongs to the Section Behavioral Neuroscience)
Show Figures

Figure 1

39 pages, 1806 KiB  
Review
Microglia-Mediated Neuroinflammation Through Phosphatidylinositol 3-Kinase Signaling Causes Cognitive Dysfunction
by Mohammad Nazmul Hasan Maziz, Srikumar Chakravarthi, Thidar Aung, Phone Myint Htoo, Wana Hla Shwe, Sergey Gupalo, Manglesh Waran Udayah, Hardev Singh, Mohammed Shahjahan Kabir, Rajesh Thangarajan and Maheedhar Kodali
Int. J. Mol. Sci. 2025, 26(15), 7212; https://doi.org/10.3390/ijms26157212 - 25 Jul 2025
Viewed by 413
Abstract
Microglia, as the immune guardians of the central nervous system (CNS), have the ability to maintain neural homeostasis, respond to environmental changes, and remodel the synaptic landscape. However, persistent microglial activation can lead to chronic neuroinflammation, which can alter neuronal signaling pathways, resulting [...] Read more.
Microglia, as the immune guardians of the central nervous system (CNS), have the ability to maintain neural homeostasis, respond to environmental changes, and remodel the synaptic landscape. However, persistent microglial activation can lead to chronic neuroinflammation, which can alter neuronal signaling pathways, resulting in accelerated cognitive decline. Phosphoinositol 3-kinase (PI3K) has emerged as a critical driver, connecting inflammation to neurodegeneration, serving as the nexus of numerous intracellular processes that govern microglial activation. This review focuses on the relationship between PI3K signaling and microglial activation, which might lead to cognitive impairment, inflammation, or even neurodegeneration. The review delves into the components of the PI3K signaling cascade, isoforms, and receptors of PI3K, as well as the downstream effects of PI3K signaling, including its effectors such as protein kinase B (Akt) and mammalian target of rapamycin (mTOR) and the negative regulator phosphatase and tensin homolog (PTEN). Experiments have shown that the overproduction of certain cytokines, coupled with abnormal oxidative stress, is a consequence of poor PI3K regulation, resulting in excessive synapse pruning and, consequently, impacting learning and memory functions. The review also highlights the implications of autonomously activated microglia exhibiting M1/M2 polarization driven by PI3K on hippocampal, cortical, and subcortical circuits. Conclusions from behavioral studies, electrophysiology, and neuroimaging linking cognitive performance and PI3K activity were evaluated, along with new approaches to therapy using selective inhibitors or gene editing. The review concludes by highlighting important knowledge gaps, including the specific effects of different isoforms, the risks associated with long-term pathway modulation, and the limitations of translational potential, underscoring the crucial role of PI3K in mitigating cognitive impairment driven by neuroinflammation. Full article
(This article belongs to the Special Issue Therapeutics and Pathophysiology of Cognitive Dysfunction)
Show Figures

Figure 1

13 pages, 8639 KiB  
Article
In-Depth Characterization of L1CAM+ Extracellular Vesicles as Potential Biomarkers for Anti-CD20 Therapy Response in Relapsing–Remitting Multiple Sclerosis
by Shamundeeswari Anandan, Karina Maciak, Regina Breinbauer, Laura Otero-Ortega, Giancarlo Feliciello, Nataša Stojanović Gužvić, Oivind Torkildsen and Kjell-Morten Myhr
Int. J. Mol. Sci. 2025, 26(15), 7213; https://doi.org/10.3390/ijms26157213 - 25 Jul 2025
Viewed by 760
Abstract
The effective suppression of inflammation using disease-modifying therapies is essential in the treatment of multiple sclerosis (MS). Anti-CD20 monoclonal antibodies are commonly used long-term as maintenance therapies, largely due to the lack of reliable biomarkers to guide dosing and evaluate treatment response. However, [...] Read more.
The effective suppression of inflammation using disease-modifying therapies is essential in the treatment of multiple sclerosis (MS). Anti-CD20 monoclonal antibodies are commonly used long-term as maintenance therapies, largely due to the lack of reliable biomarkers to guide dosing and evaluate treatment response. However, prolonged use increases the risk of infections and other immune-mediated side effects. The unique ability of brain-derived blood extracellular vesicles (EVs) to cross the blood–brain barrier and reflect the central nervous system (CNS) immune status has sparked interest in their potential as biomarkers. This study aimed to assess whether blood-derived L1CAM+ EVs could serve as biomarkers of treatment response to rituximab (RTX) in patients with relapsing-remitting MS (RRMS). Serum samples (n = 25) from the baseline (month 0) and after 6 months were analyzed from the RTX arm of the ongoing randomized clinical trial OVERLORD-MS (comparing anti-CD20 therapies in RRMS patients) and were compared with serum samples from healthy controls (n = 15). Baseline cerebrospinal fluid (CSF) samples from the same study cohort were also included. EVs from both serum and CSF samples were characterized, considering morphology, size, and concentration, using transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). The immunophenotyping of EV surface receptors was performed using flow cytometry with the MACSPlex exosome kit, while label-free quantitative proteomics of EV protein cargo was conducted using a proximity extension assay (PEA). TEM confirmed the presence of EVs with the expected round morphology with a diameter of 50–150 nm. NTA showed significantly higher concentrations of L1CAM+ EVs (p < 0.0001) in serum total EVs and EBNA1+ EVs (p < 0.01) in serum L1CAM+ EVs at baseline (untreated) compared to in healthy controls. After six months of RTX therapy, there was a significant reduction in L1CAM+ EV concentration (p < 0.0001) and the downregulation of TNFRSF13B (p = 0.0004; FC = −0.49) in serum total EVs. Additionally, non-significant changes were observed in CD79B and CCL2 levels in serum L1CAM+ EVs at baseline compared to in controls and after six months of RTX therapy. In conclusion, L1CAM+ EVs in serum showed distinct immunological profiles before and after rituximab treatment, underscoring their potential as dynamic biomarkers for individualized anti-CD20 therapy in MS. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

28 pages, 3099 KiB  
Review
TREM2 in Neurodegenerative Disorders: Mutation Spectrum, Pathophysiology, and Therapeutic Targeting
by Hyewon Yang, Danyeong Kim, YoungSoon Yang, Eva Bagyinszky and Seong Soo A. An
Int. J. Mol. Sci. 2025, 26(15), 7057; https://doi.org/10.3390/ijms26157057 - 22 Jul 2025
Viewed by 316
Abstract
TREM2 (triggering receptor expressed on myeloid cells 2) is a membrane-bound receptor primarily expressed on microglia in the central nervous system (CNS). TREM2 plays a crucial role in regulating immune responses, phagocytosis, lipid metabolism, and inflammation. Mutations in the TREM2 gene have been [...] Read more.
TREM2 (triggering receptor expressed on myeloid cells 2) is a membrane-bound receptor primarily expressed on microglia in the central nervous system (CNS). TREM2 plays a crucial role in regulating immune responses, phagocytosis, lipid metabolism, and inflammation. Mutations in the TREM2 gene have been linked to various neurodegenerative diseases, including Alzheimer’s disease (AD), frontotemporal dementia (FTD), Parkinson’s disease (PD), and Nasu–Hakola disease (NHD). These mutations are suggested to impair microglial activation and reduce the ability to clear amyloid aggregates, leading to exacerbated neuroinflammatory responses and accelerating disease progression. This review provides an overview of TREM2 structure, functions, and known pathogenic variants—including Arg47His, Arg62His, His157Tyr, Tyr38Cys, and Thr66Met. Furthermore, the molecular and cellular consequences of TREM2 mutations are introduced, such as impaired ligand binding, altered protein folding and trafficking, enhanced TREM2 shedding, and dysregulated inflammatory signaling. We also highlight recent advances in therapeutic strategies aimed at modulating TREM2 signaling. These include monoclonal antibodies (e.g., AL002, CGX101), small molecule agonists, and gene/cell-based therapies that seek to restore microglial homeostasis, enhance phagocytosis, and reduce neuroinflammation. While these approaches show promise in in vivo/in vitro studies, their clinical translation may be challenged by disease heterogeneity and mutation-specific responses. Additionally, determining the appropriate timing and precise dosing will be essential. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

29 pages, 1763 KiB  
Review
Inorganic Polyphosphate: An Emerging Regulator of Neuronal Bioenergetics and Its Implications in Neuroprotection
by Marcela Montilla, Norma Pavas-Escobar, Iveth Melissa Guatibonza-Arévalo, Alejandro Múnera, Renshen Eduardo Rivera-Melo and Felix A. Ruiz
Biomolecules 2025, 15(8), 1060; https://doi.org/10.3390/biom15081060 - 22 Jul 2025
Viewed by 417
Abstract
Inorganic polyphosphate (polyP) is an evolutionarily conserved polymer that has recently gained relevance in neuronal physiology and pathophysiology. Although its roles, such as mitochondrial bioenergetics, calcium homeostasis, and the oxidative stress response, for example, are increasingly recognized, its specific implications in neurological disorders [...] Read more.
Inorganic polyphosphate (polyP) is an evolutionarily conserved polymer that has recently gained relevance in neuronal physiology and pathophysiology. Although its roles, such as mitochondrial bioenergetics, calcium homeostasis, and the oxidative stress response, for example, are increasingly recognized, its specific implications in neurological disorders remain underexplored. This review focuses on synthesizing the current knowledge of polyP in the context of central nervous system (CNS) diseases, highlighting how its involvement in key mitochondrial processes may influence neuronal survival and function. In particular, we examine recent evidence linking polyP to mechanisms relevant to neurodegeneration, such as the modulation of the mitochondrial permeability transition pore (mPTP), regulation of amyloid fibril formation, and oxidative stress responses. In addition, we analyze the emerging roles of polyP in inflammation and related cell signaling in CNS disorders. By organizing the existing data around the potential pathological and protective roles of polyP in the CNS, this review identifies it as a candidate of interest in the context of neurodegenerative disease mechanisms. We aim to clarify its relevance and stimulate future research on its molecular mechanisms and translational potential. Full article
(This article belongs to the Special Issue Polyphosphate (PolyP) in Health and Disease)
Show Figures

Figure 1

21 pages, 407 KiB  
Review
Modeling Virus-Associated Central Nervous System Disease in Non-Human Primates
by Krystal J. Vail, Brittany N. Macha, Linh Hellmers and Tracy Fischer
Int. J. Mol. Sci. 2025, 26(14), 6886; https://doi.org/10.3390/ijms26146886 - 17 Jul 2025
Viewed by 484
Abstract
While viral pathogens are often subdivided into neurotropic and non-neurotropic categories, systemic inflammation caused by non-neurotropic viruses still possesses the ability to alter the central nervous system (CNS). Studies of CNS disease induced by viral infection, whether neurotropic or not, are presented with [...] Read more.
While viral pathogens are often subdivided into neurotropic and non-neurotropic categories, systemic inflammation caused by non-neurotropic viruses still possesses the ability to alter the central nervous system (CNS). Studies of CNS disease induced by viral infection, whether neurotropic or not, are presented with a unique set of challenges. First, because brain biopsies are rarely necessary to diagnose viral-associated neurological disorders, antemortem tissue samples are not readily available for study and human pathological studies must rely on end-stage, postmortem evaluations. Second, in vitro models fail to fully capture the nuances of an intact immune system, necessitating the use of animal models to fully characterize pathogenesis and identify potential therapeutic approaches. Non-human primates (NHP) represent a particularly attractive animal model in that they overcome many of the limits posed by more distant species and most closely mirror human disease pathogenesis and susceptibility. Here, we review NHP infection models of viruses known to infect and/or replicate within cells of the CNS, including West Nile virus, the equine encephalitis viruses, Zika virus, and herpesviruses, as well as those known to alter the immune status of the brain in the absence of significant CNS penetrance, including human immunodeficiency virus (HIV) in the current era of combination antiretroviral therapy (cART) and the coronavirus of severe acute respiratory syndrome (SARS)-CoV−2. This review focuses on viruses with an established role in causing CNS disease, including encephalitis, meningitis, and myelitis and NHP models of viral infection that are directly translatable to the human condition through relevant routes of infection, comparable disease pathogenesis, and responses to therapeutic intervention. Full article
(This article belongs to the Special Issue Animal Research Model for Neurological Diseases, 2nd Edition)
25 pages, 2198 KiB  
Review
Oxidative Stress in HIV-Associated Neurodegeneration: Mechanisms of Pathogenesis and Therapeutic Targets
by Sophia Gagliardi, Tristan Hotchkin, Grace Hillmer, Maeve Engelbride, Alexander Diggs, Hasset Tibebe, Coco Izumi, Cailyn Sullivan, Cecelia Cropp, Olive Lantz, Dacia Marquez, Jason Chang, Jiro Ezaki, Alexander George Zestos, Anthony L. Riley and Taisuke Izumi
Int. J. Mol. Sci. 2025, 26(14), 6724; https://doi.org/10.3390/ijms26146724 - 13 Jul 2025
Viewed by 1675
Abstract
Treatment for HIV infection has become more manageable due to advances in combination antiretroviral therapy (cART). However, HIV still significantly affects the central nervous system (CNS) in infected individuals, even with effective plasma viral suppression, due to persistent viral reservoirs and chronic neuroinflammation. [...] Read more.
Treatment for HIV infection has become more manageable due to advances in combination antiretroviral therapy (cART). However, HIV still significantly affects the central nervous system (CNS) in infected individuals, even with effective plasma viral suppression, due to persistent viral reservoirs and chronic neuroinflammation. This ongoing inflammation contributes to the development of HIV-associated neurocognitive disorders (HANDs), including dementia and Alzheimer’s disease-like pathology. These complications are particularly prevalent among the aging population with HIV. This review aims to provide a comprehensive overview of HAND, with a focus on the contribution of oxidative stress induced by HIV-mediated reactive oxygen species (ROS) production through viral proteins such as gp120, Tat, Nef, Vpr, and reverse transcriptase. In addition, we discuss current and emerging therapeutic interventions targeting HAND, including antioxidant strategies and poly (ADP-ribose) polymerase (PARP) inhibitors. These are potential adjunctive approaches to mitigate neuroinflammation and oxidative damage in the CNS. Full article
Show Figures

Figure 1

14 pages, 237 KiB  
Article
Cognitive Impairment in Rheumatoid Arthritis: The Role of Pain, Inflammation, and Multimorbidity in Neuropsychological Outcomes
by Agnieszka Pigłowska-Juhnke, Maia Stanisławska-Kubiak, Piotr Kalmus, Marzena Waszczak-Jeka, Włodzimierz Samborski and Ewa Mojs
Biomedicines 2025, 13(7), 1699; https://doi.org/10.3390/biomedicines13071699 - 11 Jul 2025
Viewed by 317
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that may affect the central nervous system, leading to cognitive impairment associated with chronic inflammation and pain. Objective: To assess the relationship between cognitive function, disease progression, pain intensity, and clinical parameters in patients [...] Read more.
Rheumatoid arthritis (RA) is a chronic autoimmune disease that may affect the central nervous system, leading to cognitive impairment associated with chronic inflammation and pain. Objective: To assess the relationship between cognitive function, disease progression, pain intensity, and clinical parameters in patients with RA. Materials and Methods: This study included 62 RA patients, including individuals with comorbid conditions. Cognitive performance was assessed using the Automated Neuropsychological Assessment Metrics (ANAM) battery. Associations between cognitive function and pain intensity (VAS), inflammatory markers (ESR), number of disease flares, and surgical interventions were analyzed. Results: Patients with isolated RA demonstrated better performance in visuospatial memory and cognitive flexibility compared to those with comorbidities. Increased pain intensity and the number of disease flares were associated with impaired attention, memory, and psychomotor speed. Conclusions: Chronic pain and high disease activity in RA negatively impact cognitive functions. Routine neuropsychological assessment should be considered in the comprehensive clinical management of RA patients. Full article
(This article belongs to the Special Issue Pathogenesis, Diagnostics, and Therapeutics for Rheumatic Diseases)
30 pages, 925 KiB  
Review
Review: Enhancing the Bioavailability and Stability of Anthocyanins for the Prevention and Treatment of Central Nervous System-Related Diseases
by Lan Zhang, Yan Wang, Yalong Cao, Fangxu Wang and Fang Li
Foods 2025, 14(14), 2420; https://doi.org/10.3390/foods14142420 - 9 Jul 2025
Viewed by 710
Abstract
Central nervous system diseases are highly complex in terms of etiology and pathogenesis, making their treatment and interventions for them a major focus and challenge in neuroscience research. Anthocyanins, natural water-soluble pigments widely present in plants, belong to the class of flavonoid compounds. [...] Read more.
Central nervous system diseases are highly complex in terms of etiology and pathogenesis, making their treatment and interventions for them a major focus and challenge in neuroscience research. Anthocyanins, natural water-soluble pigments widely present in plants, belong to the class of flavonoid compounds. As natural antioxidants, anthocyanins have attracted extensive attention due to their significant functions in scavenging free radicals, antioxidation, anti-inflammation, and anti-apoptosis. The application of anthocyanins in the field of central nervous system injury, particularly in neurodegenerative diseases, neurotoxicity induced by chemical drugs, stress-related nerve damage, and cerebrovascular diseases, has achieved remarkable research outcomes. However, anthocyanins often exhibit low chemical stability, a short half-life, and relatively low bioavailability, which limit their clinical application. Recent studies have found that the stability and bioavailability of anthocyanins can be significantly improved through nanoencapsulation, acylation, and copigmentation, as well as the preparation of nanogels, nanoemulsions, and liposomes. These advancements offer the potential for the development of anthocyanins as a new type of neuroprotective agent. Future research will focus on the innovative design of nano-delivery systems and structural modification based on artificial intelligence. Such research is expected to break through the bottleneck of anthocyanin application and enable it to become a core component of next-generation intelligent neuroprotective agents. Full article
Show Figures

Figure 1

Back to TopTop