Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (625)

Search Parameters:
Keywords = central Chile

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 12216 KiB  
Article
Green/Blue Initiatives as a Proposed Intermediate Step to Achieve Nature-Based Solutions for Wildfire Risk Management
by Stella Schroeder and Carolina Ojeda Leal
Fire 2025, 8(8), 307; https://doi.org/10.3390/fire8080307 - 5 Aug 2025
Abstract
Implementing nature-based solutions (NbSs) for wildfire risk management and other hazards has been challenging in emerging economies due to the high costs, the lack of immediate returns on investment, and stringent inclusion criteria set by organizations like the IUCN and domain experts. To [...] Read more.
Implementing nature-based solutions (NbSs) for wildfire risk management and other hazards has been challenging in emerging economies due to the high costs, the lack of immediate returns on investment, and stringent inclusion criteria set by organizations like the IUCN and domain experts. To address these challenges, this exploratory study proposes a new concept: green/blue initiatives. These initiatives represent intermediate steps, encompassing small-scale, community-driven activities that can evolve into recognized NbSs over time. To explore this concept, experiences related to wildfire prevention in the Biobío region of Chile were analyzed through primary and secondary source reviews. The analysis identified three initiatives qualifying as green/blue initiatives: (1) goat grazing in Santa Juana to reduce fuel loads, (2) a restoration prevention farm model in Florida called Faro de Restauración Mahuidanche and (3) the Conservation Landscape Strategy in Nonguén. They were examined in detail using data collected from site visits and interviews. In contrast to Chile’s prevailing wildfire policies, which focus on costly, large-scale fire suppression efforts, these initiatives emphasize the importance of reframing wildfire as a manageable ecological process. Lastly, the challenges and enabling factors for adopting green/blue initiatives are discussed, highlighting their potential to pave the way for future NbS implementation in central Chile. Full article
(This article belongs to the Special Issue Nature-Based Solutions to Extreme Wildfires)
Show Figures

Figure 1

32 pages, 1447 KiB  
Article
Haplotypes of Echinococcus granulosus sensu stricto in Chile and Their Comparison Through Sequences of the Mitochondrial cox1 Gene with Haplotypes from South America and Other Continents
by Nicole Urriola-Urriola, Gabriela Rossi-Vargas and Yenny Nilo-Bustios
Parasitologia 2025, 5(3), 40; https://doi.org/10.3390/parasitologia5030040 - 1 Aug 2025
Viewed by 158
Abstract
Cystic echinococcosis is a zoonosis caused by the cestode Echinococcus granulosus sensu stricto. Population genetic studies and phylogeographic patterns are essential to understanding the transmission dynamics of this parasite under varying environmental conditions. In this study, the genetic diversity of E. granulosus [...] Read more.
Cystic echinococcosis is a zoonosis caused by the cestode Echinococcus granulosus sensu stricto. Population genetic studies and phylogeographic patterns are essential to understanding the transmission dynamics of this parasite under varying environmental conditions. In this study, the genetic diversity of E. granulosus s.s. was evaluated using 46 hydatid cyst samples obtained from sheep, goats, cattle, and humans across three regions of Chile: Coquimbo, La Araucanía, and Magallanes. Mitochondrial cox1 gene sequences were analyzed and compared with reference sequences reported from South America, Europe, Africa, Asia, and Oceania. In Chile, the EG01 haplotype was the predominant haplotype. A total of four haplotypes were identified, with low haplotype diversity (Hd = 0.461 ± 0.00637) and low nucleotide diversity (π = 0.00181 ± 0.00036). The haplotype network displayed a star-like configuration, with the EG01 genotype at the center, suggesting a potentially ancestral or widely distributed lineage. In Coquimbo (Tajima’s D = −0.93302, p = 0.061; Fu’s Fs = −0.003, p = 0.502) and Magallanes (Tajima’s D = −0.17406, p = 0.386; Fu’s Fs = −0.121, p = 0.414), both neutrality tests were non-significant, indicating no strong evidence for recent population expansion or selection. Star-like haplotype network patterns were also observed in populations from Europe, the Middle East, Asia, Africa, and Oceania, with the EG01 genotype occupying the central position. The population genetic structure of Echinococcus granulosus s.s. in Chile demonstrates considerable complexity, with EG01 as the predominant haplotype. Further comprehensive studies are required to assess the intraspecific genetic variability of E. granulosus s.s. throughout Chile and to determine whether this variability influences the key biological traits of the parasite. This structure may prove even more complex when longer fragments are analyzed, which could allow for the detection of finer-scale microdiversity among isolates from different hosts. We recommended that future cystic echinococcosis control programs take into account the genetic variability of E. granulosus s.s. strains circulating in each endemic region, to better understand their epidemiological, immunological, and possibly pathological differences. Full article
Show Figures

Figure 1

19 pages, 440 KiB  
Article
Contextual Study of Technostress in Higher Education: Psychometric Evidence for the TS4US Scale from Lima, Peru
by Guillermo Araya-Ugarte, Miguel Armesto-Céspedes, Nicolás Contreras-Barraza, Alejandro Vega-Muñoz, Guido Salazar-Sepúlveda and Nelson Lay
Sustainability 2025, 17(15), 6974; https://doi.org/10.3390/su17156974 - 31 Jul 2025
Viewed by 260
Abstract
Sustainable education requires addressing the challenges posed by digital transformation, including technostress among university students. This study evaluates technostress levels in higher education through the validation of the TS4US scale and its implications for sustainable learning environments. A cross-sectional study was conducted with [...] Read more.
Sustainable education requires addressing the challenges posed by digital transformation, including technostress among university students. This study evaluates technostress levels in higher education through the validation of the TS4US scale and its implications for sustainable learning environments. A cross-sectional study was conducted with 328 university students from four districts in Lima, Peru, using an online survey to measure technostress. Confirmatory factor analysis (CFA) was performed to assess the psychometric properties of the TS4US scale, resulting in a refined model with two latent factors and thirteen validated items. Findings indicate that 28% of students experience high technostress levels, while 5% report very high levels, though no significant associations were found between technostress and sociodemographic variables such as campus location, employment status, gender, and academic level. The TS4US instrument had been previously validated in Chile; this study confirms its structure in a new sociocultural context, reinforcing its cross-cultural applicability. These results highlight the need for sustainable strategies to mitigate technostress in higher education, including institutional support, digital literacy programs, and policies fostering a balanced technological environment. Addressing technostress is essential for promoting sustainable education (SDG4) and enhancing student well-being (SDG3). This study directly contributes to the achievement of Sustainable Development Goals 3 (Good Health and Well-being) and 4 (Quality Education) by providing validated tools and evidence-based recommendations to promote mental health and equitable access to digital education in Latin America. Future research should explore cross-country comparisons and targeted interventions, including digital well-being initiatives and adaptive learning strategies, to ensure a resilient and sustainable academic ecosystem. Full article
(This article belongs to the Section Sustainable Education and Approaches)
Show Figures

Figure 1

22 pages, 2795 KiB  
Article
Environmental Stressors Modulating Seasonal and Daily Carbon Dioxide Assimilation and Productivity in Lessonia spicata
by Macarena Troncoso, Zoë L. Fleming, Félix L. Figueroa, Nathalie Korbee, Ronald Durán, Camilo Navarrete, Cecilia Rivera and Paula S. M. Celis-Plá
Plants 2025, 14(15), 2341; https://doi.org/10.3390/plants14152341 - 29 Jul 2025
Viewed by 293
Abstract
Carbon dioxide (CO2) emissions due to human activities are responsible for approximately 80% of the drivers of global warming, resulting in a 1.1 °C increase above pre-industrial temperatures. This study quantified the CO2 assimilation and productivity of the brown macroalgae [...] Read more.
Carbon dioxide (CO2) emissions due to human activities are responsible for approximately 80% of the drivers of global warming, resulting in a 1.1 °C increase above pre-industrial temperatures. This study quantified the CO2 assimilation and productivity of the brown macroalgae Lessonia spicata in the central Pacific coast of Chile, across seasonal and daily cycles, under different environmental stressors, such as temperature and solar irradiance. Measurements were performed using an infra-red gas analysis (IRGA) instrument which had a chamber allowing for precise quantification of CO2 concentrations; additional photophysiological and biochemical responses were also measured. CO2 assimilation, along with the productivity and biosynthesis of proteins and lipids, increased during the spring, coinciding with moderate temperatures (~14 °C) and high photosynthetically active radiation (PAR). Furthermore, the increased production of photoprotective and antioxidant compounds, including phenolic compounds, and carotenoids, along with the enhancement of non-photochemical quenching (NPQ), contribute to the effective photoacclimation strategies of L. spicata. Principal component analysis (PCA) revealed seasonal associations between productivity, reactive oxygen species (ROSs), and biochemical indicators, particularly during the spring and summer. These associations, further supported by Pearson correlation analyses, suggest a high but seasonally constrained photoacclimation capacity. In contrast, the reduced productivity and photoprotection observed in the summer suggest increased physiological vulnerability to heat and light stress. Overall, our findings position L. spicata as a promising nature-based solution for climate change mitigation. Full article
(This article belongs to the Special Issue Marine Macrophytes Responses to Global Change)
Show Figures

Figure 1

16 pages, 351 KiB  
Article
Assessment of Telehealth Literacy in Users: Survey and Analysis of Demographic and Behavioral Determinants
by Marcela Hechenleitner-Carvallo, Jacqueline Ibarra-Peso and Sergio V. Flores
Healthcare 2025, 13(15), 1825; https://doi.org/10.3390/healthcare13151825 - 26 Jul 2025
Viewed by 298
Abstract
Background: Telehealth is an essential component of modern healthcare, and it was especially relevant during the COVID-19 pandemic, but disparities in digital and technological literacy among health professionals may limit its equitable adoption and impact. Objective: This study seeks to validate [...] Read more.
Background: Telehealth is an essential component of modern healthcare, and it was especially relevant during the COVID-19 pandemic, but disparities in digital and technological literacy among health professionals may limit its equitable adoption and impact. Objective: This study seeks to validate an eight-item telehealth literacy survey among health professionals in Central–South Chile and to examine demographic and behavioral determinants of literacy levels, developing predictive models to identify key factors. Methods: In this cross-sectional study, 2182 health professionals from urban and rural centers in Central–South Chile completed the adapted survey along with questions on age, gender, nationality, and frequency of telehealth use. We assessed internal consistency (Cronbach’s α), explored factor structure via exploratory factor analysis (EFA), and tested associations using Pearson correlations, t-tests, one-way ANOVA, and both linear and multinomial logistic regressions. Results: The instrument demonstrated high reliability (Cronbach’s α = 0.92) and a two-factor structure explaining 65% of variance. Age negatively correlated with literacy (r = −0.26; p < 0.001), while the frequency of telehealth use showed a positive correlation (r = 0.26; p < 0.001). Female professionals and those in urban settings scored significantly higher on telehealth literacy (p = 0.005 and p < 0.001, respectively). The reduced multinomial model achieved moderate classification accuracy (51.65%) in distinguishing low, medium, and high literacy groups. Conclusions: The validated survey is a reliable tool for assessing telehealth literacy among health professionals in Chile. The findings highlight age, gender, and geographic disparities, and support targeted digital literacy interventions to promote equitable telehealth practice. Full article
Show Figures

Figure 1

24 pages, 1197 KiB  
Article
Fractional Gradient-Based Model Reference Adaptive Control Applied on an Inverted Pendulum-Cart System
by Maibeth Sánchez-Rivero, Manuel A. Duarte-Mermoud, Lisbel Bárzaga-Martell, Marcos E. Orchard and Gustavo Ceballos-Benavides
Fractal Fract. 2025, 9(8), 485; https://doi.org/10.3390/fractalfract9080485 - 24 Jul 2025
Viewed by 270
Abstract
This study introduces a novel model reference adaptive control (MRAC) framework that incorporates fractional-order gradients (FGs) to regulate the displacement of an inverted pendulum-cart system. Fractional-order gradients have been shown to significantly improve convergence rates in domains such as machine learning and neural [...] Read more.
This study introduces a novel model reference adaptive control (MRAC) framework that incorporates fractional-order gradients (FGs) to regulate the displacement of an inverted pendulum-cart system. Fractional-order gradients have been shown to significantly improve convergence rates in domains such as machine learning and neural network optimization. Nevertheless, their integration with fractional-order error models within adaptive control paradigms remains unexplored and represents a promising avenue for research. The proposed control scheme extends the classical MRAC architecture by embedding Caputo fractional derivatives into the adaptive law governing parameter updates, thereby improving both convergence dynamics and control flexibility. To ensure optimal performance across multiple criteria, the controller parameters are systematically tuned using a multi-objective Particle Swarm Optimization (PSO) algorithm. Two fractional-order error models (FOEMs) incorporating fractional gradients (FOEM2-FG, FOEM3-FG) are investigated, with their stability formally analyzed via Lyapunov-based methods under conditions of sufficient excitation. Validation is conducted through both simulation and real-time experimentation on a physical pendulum-cart setup. The results demonstrate that the proposed fractional-order MRAC (FOMRAC) outperforms conventional MRAC, proportional-integral-derivative (PID), and fractional-order PID (FOPID) controllers. Specifically, FOMRAC-FG achieved superior tracking performance, attaining the lowest Integral of Squared Error (ISE) of 2.32×105 and the lowest Integral of Squared Input (ISI) of 6.40 in simulation studies. In real-time experiments, FOMRAC-FG maintained the lowest ISE (5.11×106). Under real-time experiments with disturbances, it still achieved the lowest ISE (1.06×105), highlighting its practical effectiveness. Full article
Show Figures

Figure 1

21 pages, 5627 KiB  
Article
Effects of a Post-Harvest Management Practice on Structural Connectivity in Catchments with a Mediterranean Climate
by Daniel Sanhueza, Lorenzo Martini, Andrés Iroumé, Matías Pincheira and Lorenzo Picco
Forests 2025, 16(7), 1171; https://doi.org/10.3390/f16071171 - 16 Jul 2025
Viewed by 299
Abstract
Forest harvesting can alter sedimentary processes in catchments by reducing vegetation cover and exposing the soil surface. To mitigate these effects, post-harvest residue management is commonly used, though its effectiveness needs individual evaluation. This study assessed how windrowed harvest residues influence structural sediment [...] Read more.
Forest harvesting can alter sedimentary processes in catchments by reducing vegetation cover and exposing the soil surface. To mitigate these effects, post-harvest residue management is commonly used, though its effectiveness needs individual evaluation. This study assessed how windrowed harvest residues influence structural sediment connectivity in two forest catchments in south-central Chile with a Mediterranean climate. Using digital terrain models and the Index of Connectivity, scenarios with and without windrows were compared. Despite similar windrow characteristics, effectiveness varied between catchments. In catchment N01 (12.6 ha, average slope 0.28 m m−1), with 13.6% windrow coverage, connectivity remained unchanged, but in contrast, catchment N02 (14 ha, average slope 0.27 m m−1), with 21.9% coverage, showed a significant connectivity reduction. A key factor was windrows’ orientation: 83.9% aligned with contour lines in N02 versus 58.6% in N01. Distance to drainage channels also played a role, with the decreasing effect of connectivity at 50–60 m in N02. Bootstrap analysis confirmed significant differences between catchments. These results suggest that windrow configuration, particularly contour alignment, may be more critical than coverage percentage. For effective connectivity reduction, especially on moderate to steep slopes, forest managers should prioritize contour-aligned windrows. This study enhances our understanding of structural sediment connectivity and offers practical insights for sustainable post-harvest forest management. Full article
(This article belongs to the Special Issue Erosion and Forests: Drivers, Impacts, and Management)
Show Figures

Figure 1

18 pages, 1834 KiB  
Article
Hydrofeminist Life Histories in the Aconcagua River Basin: Women’s Struggles Against Coloniality of Water
by María Ignacia Ibarra
Histories 2025, 5(3), 31; https://doi.org/10.3390/histories5030031 - 11 Jul 2025
Viewed by 498
Abstract
This article examines the struggles for water justice led by women in the Aconcagua River Basin (Valparaíso, Chile) through a hydrofeminist perspective. Chile’s water crisis, rooted in a colonial extractivist model and exacerbated by neoliberal policies of water privatization, reflects a deeper crisis [...] Read more.
This article examines the struggles for water justice led by women in the Aconcagua River Basin (Valparaíso, Chile) through a hydrofeminist perspective. Chile’s water crisis, rooted in a colonial extractivist model and exacerbated by neoliberal policies of water privatization, reflects a deeper crisis of socio-environmental injustice. Rather than understanding water merely as a resource, this research adopts a relational epistemology that conceives water as a living entity shaped by and shaping social, cultural, and ecological relations. Drawing on life-history interviews and the construction of a hydrofeminist cartography with women river defenders, this article explores how gendered and racialized bodies experience the crisis, resist extractive practices, and articulate alternative modes of co-existence with water. The hydrofeminist framework offers critical insights into the intersections of capitalism, colonialism, patriarchy, and environmental degradation, emphasizing how women’s embodied experiences are central to envisioning new water governance paradigms. This study reveals how women’s affective, spiritual, and territorial ties to water foster strategies of resilience, recovery, and re-existence that challenge the dominant extractivist logics. By centering these hydrofeminist life histories, this article contributes to broader debates on environmental justice, decolonial feminisms, and the urgent need to rethink human–water relationships within the current climate crisis. Full article
(This article belongs to the Section Gendered History)
Show Figures

Figure 1

15 pages, 1019 KiB  
Article
Genotypic Variability in Growth and Leaf-Level Physiological Performance of Highly Improved Genotypes of Pinus radiata D. Don Across Different Sites in Central Chile
by Sergio Espinoza, Marco Yáñez, Carlos Magni, Eduardo Martínez-Herrera, Karen Peña-Rojas, Sergio Donoso, Marcos Carrasco-Benavides and Samuel Ortega-Farias
Forests 2025, 16(7), 1108; https://doi.org/10.3390/f16071108 - 4 Jul 2025
Viewed by 236
Abstract
Pinus radiata D. Don is planted in South Central Chile on a wide range of sites using genetically improved genotypes for timber production. As drought events are expected to increase with ongoing climatic change, the variability in gas exchange, which could impact growth [...] Read more.
Pinus radiata D. Don is planted in South Central Chile on a wide range of sites using genetically improved genotypes for timber production. As drought events are expected to increase with ongoing climatic change, the variability in gas exchange, which could impact growth and water use, needs to be evaluated. In this study, we assessed the genotypic variability of leaf-level light-saturated photosynthesis (Asat), stomatal conductance (gs), transpiration (E), intrinsic water use efficiency (iWUE), and Chlorophyll a fluorescence (OJIP-test parameters) among 30 P. radiata genotypes (i.e., full-sib families) from third-cycle parents at age 6 years on three sites in Central Chile. We also evaluated tree height (HT), diameter at breast height (DBH), and stem index volume (VOL). Families were ranked for HT as top-15 and bottom-15. In the OJIP-test parameters we observed differences at the family level for the maximum quantum yield of primary PSII photochemistry (Fv/Fm), the probability that a photon trapped by the PSII reaction center enters the electron transport chain (ψEo), and the potential for energy conservation from photons captured by PSII to the reduction in intersystem electron acceptors (PIABS). Fv/Fm, PIABS, and ψEo ranged from 0.82 to 0.87, 45 to 95, and 0.57 to 0.64, respectively. Differences among families for growth and not for leaf-level physiology were detected. DBT, H, and VOL were higher in the top-15 families (12.6 cm, 8.4 m, and 0.10 m3, respectively) whereas Asat, gs, E, and iWUE were similar in both the top-15 and bottom-15 families (4.0 μmol m−2 s−1, 0.023 mol m−2 s−1, 0.36 mmol m−2 s−1, and 185 μmol mol m−2 s−1, respectively). However, no family by site interaction was detected for growth and leaf-level physiology. The results of this study suggest that highly improved genotypes of P. radiata have uniformity in leaf-level physiological rates, which could imply uniform water use at the stand-level. The family variation found in PIABS suggests that this parameter could be incorporated to select genotypes tolerant to environmentally stressful conditions. Full article
(This article belongs to the Special Issue Water Use Efficiency of Forest Trees)
Show Figures

Figure 1

23 pages, 2593 KiB  
Article
Thermal Decoupling May Promote Cooling and Avoid Heat Stress in Alpine Plants
by Loreto V. Morales, Angela Sierra-Almeida, Catalina Sandoval-Urzúa and Mary T. K. Arroyo
Plants 2025, 14(13), 2023; https://doi.org/10.3390/plants14132023 - 2 Jul 2025
Viewed by 378
Abstract
In alpine ecosystems, where low temperatures predominate, prostrate growth forms play a crucial role in thermal resistance by enabling thermal decoupling from ambient conditions, thereby creating a warmer microclimate. However, this strategy may be maladaptive during frequent heatwaves driven by climate change. This [...] Read more.
In alpine ecosystems, where low temperatures predominate, prostrate growth forms play a crucial role in thermal resistance by enabling thermal decoupling from ambient conditions, thereby creating a warmer microclimate. However, this strategy may be maladaptive during frequent heatwaves driven by climate change. This study combined microclimatic and plant characterization, infrared thermal imaging, and leaf photoinactivation to evaluate how thermal decoupling (TD) affects heat resistance (LT50) in six alpine species from the Nevados de Chillán volcano complex in the Andes of south-central Chile. Results showed that plants’ temperatures increased with solar radiation, air, and soil temperatures, but decreased with increasing humidity. Most species exhibited negative TD, remaining 6.7 K cooler than the air temperature, with variation across species, time of day, and growth form; shorter, rounded plants showed stronger negative TD. Notably, despite negative TD, all species exhibited high heat resistance (Mean LT50 = 46 °C), with LT50 positively correlated with TD in shrubs. These findings highlight the intricate relationships between thermal decoupling, environmental factors, and plant traits in shaping heat resistance. This study provides insights into how alpine plants may respond to the increasing heat stress associated with climate change, emphasizing the adaptive significance of thermal decoupling in these environments. Full article
Show Figures

Figure 1

16 pages, 1368 KiB  
Article
Entropy Alternatives for Equilibrium and Out-of-Equilibrium Systems
by Eugenio E. Vogel, Francisco J. Peña, Gonzalo Saravia and Patricio Vargas
Entropy 2025, 27(7), 689; https://doi.org/10.3390/e27070689 - 27 Jun 2025
Viewed by 470
Abstract
We introduce a novel entropy-related function, non-repeatability, designed to capture dynamical behaviors in complex systems. Its normalized form, mutability, has been previously applied in statistical physics as a dynamical entropy measure associated with any observable stored in a sequential file. We now extend [...] Read more.
We introduce a novel entropy-related function, non-repeatability, designed to capture dynamical behaviors in complex systems. Its normalized form, mutability, has been previously applied in statistical physics as a dynamical entropy measure associated with any observable stored in a sequential file. We now extend this concept by calculating the sorted mutability for the same data file previously ordered by increasing or decreasing value. To present the scope and advantages of these quantities, we analyze two distinct systems: (a) Monte Carlo simulations of magnetic moments on a square lattice, and (b) seismic time series from the United States Geological Survey catalog. Both systems are well established in the literature, serving as robust benchmarks. Shannon entropy is employed as a reference point to assess the similarities and differences with the proposed measures. A key distinction lies in the sensitivity of non-repeatability and mutability to the temporal ordering of data, which contrasts with traditional entropy definitions. Moreover, sorted mutability reveals additional insights into the critical behavior of the systems under study. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Figure 1

29 pages, 9360 KiB  
Article
Modeling Metal(loid)s Transport in Arid Mountain Headwater Andean Basin: A WASP-Based Approach
by Daniela Castillo, Ricardo Oyarzún, Pablo Pastén, Christopher D. Knightes, Denisse Duhalde, José Luis Arumí, Jorge Núñez and José Antonio Díaz
Water 2025, 17(13), 1905; https://doi.org/10.3390/w17131905 - 26 Jun 2025
Viewed by 366
Abstract
The occurrence of toxic metal(loid)s in surface freshwater is a global concern due to its impacts on human and ecosystem health. Conceptual and quantitative metal(loid) models are needed to assess the impact of metal(loid)s in watersheds affected by acid rock drainage. Few case [...] Read more.
The occurrence of toxic metal(loid)s in surface freshwater is a global concern due to its impacts on human and ecosystem health. Conceptual and quantitative metal(loid) models are needed to assess the impact of metal(loid)s in watersheds affected by acid rock drainage. Few case studies have focused on arid and semiarid headwaters, with scarce hydrological and hydrochemical information. This work reports the use of WASP8 (US EPA) to model Al, Fe, As, Cu, and SO42− concentrations in the Upper Elqui River watershed in north–central Chile. Calibrated model performance for total concentrations was “good” (25.9, RRMSE; 0.7, R2-d) to “very good” (0.8–0.9, R2-d). The dissolved concentrations ranged between “acceptable” (56.3, RRMSE), “good” (28.6, RRMSE; 0.7 d), and “very good” (0.9, R2-d). While the model validation achieved mainly “very good” (0.8–0.9, R2-d) predictions for total concentrations, the predicted dissolved concentrations were less accurate for all indicators. Sensitivity analysis showed that the partition coefficient is a sensitive constant for estimating dissolved concentrations, and that integrating sorption and sediment interaction reduces the model error. This work highlights the need for detailed and site-specific information on the reactive and hydrodynamic properties of suspended solids, which directly impact the partition coefficient, sedimentation, and resuspension velocity calibration. Full article
(This article belongs to the Special Issue Monitoring and Modelling of Contaminants in Water Environment)
Show Figures

Graphical abstract

17 pages, 1165 KiB  
Article
Availability, Accessibility, and Suitability of Native Flowers from Central Chile to Mastrus ridens, a Parasitoid of Codling Moth
by Tania Zaviezo, Alejandra E. Muñoz and Erick Bueno
Insects 2025, 16(7), 665; https://doi.org/10.3390/insects16070665 - 26 Jun 2025
Viewed by 510
Abstract
Habitat manipulation through non-crop vegetation management is a strategy in conservation biological control, and using native plants is attractive because they can also help in biodiversity conservation. The potential for nectar provision of 13 flowering species native to Chile, and two introduced, was [...] Read more.
Habitat manipulation through non-crop vegetation management is a strategy in conservation biological control, and using native plants is attractive because they can also help in biodiversity conservation. The potential for nectar provision of 13 flowering species native to Chile, and two introduced, was evaluated considering Mastrus ridens (Hymenoptera: Braconidae). Nectar availability was studied through flower phenology, accessibility through flower and parasitoid morphology, and suitability through longevity when exposed to nectar solutions or cut flowers. Most species had long flowering periods, potentially making nectar available when adults are active, but they differed in nectar accessibility and profitability. Of the 13 native species, nectar was easily accessible for M. ridens in Cistanthe grandiflora, Sphaeralcea obtusiloba, Andeimalva chilensis, and Lycium chilense. None of the nine native species tested with nectar solutions increased longevity, but with cut flowers, parasitoids lived longer with the natives Teucrium bicolor and S. obtusiloba, and the introduced Fagopyrum esculentum, making them candidates for M. ridens conservation. Females lived longer with cut flowers of T. bicolor and S. obtusiloba than with their nectar solutions. In conclusion, using the native flowering species Teucrium bicolor and Sphaeralcea obtusiloba in agroecosystems can serve biological control and biodiversity conservation. Full article
Show Figures

Figure 1

17 pages, 7465 KiB  
Data Descriptor
A Sub-Hourly Precipitation Dataset from a Pluviographic Network in Central Chile
by Claudia Sangüesa, Alfredo Ibañez, Roberto Pizarro, Cristian Vidal-Silva, Pablo Garcia-Chevesich, Romina Mendoza, Cristóbal Toledo, Juan Pino, Rodrigo Paredes and Ben Ingram
Data 2025, 10(7), 95; https://doi.org/10.3390/data10070095 - 22 Jun 2025
Viewed by 1138
Abstract
This data descriptor presents a unique high-resolution rainfall dataset derived from 14 pluviograph stations across central Chile’s Mediterranean region, covering variable periods starting from between 1969 and 1992, up to 2009. The dataset provides continuous precipitation records at a 5 min temporal resolution, [...] Read more.
This data descriptor presents a unique high-resolution rainfall dataset derived from 14 pluviograph stations across central Chile’s Mediterranean region, covering variable periods starting from between 1969 and 1992, up to 2009. The dataset provides continuous precipitation records at a 5 min temporal resolution, obtained through the digitization and processing of pluviograph strip charts using specialized software. This high temporal resolution is unprecedented for the region and enables detailed analysis of rainfall intensity, duration, and frequency patterns critical for hydrological research, climate studies, and water resource management in general. Each station’s data was subjected to quality control procedures, including manual validation and correction of digitization errors to ensure data integrity. The dataset reveals the significant temporal variability of rainfall in central Chile, capturing both short-duration high-intensity events and longer precipitation patterns. By making this dataset publicly available, we provide researchers with a valuable resource for studying rainfall behavior in a Mediterranean climate zone subject to significant climate variability and change. The dataset supports various applications, including the development of intensity–duration–frequency curves, analysis of rainfall erosivity, calibration of hydrological models, and investigation of precipitation trends in the context of climate change. Full article
(This article belongs to the Section Spatial Data Science and Digital Earth)
Show Figures

Figure 1

20 pages, 2896 KiB  
Article
Screening Terminal Drought Tolerance in Dry Bean Genotypes and Commercial Bean Cultivars in Chile
by Kianyon Tay, Nelson Zapata, Carlos A. Urrea, Abdelhalim Elazab, Miguel Garriga and Lorenzo León
Agronomy 2025, 15(7), 1499; https://doi.org/10.3390/agronomy15071499 - 20 Jun 2025
Viewed by 495
Abstract
Drought significantly constrains common bean (Phaseolus vulgaris L.) production worldwide, and as climate change intensifies, projections indicate a subsequent reduction in yield. This study aimed to identify drought-resilient genotypes among twenty common bean lines in Chile under two water regimes: regular irrigation [...] Read more.
Drought significantly constrains common bean (Phaseolus vulgaris L.) production worldwide, and as climate change intensifies, projections indicate a subsequent reduction in yield. This study aimed to identify drought-resilient genotypes among twenty common bean lines in Chile under two water regimes: regular irrigation and terminal drought stress. The research was conducted over two seasons in south-central Chile. Drought significantly reduced grain yield (22.7%), aboveground biomass (37%), harvest index (19.5%), the number of grains per pod (61.3%), and hundred-grain weight (10.1%). Genotypes 452, 473, and 483 exhibited minimal yield reductions (<11%) and maintained stable physiological performance, including higher quantum yield of photosystem II and efficient photoprotective mechanisms (increased ΦNPQ) under stress. In contrast, sensitive genotypes like Blanco Español showed marked yield loss (54%) and lower photosynthetic efficiency. Chlorophyll retention emerged as a key trait for identifying high-yielding, drought-tolerant genotypes. Drought also accelerated crop maturation in susceptible genotypes, compromising yield potential. These findings highlight the importance of integrating agronomic, phenological, and physiological traits in breeding programs to develop drought-adapted varieties. The tolerant genotypes offer valuable genetic traits to improve drought resilience and contribute to food security in the face of climate change. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

Back to TopTop