Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = cementitious adhesive

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3550 KB  
Article
Using Biopolymers to Control Hydraulic Degradation of Natural Expansive-Clay Liners Due to Fines Migration: Long-Term Performance
by Ahmed M. Al-Mahbashi, Abdullah Shaker and Abdullah Almajed
Polymers 2026, 18(2), 272; https://doi.org/10.3390/polym18020272 - 20 Jan 2026
Viewed by 291
Abstract
Liners made of natural materials, such as expansive soil with sand, have a wide range of applications, including geotechnical and geoenvironmental applications. Besides being environmentally friendly, these materials are locally available and can be constructed at a low cost. The concern regarding these [...] Read more.
Liners made of natural materials, such as expansive soil with sand, have a wide range of applications, including geotechnical and geoenvironmental applications. Besides being environmentally friendly, these materials are locally available and can be constructed at a low cost. The concern regarding these liners is sustainability and serviceability in the long run. The research conducted revealed significant degradation in hydraulic performance after periods of operation under continuous flow, which was attributed to the migration of fines. This study investigated the stabilization of these liners by using biopolymers as a cementitious agent to prevent the migration of fines and enhance sustainability in the long run. Two different biopolymers were examined in this study, including guar gum (GG) and sodium alginate (SA). The hydraulic conductivity tests were conducted in the laboratory under continuous flow for a long period (i.e., more than 360 days). The results revealed that incorporating biopolymers into these liners is of great significance for enhancing their sustainability and hydraulic performance stability. Further in-depth identification of the interaction mechanisms demonstrates that biopolymer–soil interactions create cross-links between soil particles through adhesive bonding, forming a cementitious gel that stabilizes fines and enhances the stability of the liners’ internal structure. Both examined biopolymers show significant stabilization of fines and stable hydraulic performance within the acceptable range, with high superiority of SA with EC20. The outcomes of this study are valuable for conducting an adequate and sustainable design for liner protection layers as hydraulic barriers or covers. Full article
(This article belongs to the Special Issue Polymers in the Face of Sustainable Development)
Show Figures

Figure 1

38 pages, 3252 KB  
Review
Hemp Fibre Treatments in Bio-Composites: A Review for Sustainable and Resilient Structures
by Mariana Costa Laktim and Antonio Formisano
Buildings 2025, 15(23), 4238; https://doi.org/10.3390/buildings15234238 - 24 Nov 2025
Viewed by 1338
Abstract
The growing demand for sustainable, high-performance, and structurally reliable construction materials has intensified research on natural fibre-reinforced composites (NFCs). Among these, hemp stands out due to its high cellulose content, low density, excellent tensile strength, and renewability, making it a promising reinforcement for [...] Read more.
The growing demand for sustainable, high-performance, and structurally reliable construction materials has intensified research on natural fibre-reinforced composites (NFCs). Among these, hemp stands out due to its high cellulose content, low density, excellent tensile strength, and renewability, making it a promising reinforcement for cementitious and other inorganic matrices, including lime- and geopolymer-based systems. This review focuses exclusively on structural and civil engineering applications, while polymer-based composites are mentioned only for comparative context regarding adhesion and durability. A comprehensive bibliometric and technical analysis was conducted to evaluate the effectiveness of hemp fibre treatment methods in improving fibre–matrix adhesion, mechanical performance, and long-term durability. A systematic search covering major scientific databases from 2014 to 2024 identified global research trends, key treatment techniques, and their performance outcomes. Both chemical (alkaline, silane, acetylation, alkyl ketene dimer—AKD) and physical (plasma, ozone) modification strategies were critically assessed for adhesion, mechanical strength, hydrophobicity, and resistance to environmental cycling. Quantitative results indicate that combined alkaline–AKD treatments produce the most consistent improvement, increasing compressive strength by approximately 30% and flexural strength by up to 25% compared with untreated composites. Physical surface treatments were also found to enhance roughness and interfacial bonding without degrading fibre integrity. Unlike previous reviews that address natural fibres in general, this article specifically targets hemp fibre treatments for inorganic matrices, correlating modification mechanisms with the structural performance indicators relevant to civil engineering. By integrating bibliometric mapping of research evolution, keyword networks, and technological gaps, this review provides a quantitative and engineering-oriented synthesis that highlights its original contribution to sustainable and resilient construction materials. The findings emphasise the need for standardised testing protocols and performance-based evaluations to enable the broader structural application of hemp-based composites in modern construction. Full article
Show Figures

Figure 1

23 pages, 6706 KB  
Article
Mechanical and Microstructural Evaluation of Compacted Mixtures of Tropical Soils with Expanded Polystyrene (EPS) Waste for Sustainable Construction Applications
by Gian Fonseca dos Santos, Heraldo Nunes Pitanga, Klaus Henrique de Paula Rodrigues, Gustavo Henrique Nalon and Taciano Oliveira da Silva
Buildings 2025, 15(22), 4037; https://doi.org/10.3390/buildings15224037 - 9 Nov 2025
Viewed by 491
Abstract
Expanded polystyrene (EPS), a lightweight thermoplastic polymer widely used in packaging and insulation, has become a growing environmental concern due to its non-biodegradable nature and escalating global consumption. Although EPS waste shows potential in construction applications, previous studies have primarily incorporated it into [...] Read more.
Expanded polystyrene (EPS), a lightweight thermoplastic polymer widely used in packaging and insulation, has become a growing environmental concern due to its non-biodegradable nature and escalating global consumption. Although EPS waste shows potential in construction applications, previous studies have primarily incorporated it into mortars, concrete, or soil–cement mixtures, often relying on the addition of cement to improve its mechanical performance. This approach compromises sustainability and has generally overlooked the role of microstructural interactions in the behavior of soil–EPS waste mixes without cement. This study differs from prior works by exploring the mechanical and microstructural properties of soil–EPS waste mixtures without cementitious binders under different compaction energies. Experimental tests were carried out for the technical characterization of soils, ground EPS waste, and mixtures of soil and different contents of EPS waste (0%, 20%, 30%, and 40% of the total apparent volume of the composite), using different compaction energies (Intermediate and Modified Proctor). The mixtures were subjected to Unconfined Compressive Strength (UCS), California Bearing Ratio (CBR), and direct shear strength tests, in addition to physical and microstructural characterization. The results indicated that both soil type and compaction energy influenced the engineering behavior of the mixtures. The clayey soil exhibited superior mechanical performance, while the sandy soil showed reductions in all mechanical properties. The UCS values of the clayey soil with the addition of EPS did not change significantly (297 kPa to 286 kPa at intermediate energy and 514 kPa to 505 kPa at modified energy), while for the sandy soil, there was a decrease in values (from 167 kPa to 46 kPa at intermediate energy and from 291 kPa to 104 kPa at modified energy). In the CBR tests, only the 20% and 30% addition of EPS to the clayey soil, using the Modified Proctor energy, showed an increase (from 18% to 20% for both percentages). This behavior was primarily attributed to adhesion mechanisms at the soil–EPS waste interface, with friction playing a secondary role, thereby suggesting that clayey soils may offer better mechanical response. The lower dry density of these mixtures compared to compacted natural soils presents a technical benefit for use as backfill in areas with low bearing capacity, where minimizing the load from the fill material is critical. Full article
Show Figures

Figure 1

26 pages, 7391 KB  
Article
Effects of Frost Damage and Nanomaterials Modification on the Microstructure and Fracture Properties of the Interfacial Transition Zone of Cementitious Materials
by Xiangong Zhou, Xiancheng Zhou and Weikang Kong
Nanomaterials 2025, 15(21), 1670; https://doi.org/10.3390/nano15211670 - 3 Nov 2025
Viewed by 612
Abstract
Cementitious materials are multiscale and multiphase composites whose frost resistance at the macroscale is closely governed by microstructural characteristics. However, the interfacial transition zone (ITZ) between clinker and hydrates, recognized as the weakest solid phase, plays a decisive role in the initiation and [...] Read more.
Cementitious materials are multiscale and multiphase composites whose frost resistance at the macroscale is closely governed by microstructural characteristics. However, the interfacial transition zone (ITZ) between clinker and hydrates, recognized as the weakest solid phase, plays a decisive role in the initiation and propagation of microcracks under freezing conditions. Understanding the frost damage mechanism of ITZ is therefore essential for improving the durability of concrete in cold regions. The motivation of this study lies in revealing how freezing affects the mechanical integrity and microstructure of ITZ in its early ages, which remains insufficiently understood in existing research. To address this, a nanoscratch technique was employed for its ability to quantify local fracture properties and interfacial adhesion at the submicronscale, providing a direct and high-resolution assessment of ITZ behavior under freeze–thaw action. The ITZ thickness and fracture properties were characterized in unfrozen cement paste and in cement paste frozen at 1 and 7 days of age to elucidate the microscale frost damage mechanism. Moreover, the enhancement effect of nano-silica modification on frozen ITZ was investigated through the combined use of nanoscratch and mercury intrusion porosimetry (MIP). The correlations among clinker particle size, ITZ thickness, and ITZ fracture properties were further established using nanoscratch coupled with scanning electron microscopy (SEM). This study provides a novel micromechanical insight into the frost deterioration of ITZ and demonstrates the innovative application of nanoscratch technology in characterizing freeze-induced damage in cementitious materials, offering theoretical guidance for designing durable concrete for cold environments. Full article
Show Figures

Figure 1

20 pages, 7919 KB  
Article
Application and Mechanism Study on Optimal Design of Cement-Based Building Materials Based on Polymer Binder
by Lei Yu, Qichang Fan, Dan Meng, Xue Meng and Binghua Xu
Buildings 2025, 15(17), 3192; https://doi.org/10.3390/buildings15173192 - 4 Sep 2025
Cited by 1 | Viewed by 816
Abstract
This study examines the effects of three polymer binders—polyvinyl alcohol (PVA), polyethylene glycol (PEG), and polyacrylic acid (PAA) on the mechanical properties and dry–wet cycle corrosion resistance of cement mortar at different dosages (1–4%). Mechanical testing combined with scanning electron microscopy (SEM) and [...] Read more.
This study examines the effects of three polymer binders—polyvinyl alcohol (PVA), polyethylene glycol (PEG), and polyacrylic acid (PAA) on the mechanical properties and dry–wet cycle corrosion resistance of cement mortar at different dosages (1–4%). Mechanical testing combined with scanning electron microscopy (SEM) and molecular dynamics (MD) simulations was conducted to validate the experimental findings and reveal the underlying mechanisms. Results show that polymers reduce early-age strength but improve flexural performance, and at low dosage, enhance compressive strength. PVA and PAA exhibited a pronounced improvement in mechanical strength while PVA and PEG showed a significant improvement in wet cycle corrosion resistance. SEM observations indicated that polymers encapsulate cement particles, enhancing interfacial bonding while partially inhibiting hydration. MD simulations revealed that PVA and PAA interact with Ca2+ via Ca-O coordination, while PEG primarily forms hydrogen bonds, resulting in distinct water-binding capacities (PEG > PVA > PAA). These interactions explain the enhanced mechanism of mechanical and dry–wet cycle resistance properties. This work combined experimental and molecular-level validation to clarify how polymer–matrix and polymer–water interactions govern mechanical and durability, respectively. The findings provide theoretical and practical guidance for designing advanced polymer binders with tailored interfacial adhesion and water absorption properties to improve cementitious materials. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

23 pages, 1904 KB  
Article
Biochar as a Sustainable Component of Low-Emission Building Materials
by Iwona Ryłko, Robert Zarzycki, Łukasz Bobak, Paweł Telega, Agnieszka Didyk-Mucha and Andrzej Białowiec
Materials 2025, 18(17), 3941; https://doi.org/10.3390/ma18173941 - 22 Aug 2025
Cited by 2 | Viewed by 1834
Abstract
Biochar (BC), derived from wood biomass through pyrolysis, exhibits properties that make it a promising additive in mortars for sustainable construction. This study investigated the influence of biochar produced at three pyrolysis temperatures (450 °C, 550 °C, and 700 °C) on the performance [...] Read more.
Biochar (BC), derived from wood biomass through pyrolysis, exhibits properties that make it a promising additive in mortars for sustainable construction. This study investigated the influence of biochar produced at three pyrolysis temperatures (450 °C, 550 °C, and 700 °C) on the performance of cementitious adhesive mortars. The evaluation encompassed physicochemical characterization, mechanical and adhesive strength, volatile organic compound (VOC) emissions, leachability of contaminants, and a life-cycle assessment (LCA). The results demonstrate that biochar obtained at 700 °C has the highest carbon content, an alkaline pH, and increased porosity. In contrast, biochar produced at 450 °C exhibits better sorption capacity and a higher concentration of functional groups. Incorporating 1–5% BC (produced at any temperature) improves mortar performance; however, higher doses negatively affect adhesion to expanded polystyrene board (EPS) and concrete. Emissions of VOCs and leachable metals largely remained within environmental threshold values, with only isolated instances of exceedance. The LCA revealed that substituting mineral fillers with biochar could reduce the carbon footprint by up to 35% compared to the reference formulation. These findings confirm biochar’s potential as a safe and environmentally beneficial component in low-emission construction materials, aligning with the principles of the circular economy and climate-neutral goals. Full article
(This article belongs to the Special Issue Modern Wood-Based Materials for Sustainable Building)
Show Figures

Figure 1

19 pages, 4487 KB  
Article
Recycling Volcanic Lapillus as a Supplementary Cementitious Material in Sustainable Mortars
by Fabiana Altimari, Luisa Barbieri, Andrea Saccani and Isabella Lancellotti
Recycling 2025, 10(4), 153; https://doi.org/10.3390/recycling10040153 - 1 Aug 2025
Viewed by 808
Abstract
This study investigates the feasibility of using volcanic lapillus as a supplementary cementitious material (SCM) in mortar production to improve the sustainability of the cement industry. Cement production is one of the main sources of CO2 emissions, mainly due to clinker production. [...] Read more.
This study investigates the feasibility of using volcanic lapillus as a supplementary cementitious material (SCM) in mortar production to improve the sustainability of the cement industry. Cement production is one of the main sources of CO2 emissions, mainly due to clinker production. Replacing clinker with SCMs, such as volcanic lapillus, can reduce the environmental impact while maintaining adequate mechanical properties. Experiments were conducted to replace up to 20 wt% of limestone Portland cement with volcanic lapillus. Workability, compressive strength, microstructure, resistance to alkali-silica reaction (ASR), sulfate, and chloride penetration were analyzed. The results showed that up to 10% replacement had a minimal effect on mechanical properties, while higher percentages resulted in reduced strength but still improved some durability features. The control sample cured 28 days showed a compressive strength of 43.05 MPa compared with 36.89 MPa for the sample containing 10% lapillus. After 90 days the respective values for the above samples were 44.76 MPa and 44.57 MPa. Scanning electron microscopy (SEM) revealed good gel–aggregate adhesion, and thermogravimetric analysis (TGA) confirmed reduced calcium hydroxide content, indicating pozzolanic activity. Overall, volcanic lapillus shows promise as a sustainable SCM, offering CO2 reduction and durability benefits, although higher replacement rates require further optimization. Full article
Show Figures

Figure 1

13 pages, 11904 KB  
Communication
Benefits of Surface-Modified Steel Fibers on Enhancing the Mechanical Properties in Cement Matrix
by Xuxiang Tan, Minghua Li, Liandi Zhao, Yichuan Pan, Peina Zhang and Mei-li Qi
Coatings 2025, 15(6), 682; https://doi.org/10.3390/coatings15060682 - 5 Jun 2025
Cited by 1 | Viewed by 1224
Abstract
Steel fibers are widely used in cementitious composite materials to enhance their mechanical properties, such as tensile strength and toughness. However, the effectiveness of these fibers largely depends on their surface characteristics and bonding with the cement matrix. This study investigated the effects [...] Read more.
Steel fibers are widely used in cementitious composite materials to enhance their mechanical properties, such as tensile strength and toughness. However, the effectiveness of these fibers largely depends on their surface characteristics and bonding with the cement matrix. This study investigated the effects of various treatment processes on the microhardness and mechanical strength of steel fibers in cementitious composite materials. These methods include acetone and acid washing, silane coupling agent treatment, and nanosilica coating. Fibers washed with acetone exhibited a cleaner surface, primarily due to the removal of impurities. Acid treatment resulted in a notably roughened surface, which significantly enhanced mechanical interlocking with the surrounding matrix. Silane treatment led to an uneven surface with distinct vertical textures, potentially improving adhesion properties. Meanwhile, fibers treated with nanosilica displayed a coating of nanoparticles adhering to the surface, which may further influence the fiber–matrix interaction. The results of the mechanical properties tests indicated that nanosilica coating was the most effective in improving both the flexural and compressive strengths, especially in the early strengths in the cement matrix. Full article
Show Figures

Figure 1

31 pages, 6592 KB  
Article
The Effects of Biomass Combustion Ash and Lignin on the Properties of Cement Mortars and Their Environmental Impact
by Iwona Ryłko, Łukasz Bobak, Paweł Telega and Andrzej Białowiec
Materials 2025, 18(9), 2086; https://doi.org/10.3390/ma18092086 - 2 May 2025
Viewed by 1362
Abstract
Combustion and hydrolysis of lignocellulosic biomass generate renewable energy and biofuels, but also yield by-products, such as biomass combustion ash (BCA) and waste lignin (WL). This study investigates the reuse of these by-products in cement mortars, promoting circular economy principles and sustainable construction [...] Read more.
Combustion and hydrolysis of lignocellulosic biomass generate renewable energy and biofuels, but also yield by-products, such as biomass combustion ash (BCA) and waste lignin (WL). This study investigates the reuse of these by-products in cement mortars, promoting circular economy principles and sustainable construction practices. The addition of BCA at 1–10% improved mortar consistency, homogeneity, and adhesion—most notably, formulations with 5–10% BCA increased adhesion to EPS by up to 4.3%, and compressive strength remained above the 20 MPa threshold. WL additions of 0.5–1% enhanced viscosity and adhesion to both mineral and EPS substrates, with a 0.2% WL dosage improving adhesion to EPS by 9.4% compared to the control sample. Life Cycle Assessment (LCA) confirmed a reduction in the carbon footprint by up to 14% (from 1509.5 to 1297.5 Mg CO2/year), while VOC emissions remained within acceptable limits. Leachability tests confirmed safe environmental performance. The results validate BCA and WL as functional and eco-efficient additives in cementitious composites suitable for thermal retrofitting. Full article
Show Figures

Graphical abstract

15 pages, 3014 KB  
Article
Biomechanical Performance and Handling of Mineral–Organic Adhesive Bone Cements Based on Magnesium Under Clinical Test Conditions
by Stefanie Hoelscher-Doht, Alexandra Fabian, Lasse Bögelein, Eva Kupczyk, Rainer H. Meffert, Uwe Gbureck and Tobias Renner
J. Clin. Med. 2025, 14(9), 3081; https://doi.org/10.3390/jcm14093081 - 29 Apr 2025
Viewed by 1694
Abstract
Background/Objectives: Biomineral adhesive bone adhesives composed of phosphoserine combined with magnesium oxides or phosphates exhibit exceptional adhesive properties. This study evaluates two experimental mineral–organic cementitious adhesives in a clinical test setup, investigating their potential for fracture reduction and simultaneous defect filling. Methods [...] Read more.
Background/Objectives: Biomineral adhesive bone adhesives composed of phosphoserine combined with magnesium oxides or phosphates exhibit exceptional adhesive properties. This study evaluates two experimental mineral–organic cementitious adhesives in a clinical test setup, investigating their potential for fracture reduction and simultaneous defect filling. Methods: The two experimental adhesives (Groups B and C) and a standard hydroxyapatite cement (Group A, reference) underwent compressive strength testing, shear strength testing, and screw pullout tests as part of a first biomechanical characterization. Furthermore, all materials were tested in a porcine tibial split depression fracture model, where they served both for fracture reduction and for filling the metaphyseal bone defect, supplementary to plate osteosynthesis. Fracture stability was assessed under cyclic loading in a materials testing machine. Results: The OPLS (O-phospho-L-serine) containing adhesive (Group B) demonstrated the highest compressive strength as well as the highest shear strength. All three materials showed comparable maximum pullout forces. Both experimental adhesives (Groups B and C) exhibited higher pullout stiffness compared to the standard cement (Group A). In the fracture model, no significant differences in displacement under cyclic loading were observed between groups. Conclusions: The biomineral adhesive bone adhesives (Groups B and C) demonstrated biomechanical advantages in axial compression, adhesive (shear) strength, and screw fixation compared to the standard hydroxyapatite cement (Group A). Furthermore, they achieved comparable stabilization of metaphyseal fractures under clinically relevant dynamic loading conditions. Full article
(This article belongs to the Special Issue Advances in Trauma and Orthopedic Surgery: 2nd Edition)
Show Figures

Graphical abstract

16 pages, 7038 KB  
Article
Activation of Polypropylene (PP) Fiber Surface with 1-Vinyl-1,2,4-triazole and Vinyl Acetate: Synthesis, Characterization, and Application in Cementitious Systems
by Yahya Kaya, Petek Balcı, Süleyman Özen, Ali Mardani and Ali Kara
Materials 2025, 18(5), 1071; https://doi.org/10.3390/ma18051071 - 27 Feb 2025
Viewed by 1334
Abstract
Recently, the potential of recycled materials to improve the performance of concrete and other building materials has become an important research topic. It is known that various methods are applied to improve the tensile strength and energy absorption capacity of cementitious systems. One [...] Read more.
Recently, the potential of recycled materials to improve the performance of concrete and other building materials has become an important research topic. It is known that various methods are applied to improve the tensile strength and energy absorption capacity of cementitious systems. One of the most common of these methods is the addition of fibers to the mixture. In this study, the effects of surface-modified polypropylene (PP) fibers obtained from recycled masks on the mechanical properties of mortar mixtures were investigated. In order to improve the matrix–fiber interface performance, 6 mm and 12 mm long recycled PP fibers were chemically coated within the scope of surface modification using 1-Vinyl-1,2,4-Triazole and Vinyl Acetate. With this modification made on the surface of PP fibers, we aimed to increase the surface roughness of the fibers and improve their adhesion to the matrix. Thus, we aimed to increase the mechanical properties of mortar mixtures as a result of the fibers performing more effectively in the concrete matrix. FTIR AND SEM-EDS analyses confirmed the success of the modification and the applicability of 1-Vinyl-1,2,4-Triazole and Vinyl Acetate to the fiber surface and showed that the fibers were successfully modified. It is seen that the fibers modified with Vinyl Acetate exhibit superior performance in terms of both the workability and strength performance of cementitious systems compared to the fibers modified with 1-Vinyl-1,2,4-Triazole. This study provides a significant contribution to sustainable construction materials by revealing the potential of using recycled materials in cementitious systems. Full article
(This article belongs to the Special Issue New Advances in Cement and Concrete Research2nd Edition)
Show Figures

Graphical abstract

20 pages, 9275 KB  
Article
Effects of Thermal Cycles on Mechanical Properties of RPECC: Static and Dynamic Splitting Tensile Performance
by Shaohua He, Huaqian Zhong, Zhiliang Chen, Huangwei Chen, Jincai Chen and Zhitao Yu
Materials 2025, 18(5), 994; https://doi.org/10.3390/ma18050994 - 24 Feb 2025
Cited by 1 | Viewed by 1133
Abstract
This paper examines the splitting tensile properties of rubberized polyethylene-engineered cementitious composites (RPECC) through static and dynamic experimental tests, highlighting the effects of thermal cycles, impact strain rates, and rubber powder substitution rates for fine aggregates. Damage patterns, ultimate tensile strength, time-dependent stress [...] Read more.
This paper examines the splitting tensile properties of rubberized polyethylene-engineered cementitious composites (RPECC) through static and dynamic experimental tests, highlighting the effects of thermal cycles, impact strain rates, and rubber powder substitution rates for fine aggregates. Damage patterns, ultimate tensile strength, time-dependent stress curves, dynamic failure strain, and the dynamic increase factor of the RPECC are presented. The microstructure of the material is analyzed using scanning electron microscopy and energy-dispersive X-ray spectroscopy. Experimental results reveal that incorporating rubber powders significantly enhances the deformability and ductility of RPECC in splitting tension. However, a high content of rubber powders, such as a substitution percentage of 30%, significantly reduces static and the dynamic ultimate tensile strength of the RPECC by 16.8% and 34.2%, respectively. Microstructural examinations indicate that thermal cycling weakens the internal adhesion between the rubber particles, polyethylene fibers, and the ECC matrix, resulting in the frequent withdrawal of fibers and the formation of calcium hydroxide, which diminishes the material tensile strength by up to 20.6% in static tests and 45.1% in dynamic tests. Despite these challenges, the RPECC with 20% rubber achieves a favorable balance between splitting the tensile properties and thermal resistance, even after undergoing 270 heat-cool cycles, suggesting its potential applicability in harsh environments. Full article
Show Figures

Figure 1

20 pages, 9876 KB  
Article
Experimental and Numerical Investigation of Fatigue Performance in Reinforced Concrete Beams Strengthened with Engineered Cementitious Composite Layers and Steel Plates
by Dongsheng Lei, Long Liu, Xingpeng Ma, Mingdi Luo and Yanfen Gong
Coatings 2025, 15(1), 54; https://doi.org/10.3390/coatings15010054 - 6 Jan 2025
Viewed by 2029
Abstract
Reinforcing concrete beams with adhesive steel plates is a widely adopted method for enhancing structural performance. However, its ability to significantly improve the load-carrying capacity of reinforced concrete (RC) beams is constrained and often leads to “over-reinforced” failure. To overcome these limitations, this [...] Read more.
Reinforcing concrete beams with adhesive steel plates is a widely adopted method for enhancing structural performance. However, its ability to significantly improve the load-carrying capacity of reinforced concrete (RC) beams is constrained and often leads to “over-reinforced” failure. To overcome these limitations, this study introduces a novel composite reinforcement strategy that integrates steel plates in the tensile zone with Engineered Cementitious Composite (ECC) layers in the compression zone of RC beams. Static and fatigue tests were conducted on the reinforced beams, and a finite element model was developed to perform nonlinear analyses of their structural behavior under cyclic loading. The model incorporates the nonlinear material properties of concrete and rebar, enabling accurate simulation of material degradation under cyclic conditions. The model’s accuracy was validated through comparison with experimental data, demonstrating its effectiveness in analyzing the structural performance of RC beams under cyclic loading. Furthermore, a parametric study demonstrated that increasing the thickness of steel plates and ECC layers substantially improves the beams’ ductility and load-carrying capacity. These findings provide effective reinforcement strategies and offer valuable technical insights for engineering design. Full article
(This article belongs to the Special Issue Surface Treatments and Coatings for Asphalt and Concrete)
Show Figures

Figure 1

22 pages, 7879 KB  
Article
Mechanical Properties of Concrete Mixes with Selectively Crushed Wind Turbine Blade: Comparison with Raw-Crushing
by Víctor Revilla-Cuesta, Ana B. Espinosa, Roberto Serrano-López, Marta Skaf and Juan M. Manso
Materials 2024, 17(24), 6299; https://doi.org/10.3390/ma17246299 - 23 Dec 2024
Cited by 8 | Viewed by 1417
Abstract
The glass fiber-reinforced polymer (GFRP) materials of wind turbine blades can be recovered and recycled by crushing, thereby solving one of the most perplexing problems facing the wind energy sector. This process yields selectively crushed wind turbine blade (SCWTB), a novel waste that [...] Read more.
The glass fiber-reinforced polymer (GFRP) materials of wind turbine blades can be recovered and recycled by crushing, thereby solving one of the most perplexing problems facing the wind energy sector. This process yields selectively crushed wind turbine blade (SCWTB), a novel waste that is almost exclusively composed of GFRP composite fibers that can be revalued in terms of their use as a raw material in concrete production. In this research, the fresh and mechanical performance of concrete made with 1.5%, 3.0%, 4.5%, and 6.0% SCWTB is studied. Once incorporated into concrete mixes, SCWTB waste slightly reduced slumps due to the large specific surface area of the fibers, and the stitching effect of the fibers on mechanical behavior was generally adequate, as scanning electron microscopy demonstrated good fiber adhesion within the cementitious matrix. Thus, despite the increase in the content of water and plasticizers when adding this waste to preserve workability, the compressive strength only decreased in the long term with the addition of 6.0% SCWTB, a value of 45 MPa always being reached at 28 days; Poisson’s coefficient remained constant from 3.0% SCWTB; splitting tensile strength was maintained at around 4.7 MPa up to additions of 3.0% SCWTB; and the flexural strength of mixes containing 6.0% and 1.5% SCWTB was statistically equal, with a value near 6.1 MPa. Furthermore, all mechanical properties of the concrete except for flexural strength were improved with additions of SCWTB compared to raw crushed wind turbine blade, which apart from GFRP composite fibers contains approximately spherical polymer and balsa wood particles. Flexural strength was conditioned by the proportion of fibers, their dimensions, and their strength, which were almost identical for both waste types. SCWTB would be preferable for applications in which compression stresses predominate. Full article
Show Figures

Graphical abstract

17 pages, 5722 KB  
Article
Research on the Embedding Behavior of Ceramic Particles on the Surface of Epoxy Resin Anti-Skid Thin Layer of Pavement
by Jiaquan Yuan, Gang Zhou, Chaoliang Fu, Wenhong Duan, Yifan Zhang, Haoyang Huang, Weihong Jiang, Li Xiong, Huimei Li, Xiaohua Yang and Chuanqiang Li
Buildings 2024, 14(12), 3831; https://doi.org/10.3390/buildings14123831 - 29 Nov 2024
Cited by 1 | Viewed by 1074
Abstract
Colored polymer anti-skid thin layers are widely used on urban roads to enhance driving safety, improve road aesthetics, and mitigate the urban heat island effect. However, in thin layers constructed by the spreading method, the adhesion of cementitious material to the aggregate is [...] Read more.
Colored polymer anti-skid thin layers are widely used on urban roads to enhance driving safety, improve road aesthetics, and mitigate the urban heat island effect. However, in thin layers constructed by the spreading method, the adhesion of cementitious material to the aggregate is often weak. This leads to early-stage spalling of surface aggregates, thereby reducing the anti-skid performance of the layer. To investigate the factors contributing to spalling, this study examines the embedding behavior of ceramic particles and assesses how the fluidity of the cementitious material and aggregate shape characteristics influence the embedding depth. Using a rotational viscosity test, it is concluded that a cementitious mix ratio of adhesive/powder filler/sand filler = 1:0.5:1 or 1:0.5:1.5 facilitates effective aggregate embedding. Testing the embedding depth of aggregates with the same particle size across different cementitious materials revealed that higher cementitious viscosity results in a reduced aggregate embedding depth. Geometric parameter data for aggregate particles were extensively collected using an image acquisition device, and quantitative analysis identified the shape characteristics influencing the embedding depth. A gray correlation analysis determined that the impact of the shape characteristics on embedding depth follows the order of roundness factor > prism factor > axial coefficient. Full article
(This article belongs to the Special Issue Advances in Road Pavements)
Show Figures

Figure 1

Back to TopTop