Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = cement production line

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 4889 KB  
Article
Value Positioning and Spatial Activation Path of Modern Chinese Industrial Heritage: Social Media Data-Based Perception Analysis of Huaxin Cement Plant via the Four-Quadrant Model
by Zhengcong Wei, Yongning Xiong and Yile Chen
Buildings 2026, 16(3), 519; https://doi.org/10.3390/buildings16030519 - 27 Jan 2026
Viewed by 172
Abstract
Industrial heritage—particularly large modern cement plants—serves as a crucial witness to the architectural and technological evolution of modern urbanization. In Europe, North America, and East Asia, many decommissioned cement factories have been transformed into cultural venues, creative districts, or urban landmarks, while a [...] Read more.
Industrial heritage—particularly large modern cement plants—serves as a crucial witness to the architectural and technological evolution of modern urbanization. In Europe, North America, and East Asia, many decommissioned cement factories have been transformed into cultural venues, creative districts, or urban landmarks, while a greater number of sites still face the risks of functional decline and spatial disappearance. In China, early large-scale cement plants have received limited attention in international industrial heritage research, and their conservation and adaptive reuse practices remain underdeveloped. This study takes the Huaxin Cement Plant, founded in 1907, as the research object. As the birthplace of China’s modern cement industry, it preserves the world’s only complete wet-process rotary kiln production line, representing exceptional rarity and typological significance. Combining social media perception analysis with the Hidalgo-Giralt four-quadrant model, the study aims to clarify the plant’s value positioning and propose a design-oriented pathway for spatial activation. Based on 378 short videos and 75,001 words of textual data collected from five major platforms, the study conducts a value-tag analysis of public perceptions across five dimensions—historical, technological, social, aesthetic, and economic. Two composite indicators, Cultural Representativeness (CR) and Utilization Intensity (UI), are further established to evaluate the relationship between heritage value and spatial performance. The findings indicate that (1) historical and aesthetic values dominate public perception, whereas social and economic values are significantly underrepresented; (2) the Huaxin Cement Plant falls within the “high cultural representativeness/low utilization intensity” quadrant, revealing concentrated heritage value but insufficient spatial activation; (3) the gap between value cognition and spatial transformation primarily arises from limited public accessibility, weak interpretive narratives, and a lack of immersive experience. In response, the study proposes five optimization strategies: expanding public access, building a multi-layered interpretive system, introducing immersive and interactive design, integrating into the Yangtze River Industrial Heritage Corridor, and encouraging community co-participation. As a representative case of modern Chinese industrial heritage distinguished by its integrity and scarcity, the Huaxin Cement Plant not only enriches the understanding of industrial heritage typology in China but also provides a methodological paradigm for the “value positioning–spatial utilization–heritage activation” framework, bearing both international comparability and disciplinary methodological significance. Full article
Show Figures

Figure 1

17 pages, 1034 KB  
Article
Stochastic Analysis of the Social, Environmental and Financial Cost of Concrete Mixtures Containing Recycled Materials and Industrial Byproducts for Airport Pavement Construction Using the Triple Bottom Line Approach
by Loretta Newton-Hoare and Greg White
Buildings 2026, 16(1), 118; https://doi.org/10.3390/buildings16010118 - 26 Dec 2025
Viewed by 245
Abstract
With the growing trend of incorporating waste and industrial by-products in infrastructure, airport pavements built with sustainable materials are of increasing interest. This research developed six theoretical concrete mixtures for airport pavement and evaluated their financial, social and environmental cost within a stochastic [...] Read more.
With the growing trend of incorporating waste and industrial by-products in infrastructure, airport pavements built with sustainable materials are of increasing interest. This research developed six theoretical concrete mixtures for airport pavement and evaluated their financial, social and environmental cost within a stochastic triple bottom line framework. A Monte Carlo simulation was used to capture uncertainty in key parameters, particularly material transport distances, embodied carbon, and cost variability, allowing a probabilistic comparison of conventional and sustainable mixtures. The results showed that mixtures incorporating supplementary cementitious materials, recycled concrete aggregate and geopolymer cement consistently outperformed the ordinary Portland cement benchmark across all triple bottom line dimensions. Geopolymer concrete offered the greatest overall benefit, while the mixture containing blast furnace slag aggregate demonstrated how long haulage distances can significantly erode sustainability gains, highlighting the importance of locally available materials to sustainability. Overall, the findings provide quantitative evidence that substantial triple bottom line cost reductions are achievable within current airport pavement specifications, and even greater benefits are possible if specifications are expanded to include emerging low-carbon technologies such as geopolymer cement. These outcomes reinforce the need for performance-based specifications that permit the use of recycled materials and industrial by-products in pursuit of sustainable airport pavement practice. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 2193 KB  
Article
Recycling of Cement-Based and Biomass Ashes Waste Powders as Alternative Fillers for Hot Mix Asphalts: A Preliminary Laboratory Evaluation
by Piergiorgio Tataranni, Giulia Tarsi, Yunfei Guo, Paolino Caputo, Manuel De Rose, Cesare Oliviero Rossi and Rosolino Vaiana
Sustainability 2025, 17(19), 8799; https://doi.org/10.3390/su17198799 - 30 Sep 2025
Viewed by 664
Abstract
The construction sector has a prominent role in raw materials consumption and environmental depletion due to waste and emissions connected to the production of construction materials and construction/demolition operations. Thus, research is pushing to develop sustainable construction materials, mainly recycling waste and by-products. [...] Read more.
The construction sector has a prominent role in raw materials consumption and environmental depletion due to waste and emissions connected to the production of construction materials and construction/demolition operations. Thus, research is pushing to develop sustainable construction materials, mainly recycling waste and by-products. Following this trend, the present study explores the possible use of two different blends of cement-based waste powder and biomass ashes as filler for the production of asphalt concretes. The materials have been tested following the EN 13043 standard requirements for fillers for bituminous mixtures. Still, the basic performances of hot mix asphalts produced with the recycled materials have been evaluated on a laboratory scale. The physical, chemical, and mechanical characterization of the waste fillers and the bituminous mixtures showed advantages and downsides in the use of the recycled powders for hot mix asphalt production. Despite final performances in line with traditional hot mix asphalt, the chemical composition of the proposed fillers has a negative influence mainly on the water susceptibility of the mixture. However, the findings of the study open new perspectives on future possible applications of the recycled fillers in the road pavements sector. Full article
Show Figures

Figure 1

27 pages, 2408 KB  
Article
Analysis of the Environmental Compatibility of the Use of Porcelain Stoneware Tiles Manufactured with Waste Incineration Bottom Ash
by Luigi Acampora, Giulia Costa, Iason Verginelli, Francesco Lombardi, Claudia Mensi and Simone Malvezzi
Ceramics 2025, 8(3), 116; https://doi.org/10.3390/ceramics8030116 - 19 Sep 2025
Viewed by 742
Abstract
In line with circular economy principles and the reduction of primary material exploitation, waste-to-energy (WtE) by-products such as bottom ash (BA) are increasingly being used as raw materials in cement and ceramics manufacturing. However, it is critical to verify that the final product [...] Read more.
In line with circular economy principles and the reduction of primary material exploitation, waste-to-energy (WtE) by-products such as bottom ash (BA) are increasingly being used as raw materials in cement and ceramics manufacturing. However, it is critical to verify that the final product presents not only adequate technical properties but also that it does not pose negative impacts to the environment and human health during its use. This study investigates the environmental compatibility of the use of ceramic porcelain stoneware tiles manufactured with BA as partial replacement of traditional raw materials, with a particular focus on the leaching behavior of the tiles during their use, and also after crushing to simulate their characteristics at their end of life. To evaluate the latter aspect, compliance leaching tests were performed on crushed samples and compared with Italian End-of-Waste (EoW) thresholds for the use of construction and demolition waste as recycled aggregates. Whereas, to assess the environmental compatibility of the tiles during the utilization phase, a methodology based on the application of monolithic leaching tests to intact tiles, and the evaluation of the results through multi-scenario human health risk assessment and the analysis of the main mechanisms governing leaching at different stages, was employed. The results of the study indicate that the analyzed BA-based tiles showed no significant increase in the release of potential contaminants compared to traditional formulations and fully complied with End-of-Waste criteria. The results of the monolith tests used as input for site-specific risk assessment, simulating worst-case scenarios involving the potential contamination of the groundwater, indicated negligible risks to human health for both types of tiles, even considering very conservative assumptions. As for differences in the release mechanisms, tiles containing BA exhibited a shift toward depletion-controlled leaching and some differences in early element release compared to the ones with a traditional formulation. Full article
(This article belongs to the Special Issue Ceramics in the Circular Economy for a Sustainable World)
Show Figures

Figure 1

21 pages, 3874 KB  
Article
Utilizing Sakurajima Volcanic Ash as a Sustainable Partial Replacement for Portland Cement in Cementitious Mortars
by Joanna Julia Sokołowska
Sustainability 2025, 17(17), 7576; https://doi.org/10.3390/su17177576 - 22 Aug 2025
Cited by 1 | Viewed by 2650
Abstract
The present study explores the sustainable potential of volcanic ash sourced from the active Sakurajima volcano (Japan) as an eco-friendly alternative to Portland cement—a binder known for its high carbon emissions—in concrete and mortar production. The abundant pyroclastic material, currently a waste burden [...] Read more.
The present study explores the sustainable potential of volcanic ash sourced from the active Sakurajima volcano (Japan) as an eco-friendly alternative to Portland cement—a binder known for its high carbon emissions—in concrete and mortar production. The abundant pyroclastic material, currently a waste burden for the residents of Sakurajima and the Kagoshima Bay region, presents a unique opportunity for valorization in line with circular economy principles. Rather than treating this ash as a disposal problem, the research investigates its transformation into a valuable supplementary cementitious material (SCM), contributing to more sustainable construction practices. The investigation focused on the material characterization of the ash (including chemical composition, morphology, and PSD) and its pozzolanic activity index, which is a key indicator of its suitability as a cement replacement. Mortars were prepared with 25% of the commercial binder replaced by volcanic ash—both in its raw form and after mechanical activation—and tested for compressive strength after 28 and 90 days of water curing. Additional assessments included workability of the fresh mix (flow table test), apparent density, and flexural strength of the hardened composites. Tests results showed that the applied volcanic ash did not influence the workability of the mix and showed negligible effect on the apparent density (changes of up to 3.3%), although the mechanical strength was deteriorated (decrease by 15–33% after 7 days, and by 25–26% after 28 days). However, further investigation revealed that the simple mechanical grinding significantly enhances the pozzolanic reactivity of Sakurajima ash. The ground ash achieved a 28-day activity index of 81%, surpassing the 75% threshold set by EN 197-1 and EN 450-1 standards for type II mineral additives. These findings underscore the potential for producing low-carbon mortars and concretes using locally sourced volcanic ash, supporting both emissions reduction and sustainable resource management in construction. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Graphical abstract

32 pages, 6617 KB  
Article
Hyaluronan-Containing Injectable Magnesium–Calcium Phosphate Cements Demonstrated Improved Performance, Cytocompatibility, and Ability to Support Osteogenic Differentiation In Vitro
by Natalia S. Sergeeva, Polina A. Krokhicheva, Irina K. Sviridova, Margarita A. Goldberg, Dinara R. Khayrutdinova, Suraya A. Akhmedova, Valentina A. Kirsanova, Olga S. Antonova, Alexander S. Fomin, Ivan V. Mikheev, Aleksander V. Leonov, Pavel A. Karalkin, Sergey A. Rodionov, Sergey M. Barinov, Vladimir S. Komlev and Andrey D. Kaprin
Int. J. Mol. Sci. 2025, 26(14), 6624; https://doi.org/10.3390/ijms26146624 - 10 Jul 2025
Cited by 1 | Viewed by 1525
Abstract
Due to their biocompatibility, biodegradability, injectability, and self-setting properties, calcium–magnesium phosphate cements (MCPCs) have proven to be effective biomaterials for bone defect filling. Two types of MCPC powders based on the magnesium whitlockite or stanfieldite phases with MgO with different magnesium contents (20 [...] Read more.
Due to their biocompatibility, biodegradability, injectability, and self-setting properties, calcium–magnesium phosphate cements (MCPCs) have proven to be effective biomaterials for bone defect filling. Two types of MCPC powders based on the magnesium whitlockite or stanfieldite phases with MgO with different magnesium contents (20 and 60%) were synthesised. The effects of magnesium ions (Mg2+) on functional properties such as setting time, temperature, mechanical strength, injectability, cohesion, and in vitro degradation kinetics, as well as cytocompatibility in the MG-63 cell line and the osteogenic differentiation of BM hMSCs in vitro, were analysed. The introduction of NaHA into the cement liquid results in an increase in injectability of up to 83%, provides a compressive strength of up to 22 MPa, and shows a reasonable setting time of about 20 min without an exothermic reaction. These cements had the ability to support MG-63 cell adhesion, proliferation, and spread and the osteogenic differentiation of BM hMSCs in vitro, stimulating ALPL, SP7, and RUNX2 gene expression and ALPL production. The combination of the studied physicochemical and biological properties of the developed cement compositions characterises them as bioactive, cytocompatible, and promising biomaterials for bone defect reconstruction. Full article
Show Figures

Graphical abstract

7 pages, 1243 KB  
Communication
Preliminary Assessment of Quantitative Phase Analysis from Focal Construct Tomography
by Varsha Samuel, Daniel Spence, Liam Farmer, Simon Godber, Keith Rogers and Anthony Dicken
NDT 2025, 3(2), 13; https://doi.org/10.3390/ndt3020013 - 11 Jun 2025
Viewed by 838
Abstract
New methods for real-time materials phase identification based upon focal construct tomography (FCT) have been examined. Such quantitative assessment has significant potential in sectors where in-line analysis is required, including screening within aviation security. As a recent component of work programs developing FCT, [...] Read more.
New methods for real-time materials phase identification based upon focal construct tomography (FCT) have been examined. Such quantitative assessment has significant potential in sectors where in-line analysis is required, including screening within aviation security. As a recent component of work programs developing FCT, its capability for accurate, quantitative analysis has been assessed for the first time. Diffraction signatures from mixed-phase materials were acquired from an energy-dispersive FCT system running under normal operational conditions. A calibration curve was constructed from the spectra and subsequently employed to assess the composition of ‘blind’ samples. The results demonstrated that this approach was able to precisely predict the polymorphic phase composition of samples to ±5 wt%. Conclusions: The potential impact of these findings is significant and will enable applications of FCT beyond those requiring a phase identification to those necessitating quantification, such as counterfeit medicines, pharmaceutical quality assurance, aging of explosives, and cement production. Full article
Show Figures

Graphical abstract

40 pages, 10249 KB  
Review
Utilizing Agro-Waste as Aggregate in Cement Composites: A Comprehensive Review of Properties, Global Trends, and Applications
by Ivanka Netinger Grubeša, Dunja Šamec, Sandra Juradin and Marijana Hadzima-Nyarko
Materials 2025, 18(10), 2195; https://doi.org/10.3390/ma18102195 - 9 May 2025
Cited by 3 | Viewed by 3757
Abstract
Amid growing environmental concerns and the increasing demand for sustainable construction practices, the exploration of alternative materials in building applications has garnered significant attention. This paper provides a comprehensive review of the use of agricultural waste as an aggregate in cementitious composites, with [...] Read more.
Amid growing environmental concerns and the increasing demand for sustainable construction practices, the exploration of alternative materials in building applications has garnered significant attention. This paper provides a comprehensive review of the use of agricultural waste as an aggregate in cementitious composites, with a particular focus on palm kernel shells, coconut shells, hazelnut, peanut and pistachio shells, stone fruit shells and pits, date and grape seeds, rice husks, maize (corn) cobs, and sunflower seed shells. For each type of agro-waste, the paper discusses key physical and mechanical properties, global production volumes, and primary countries of origin. Furthermore, it offers an in-depth analysis of existing research on the incorporation of these materials into cement-based composites, highlighting both the advantages and limitations of their use. Although the integration of agro-waste into construction materials presents certain challenges, the vast quantities of agricultural residues generated globally underscore the urgency and potential of their reuse. In line with circular economy principles, this review advocates for the valorization of agro-waste through innovative and sustainable applications within the construction industry. Full article
(This article belongs to the Special Issue Advanced Materials and Processing Technologies)
Show Figures

Figure 1

16 pages, 10697 KB  
Article
Effect of Curing Temperature on Crack Resistance of Low-Heat Portland Cement Hydraulic Lining Concrete
by Shujun Chen, Xiangzhi Kong, Shuangxi Li and Bo Wei
Materials 2025, 18(7), 1618; https://doi.org/10.3390/ma18071618 - 2 Apr 2025
Viewed by 936
Abstract
As part of this study, mechanical property tests were carried out at different stages with different curing temperatures to elucidate the effect of temperature on the mechanical properties of concrete. The curing temperatures were laboratory curing temperature (standard curing at 20 °C) and [...] Read more.
As part of this study, mechanical property tests were carried out at different stages with different curing temperatures to elucidate the effect of temperature on the mechanical properties of concrete. The curing temperatures were laboratory curing temperature (standard curing at 20 °C) and variable temperature curing (simulated site ambient temperature curing) according to the actual temperature of previous construction sites. The compressive strength, split tensile strength, axial tensile strength, and modulus of elasticity values were tested, and the growth rates were calculated. According to previous experiments, the maturity indexes under two kinds of maintenance conditions were calculated based on the N-S maturity formula, F-P equivalent age calculation formula, and D-L equivalent age calculation formula proposed by the maturity theory. Moreover, logarithmic function, exponential function, and hyperbolic function fitting were carried out using the fitting software to study the developmental relationship between strength and maturity. The physical phase analysis of low-heat cement was performed using XRD and simultaneous thermal analysis, and pore structure analysis was conducted using the mercuric pressure method (MIP). We also conducted an SEM analysis of hydration products and the micromorphology of low-heat cement with 25% fly ash. Energetic spectroscopy analyzed the elemental content. In this study, it was found that temperature has a significant effect on the mechanical properties of concrete, with temperature having the greatest effect on splitting tensile strength. The strength of low-heat silicate cement concrete increases with maturity. The highest correlation coefficient was based on the hyperbolic function fit in the F-P equivalent age. The improved development of concrete strength in the later stages of the two curing conditions in this test indicates that low-heat cement is suitable for use in hydraulic tunnels. The low-heat cement generates a large number of C-S-H gels via C2S in the late stage, filling the internal pores, strengthening the concrete densification to make the structure more stable, guaranteeing the late development of concrete strength, and imparting a micro-expansive effect, which is effective for long-term crack resistance in hydraulic lining structures. Full article
Show Figures

Figure 1

36 pages, 14886 KB  
Article
Investigating Reinforcement Shadow Visibility on Formed Concrete Surfaces Using Visual Inspection and Colour Variation Analysis
by Ignas Šliogeris, Donatas Rekus, Svajūnas Juočiūnas, Ruben Paul Borg and Mindaugas Daukšys
Buildings 2025, 15(7), 1140; https://doi.org/10.3390/buildings15071140 - 31 Mar 2025
Viewed by 2177
Abstract
The research presented in this article seeks to identify the possible causes of reinforcement shadows (RS) on the surface of concrete test specimen produced under laboratory conditions. Different hypotheses about RS were selected based on factory practices and simulated in the study. The [...] Read more.
The research presented in this article seeks to identify the possible causes of reinforcement shadows (RS) on the surface of concrete test specimen produced under laboratory conditions. Different hypotheses about RS were selected based on factory practices and simulated in the study. The test specimens were cast horizontally in contact with steel form-facing surfaces coated with a water-soluble release agent. In addition, two scenarios were analysed during specimen production: reinforcing mesh was fixed using plastic spacers or tie wire. The analysis of the reinforcement shadows was based on visual inspection, taking photos, surface moisture content measurements, and colour variation analysis using the Natural Colour System. It was concluded that RS, which are typically characterized by darker lines, can be defined by the percentage of black colour present in the shadowed area compared to the percentage of black colour in the surrounding area. This percentage can be quickly assessed on a factory scale using digital colour readers that provide timely information. The reduced concrete cover thickness from 35 mm to 10 mm revealed light horizontal dark lines on the exposed surface. It was hypothesised that the gap of less than 10 mm between the reinforcing bars and the steel form-facing plate, along with the sieving effect of the fresh concrete, can retard the cement paste hydration process, resulting in unhydrated ferrite phases that contribute to the dark colour of the unhydrated cement. The release agent sprayed on the steel form-facing surface straight through the reinforcing mesh created a RS effect of the reinforcement on the exposed concrete surface. The absence of a release agent under steel rebars decreased the wettability at the interface between the formwork and fresh concrete, resulting in dark lines during the curing process. It is important to avoid such cases when manufacturing precast reinforced concrete elements. Quantitatively assessing RS and proposing a standardized method for calculation and categorization could be a new research direction in the future. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 2727 KB  
Article
Dynamic Simulation of Heat Distribution and Losses in Cement Kilns for Sustainable Energy Consumption in Cement Production
by Moses Charles Siame, Tawanda Zvarivadza, Moshood Onifade, Isaac N. Simate and Edward Lusambo
Sustainability 2025, 17(2), 553; https://doi.org/10.3390/su17020553 - 13 Jan 2025
Cited by 4 | Viewed by 4261
Abstract
Sustainable energy consumption in cement production involves practises and strategies aimed at reducing energy use and minimising environmental impact. The efficiency of a cement kiln is dependent on the kiln design, fuel type, and operating temperature. In this study, a dynamic simulation analysis [...] Read more.
Sustainable energy consumption in cement production involves practises and strategies aimed at reducing energy use and minimising environmental impact. The efficiency of a cement kiln is dependent on the kiln design, fuel type, and operating temperature. In this study, a dynamic simulation analysis is used to investigate heat losses and distribution within kilns with the aim of improving energy efficiency in cement production. This study used Computational Fluid Dynamics (CFD) with Conjugate Heat Transfer, Turbulent Flow, and the Realisable k−ϵ turbulence model to simulate heat transfer within the refractory and wall systems of the kiln, evaluate the effectiveness of these systems in managing heat losses, and establish the relationship between the heat transfer coefficient (HTC) and the velocities of solid and gas phases. The simulation results indicate that a temperature gradient from the kiln’s interior to its exterior is highly dependent on the effectiveness of refractory lining in absorbing and reducing heat transfer to the outer walls. The results also confirm that different thermal profiles exist for clinker and fuel gases, with clinker temperatures consistently peaking at approximately 1450 °C, an essential condition for optimal cement-phase formation. The results also indicate that phase velocities significantly influence heat absorption and transfer. Lower velocities, such as 0.2 m/s, lead to increased heat absorption, but also elevate heat losses due to prolonged exposure. The relationship between the heat transfer coefficient (HTC) and the velocities of solid and gas phases also indicates that higher velocities improve HTC and enhance overall heat transfer efficiency, reducing energy demand. Full article
(This article belongs to the Special Issue Advances in Sustainable Energy Technologies and Energy Systems)
Show Figures

Figure 1

21 pages, 6718 KB  
Article
A Two-Stage Distributionally Robust Optimization Model for Managing Electricity Consumption of Energy-Intensive Enterprises Considering Multiple Uncertainties
by Jiale Li, Zhaobin Du, Liao Yuan, Yuanping Huang and Juan Liu
Electronics 2024, 13(24), 5058; https://doi.org/10.3390/electronics13245058 - 23 Dec 2024
Cited by 1 | Viewed by 1560
Abstract
Energy-intensive enterprises (EIEs), as vital demand-side flexibility resources, can significantly enhance the power system’s ability to regulate demand by participating in demand response (DR). This helps alleviate supply pressures during tight demand–supply conditions, ensuring the system’s safe and stable operation. However, due to [...] Read more.
Energy-intensive enterprises (EIEs), as vital demand-side flexibility resources, can significantly enhance the power system’s ability to regulate demand by participating in demand response (DR). This helps alleviate supply pressures during tight demand–supply conditions, ensuring the system’s safe and stable operation. However, due to the current level of electricity management in EIEs, their participation in demand response has disrupted the continuity of production to some extent, which may hinder the sustainability of demand-side management mechanisms. To address this issue, this paper proposes a two-stage distributionally robust optimization (DRO) model for managing production electricity in EIEs, considering multiple uncertainties. First, a production electricity load model based on the state task network (STN) is developed, reflecting the characteristics of industrial production lines. Next, a two-stage DRO model for day-ahead and intra-day electricity management is formulated, integrating an uncertainty set for distributed generation output based on the Wasserstein distance and probabilistic constraints for the day-ahead DR capacity. Finally, a cement plant in western China is used as a case study to validate the effectiveness of the proposed model. The results show that the proposed model effectively guides EIE in participating in DR while optimizing electricity costs, enabling cost savings of up to 27.7%. Full article
(This article belongs to the Special Issue Integration of Distributed Energy Resources in Smart Grids)
Show Figures

Figure 1

37 pages, 3654 KB  
Review
Utilizing Agricultural Residues from Hot and Cold Climates as Sustainable SCMs for Low-Carbon Concrete
by M. M. Ahmed, A. Sadoon, M. T. Bassuoni and A. Ghazy
Sustainability 2024, 16(23), 10715; https://doi.org/10.3390/su162310715 - 6 Dec 2024
Cited by 13 | Viewed by 3846
Abstract
Supplementary cementitious materials (SCMs), such as fly ash, slag, and silica fume, predominantly derived from industrial waste, are widely utilized in concrete due to their proven ability to enhance both its mechanical and durability properties. Moreover, these SCMs play a crucial role in [...] Read more.
Supplementary cementitious materials (SCMs), such as fly ash, slag, and silica fume, predominantly derived from industrial waste, are widely utilized in concrete due to their proven ability to enhance both its mechanical and durability properties. Moreover, these SCMs play a crucial role in mitigating the carbon footprint of concrete by reducing its cement content, which is responsible for approximately 8% of global CO2 emissions. However, the sustainability and long-term availability of conventional SCMs are increasingly under scrutiny, particularly in light of the impending shutdown of coal-fired power plants, which threatens the future supply of fly ash. As a result, the concrete industry faces an urgent need to identify alternative SCMs to maintain and advance eco-friendly practices. This article stands out from previous reviews by employing a bibliometric analysis to comprehensively explore the use of commonly utilized agricultural ashes (rice husk, palm oil, and sugarcane bagasse), prevalent in tropical and subtropical regions as SCMs. Additionally, it provides valuable insights into the potential of cold-weather crops (e.g., barley, canola, and oat) that demonstrate promising pozzolanic reactivity. The study critically evaluates and compares the physical and chemical characteristics of agricultural ashes from both hot and cold climates, assessing their influence on the fresh, mechanical, and durability properties of concrete. It also addresses the challenges and limitations associated with their use. Furthermore, in line with the United Nations and Environmental Protection Agency (EPA) sustainability goals, the review evaluates the environmental benefits of using agricultural ashes, emphasizing waste reduction, resource conservation, and energy savings. This comprehensive review paper should deepen the understanding of agricultural ashes as sustainable SCMs, providing a strategic direction for the construction industry to adopt low-carbon concrete solutions across various climates while promoting advancements in production methods, performance standards, and emerging technologies such as hybrid materials and 3D printing. Full article
Show Figures

Figure 1

14 pages, 7939 KB  
Article
The Use of Recycled Cement-Bonded Particle Board Waste in the Development of Lightweight Biocomposites
by Girts Bumanis, Pauls P. Argalis, Maris Sinka, Aleksandrs Korjakins and Diana Bajare
Materials 2024, 17(23), 5890; https://doi.org/10.3390/ma17235890 - 1 Dec 2024
Cited by 3 | Viewed by 2288
Abstract
Cement-bonded particle boards are gaining popularity globally due to their durability, strength, and, more importantly, environmental sustainability. The increasing demand for these materials has also created the necessity for the sustainable recycling of these materials. In this study, the potential to recycle wood-wool [...] Read more.
Cement-bonded particle boards are gaining popularity globally due to their durability, strength, and, more importantly, environmental sustainability. The increasing demand for these materials has also created the necessity for the sustainable recycling of these materials. In this study, the potential to recycle wood-wool cement board (WWCB) waste into new lightweight insulation biocomposite material was examined. The waste WWCBs were crushed and separated into a fine aggregate fraction, and WWCB production line residues were also collected and compared. The crushed WWCBs were used to produce biocomposites with various compaction ratios and different binder-to-aggregate ratios. To improve their thermal properties and reduce their density, hemp shives were used to partially replace the recycled WWCB aggregate. Their physical, mechanical (compressive and flexural strength), and thermal properties were evaluated, and the drying process of the biocomposites was characterized. The results showed that the density of the produced biocomposites ranged from 390 to 510 kg/m3. The reduction in density was limited due to the presence of cement particles in the aggregate. The incorporation of hemp shives allowed us to reduce the density below 200 kg/m3. The thermal conductivity of the biocomposites ranged from 0.054 to 0.084 W/(mK), placing the material within the effective range of natural biocomposites. This research has demonstrated that industrially produced WWCBs can be successfully recycled to produce sustainable lightweight cement-bonded insulation materials. Full article
(This article belongs to the Special Issue Recycling and Sustainability of Industrial Solid Waste)
Show Figures

Figure 1

17 pages, 3011 KB  
Article
New Eco-Cements Made with Marabou Weed Biomass Ash
by Moisés Frías, Ana María Moreno de los Reyes, Ernesto Villar-Cociña, Rosario García, Raquel Vigil de la Villa and Milica Vidak Vasić
Materials 2024, 17(20), 5012; https://doi.org/10.3390/ma17205012 - 14 Oct 2024
Cited by 10 | Viewed by 1722
Abstract
Biomass ash is currently attracting the attention of science and industry as an inexhaustible eco-friendly alternative to pozzolans traditionally used in commercial cement manufacture (fly ash, silica fume, natural/calcined pozzolan). This paper explores a new line of research into Marabou weed ash (MA), [...] Read more.
Biomass ash is currently attracting the attention of science and industry as an inexhaustible eco-friendly alternative to pozzolans traditionally used in commercial cement manufacture (fly ash, silica fume, natural/calcined pozzolan). This paper explores a new line of research into Marabou weed ash (MA), an alternative to better-known conventional agro-industry waste materials (rice husk, bagasse cane, bamboo, forest waste, etc.) produced in Cuba from an invasive plant harvested as biomass for bioenergy production. The study entailed full characterization of MA using a variety of instrumental techniques, analysis of pozzolanic reactivity in the pozzolan/lime system, and, finally its influence on the physical and mechanical properties of binary pastes and mortars containing 10% and 20% MA replacement content. The results indicate that MA has a very low acid oxide content and a high loss on ignition (30%) and K2O content (6.9%), which produces medium–low pozzolanic activity. Despite an observed increase in the blended mortars’ total and capillary water absorption capacity and electrical resistivity and a loss in mechanical strength approximately equivalent to the replacement percentage, the 10% and 20% MA blended cements meet the regulatory chemical, physical, and mechanical requirements specified. Marabou weed ash is therefore a viable future supplementary cementitious material. Full article
(This article belongs to the Special Issue Advances in Rock and Mineral Materials)
Show Figures

Figure 1

Back to TopTop