Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = cement expansive agent

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 9058 KB  
Article
Mechanical, Transportation, and Microstructural Characteristics and Application of High-Porosity Coal Mine Solid Waste Filling Materials: A Case Study
by Qiang Sun, Hongzhen Nie, Yong Han and Rui Zhao
Materials 2025, 18(22), 5098; https://doi.org/10.3390/ma18225098 - 10 Nov 2025
Viewed by 160
Abstract
The disposal of coal mine solid waste has always been a challenge in the coal mining production process, and the research and development of low-cost and high-performance filling materials is a prerequisite for achieving large-scale disposal of coal mine solid waste. The effects [...] Read more.
The disposal of coal mine solid waste has always been a challenge in the coal mining production process, and the research and development of low-cost and high-performance filling materials is a prerequisite for achieving large-scale disposal of coal mine solid waste. The effects of water–cement ratio, foaming agent dilution ratio, foam agent content, foam stabilizer content, and gypsum content on the mechanical properties, transportation characteristics, and microstructure of cement foam filling materials were studied by laboratory test methods. The optimal ratio of cement foam filling material for comprehensive performance was determined. On this basis, the mechanism of influence of fly ash content, gangue content, and gangue particle size on the mechanics, transportation characteristics, and microstructure of foam filling materials was further studied. The experimental results show that at fly ash contents below 30%, gangue content is less than 30%. The particle size of gangue is less than 0.6 mm, and the expansion ratio of coal mine solid waste foam filling material is about three times, which has good mechanical properties and transportation performance. The on-site test results show that the control effect of the surrounding rock in the goaf is good, achieving safe and efficient mining of the working face. Full article
(This article belongs to the Special Issue Low-Carbon Construction and Building Materials)
Show Figures

Figure 1

31 pages, 21231 KB  
Article
Comparative Analysis of Chemical Activators and Expansive Agents for Aeolian Sand Stabilization Using Industrial Solid Waste-Based Geopolymers
by Zilu Xie, Zengzhen Qian, Xianlong Lu, Hao Wang and Phatyoufy Lai
Gels 2025, 11(9), 713; https://doi.org/10.3390/gels11090713 - 4 Sep 2025
Viewed by 702
Abstract
Aeolian sand is the primary geological material for construction in desert regions, and its stabilization with industrial solid wastes-based geopolymer (ISWG) provides an eco-friendly treatment replacing cement. This study comparatively investigated the enhancement effects of chemical activators and expansive agents on compressive strength [...] Read more.
Aeolian sand is the primary geological material for construction in desert regions, and its stabilization with industrial solid wastes-based geopolymer (ISWG) provides an eco-friendly treatment replacing cement. This study comparatively investigated the enhancement effects of chemical activators and expansive agents on compressive strength of aeolian sand stabilized by ISWG (ASIG). Three chemical activators—NaOH, Ca(OH)2, and CaCl2—along with two expansive agents—desulfurized gypsum and bentonite—were considered. Through X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, mercury intrusion porosimetry and pH values tests, the enhancement mechanisms of the additives on ASIG were elucidated. Results demonstrate that the expansive agent exhibits significantly superior strengthening effects on ASIG compared to the widely applied chemical activators. Chemical activators promoted ISWs dissolution and hydration product synthesis, thereby densifying the hydration product matrix but concurrently enlarged interparticle pores. Desulfurized gypsum incorporation induced morphological changes in ettringite, and excessive desulfurized gypsum generated substantial ettringite that disrupted gel matrix. In contrast, bentonite demonstrated superior pore-filling efficacy while densifying gel matrix through a compaction effect. These findings highlight bentonite superior compatibility with the unique microstructure of aeolian sand compared to conventional alkaline activators or expansive agents, and better effectiveness in enhancing the strength of ASIG. Full article
(This article belongs to the Special Issue Development and Applications of Advanced Geopolymer Gel Materials)
Show Figures

Figure 1

16 pages, 2352 KB  
Article
Use of Expansive Agents to Increase the Sustainability and Performance of Heat-Cured Concretes
by José Luis García Calvo and Pedro Carballosa
Buildings 2025, 15(17), 3128; https://doi.org/10.3390/buildings15173128 - 1 Sep 2025
Viewed by 494
Abstract
Heat-curing processes are often used to ensure the production rate of precast concrete elements, as this process increases the early strength of the material. However, the increase in curing temperature can negatively affect the final mechanical properties since cracking, and especially high porosity, [...] Read more.
Heat-curing processes are often used to ensure the production rate of precast concrete elements, as this process increases the early strength of the material. However, the increase in curing temperature can negatively affect the final mechanical properties since cracking, and especially high porosity, may occur under these conditions. In order to compensate for the expected loss in mechanical and durability-related properties, the cement content is typically increased. This solution raises the cost of the final product and reduces its sustainability. Thus, in this study, the development of expansive self-compacting concretes (SCCs) is proposed to achieve higher final mechanical properties without increasing cement contents. The mechanical properties, expansive performance, and porous microstructure have been evaluated under different curing regimes. The obtained results show that it is possible to obtain similar or even better mechanical performance in expansive concretes cured at high temperatures than in those cured in standard conditions, particularly when using ettringite-based expansive agents (EAs). Moreover, the use of limestone filler (LF) proved to be more suitable than the use of fly ashes in the working conditions evaluated in the present study. In this sense, the compressive strength at 28 days of SCC with LF and ettringite-based EAs is 4.3% higher than the one obtained under standard curing; moreover, the total porosity is reduced (5%), and the drying shrinkage is also limited. These aspects have not been previously reported in non-expansive heat-cured concretes and represent a unique opportunity to reduce the cement content and, therefore, the carbon footprint of precast concretes without reducing their mechanical properties. When using CaO-based EAs, the results are also better than those of non-expansive SCC, although the improvement is less pronounced than in the previous case. Full article
Show Figures

Figure 1

19 pages, 14190 KB  
Article
A Comprehensive Evaluation Method for Cement Slurry Systems to Enhance Zonal Isolation: A Case Study in Shale Oil Well Cementing
by Xiaoqing Zheng, Weitao Song, Xiutian Yang, Jian Liu, Tao Jiang, Xuning Wu and Xin Liu
Energies 2025, 18(15), 4138; https://doi.org/10.3390/en18154138 - 4 Aug 2025
Viewed by 569
Abstract
Due to post-cementing hydraulic fracturing and other operational stresses, inadequate mechanical properties or suboptimal design of the cement sheath can lead to tensile failure and microcrack development, compromising both hydrocarbon recovery and well integrity. In this study, three field-deployed cement slurry systems were [...] Read more.
Due to post-cementing hydraulic fracturing and other operational stresses, inadequate mechanical properties or suboptimal design of the cement sheath can lead to tensile failure and microcrack development, compromising both hydrocarbon recovery and well integrity. In this study, three field-deployed cement slurry systems were compared on the basis of their basic mechanical properties such as compressive and tensile strength. Laboratory-scale physical simulations of hydraulic fracturing during shale oil production were conducted, using dynamic permeability as a quantitative indicator of integrity loss. The experimental results show that evaluating only basic mechanical properties is insufficient for cement slurry system design. A more comprehensive mechanical assessment is re-quired. Incorporation of an expansive agent into the cement slurry system can alleviate the damage caused by the microannulus to the interfacial sealing performance of the cement sheath, while adding a toughening agent can alleviate the damage caused by tensile cracks to the sealing performance of the cement sheath matrix. Through this research, a microexpansive and toughened cement slurry system, modified with both expansive and toughening agents, was optimized. The expansive agent and toughening agent can significantly enhance the shear strength, the flexural strength, and the interfacial hydraulic isolation strength of cement stone. Moreover, the expansion agents mitigate the detrimental effects of microannulus generation on the interfacial sealing, while the toughening agents alleviate the damage caused by tensile cracking to the bulk sealing performance of the cement sheath matrix. This system has been successfully implemented in over 100 wells in the GL block of Daqing Oilfield. Field application results show that the proportion of high-quality well sections in the horizontal section reached 88.63%, indicating the system’s high performance in enhancing zonal isolation and cementing quality. Full article
Show Figures

Figure 1

13 pages, 1606 KB  
Article
The Correlation of Microscopic Particle Components and Prediction of the Compressive Strength of Fly-Ash-Based Bubble Lightweight Soil
by Yaqiang Shi, Hao Li, Hongzhao Li, Zhiming Yuan, Wenjun Zhang, Like Niu and Xu Zhang
Buildings 2025, 15(15), 2674; https://doi.org/10.3390/buildings15152674 - 29 Jul 2025
Viewed by 360
Abstract
Fly-ash-based bubble lightweight soil is widely used due to its environmental friendliness, load reduction, ease of construction, and low costs. In this study, 41 sets of 28 d compressive strength data on lightweight soils with different water–cement ratios, blowing agent dosages, and fly [...] Read more.
Fly-ash-based bubble lightweight soil is widely used due to its environmental friendliness, load reduction, ease of construction, and low costs. In this study, 41 sets of 28 d compressive strength data on lightweight soils with different water–cement ratios, blowing agent dosages, and fly ash dosages were collected through a literature search and indoor tests. Using the compressive strength index and SEM tests, the correlation between the mix ratio design and the microscopic particle components was investigated. The findings were as follows: carbonation reactions occurred in lightweight soil during the maintenance process, and the particles were spherical; increasing the dosage of blowing agent increased the soil’s porosity and pore diameter, leading to the formation of through-holes and reducing the compressive strength and mobility; increasing the fly ash dosage and water–cement ratio increased the soil’s mobility but reduced its compressive strength; and the strength decreased significantly when the fly ash dosage was more than 16% (e.g., the strength at a 20% dosage was 17.8% lower than that at a 15% dosage). Feature importance analysis showed that the water–cement ratio (57.7%), fly ash dosage (30.9%), and blowing agent dosage (11.1%) had a significant effect on strength. ExtraTrees, LightGBM, and Bayesian-optimized Random Forest models were used for 28d strength prediction with coefficients of determination (R2) of 0.695, 0.731, and 0.794, respectively. The Bayesian-optimized Random Forest model performed optimally in terms of the mean square error (MSE), root mean square error (RMSE), and mean absolute error (MAE), and the prediction performance was best. The accuracy of the model is expected to be further improved with expansions in the database. A 28 d compressive strength prediction platform for fly-ash-based bubble lightweight soil was ultimately developed, providing a convenient tool for researchers and engineers to predict material properties and mix ratios. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 5153 KB  
Article
Macro- and Micro-Analysis of Factors Influencing the Performance of Sustained-Release Foamed Cement Materials
by Yijun Chen, Shengyu Wang, Yu Zhao, Pan Guo, Lei Zhang, Yingchun Cai, Jiandong Wei and Heng Liu
Materials 2025, 18(14), 3330; https://doi.org/10.3390/ma18143330 - 15 Jul 2025
Viewed by 518
Abstract
This paper addresses the issues of insufficient expansion force, low early strength (1-day compressive strength < 1.5 MPa), and poor toughness (flexural strength < 0.8 MPa) in traditional chemical foamed cement used for road grouting repair. By combining single-factor gradient experiments with microscopic [...] Read more.
This paper addresses the issues of insufficient expansion force, low early strength (1-day compressive strength < 1.5 MPa), and poor toughness (flexural strength < 0.8 MPa) in traditional chemical foamed cement used for road grouting repair. By combining single-factor gradient experiments with microscopic mechanism analysis, the study systematically investigates the performance modulation mechanisms of controlled-release foamed cement using additives such as heavy calcium powder (0–20%), calcium chloride (0.2–1.2%), latex powder (0.2–1.2%), and polypropylene fiber (0.2–0.8%). The study innovatively employs a titanium silicate coupling agent coating technique (with the coating agent amounting to 25% of the catalyst’s mass) to delay foaming by 40 s. Scanning electron microscopy (SEM) and pore structure analysis reveal the microscopic essence of material performance optimization. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

22 pages, 16538 KB  
Article
Experimental Study on Interface Bonding Performance of Frost-Damaged Concrete Reinforced with Yellow River Sedimentary Sand Engineered Cementitious Composites
by Binglin Tan, Ali Raza, Ge Zhang and Chengfang Yuan
Materials 2025, 18(14), 3278; https://doi.org/10.3390/ma18143278 - 11 Jul 2025
Cited by 1 | Viewed by 618
Abstract
Freeze–thaw damage is a critical durability challenge in cold climates that leads to surface spalling, cracking, and degradation of structural performance. In northern China, the severity of winter conditions further accelerates the degradation of concrete infrastructure. This study investigates the reinforcement of frost-damaged [...] Read more.
Freeze–thaw damage is a critical durability challenge in cold climates that leads to surface spalling, cracking, and degradation of structural performance. In northern China, the severity of winter conditions further accelerates the degradation of concrete infrastructure. This study investigates the reinforcement of frost-damaged concrete using engineered cementitious composites (ECC) prepared with Yellow River sedimentary sand (YRS), employed as a 100% mass replacement for quartz sand to promote sustainability. The interface bonding performance of ECC-C40 specimens was evaluated by testing the impact of various surface roughness treatments, freeze–thaw cycles, and interface agents. A multi-factor predictive formula for determining interface bonding strength was created, and the bonding mechanism and model were examined through microscopic analysis. The results show that ECC made with YRS significantly improved the interface bonding performance of ECC-C40 specimens. Specimens treated with a cement expansion slurry as the interface agent and those subjected to the splitting method for surface roughness achieves the optimal reinforced condition, exhibited a 27.57%, 35.17%, 43.57%, and 42.92% increase in bonding strength compared to untreated specimens under 0, 50, 100, and 150 cycles, respectively. Microscopic analysis revealed a denser interfacial microstructure. Without an interface agent, the bond interface followed a dual-layer, three-zone model; with the interface agent, a three-layer, three-zone model was observed. Full article
Show Figures

Graphical abstract

18 pages, 5902 KB  
Article
Effect of Combined MgO Expansive Agent and Rice Husk Ash on Deformation and Strength of Post-Cast Concrete
by Feifei Jiang, Yijiang Xing, Wencong Deng, Qi Wang, Jialei Wang and Zhongyang Mao
Materials 2025, 18(12), 2815; https://doi.org/10.3390/ma18122815 - 16 Jun 2025
Cited by 1 | Viewed by 580
Abstract
This study investigates the effects of the combined addition of MgO expansive agent (MEA) and rice husk ash (RHA) on the performance of concrete. Results show that MEA absorbs water and competes with superplasticizers for adsorption, reducing early-age fluidity. In the later stages, [...] Read more.
This study investigates the effects of the combined addition of MgO expansive agent (MEA) and rice husk ash (RHA) on the performance of concrete. Results show that MEA absorbs water and competes with superplasticizers for adsorption, reducing early-age fluidity. In the later stages, its reaction with RHA generates M-S-H gel, accelerating slump loss. At early ages (up to 7 days), due to the slow hydration of MEA and partial replacement of cement, fewer hydration products are formed. Additionally, the pozzolanic reaction of RHA has not yet developed, resulting in the low early strength of concrete. In the later stages, Mg(OH)2 fills pores and enhances compactness, while the pozzolanic reaction of RHA further optimizes the pore structure. The internal curing effect also provides the moisture needed for continued MEA hydration, significantly improving later-age strength. Moreover, in the post-cast strip of a tall building, the internal curing effect of RHA ensures the effective shrinkage compensation by MEA under low water-to-cement ratio conditions. The restraint provided by reinforcement enhances the pore-filling effect of Mg(OH)2, improving concrete compactness and crack resistance, ultimately boosting long-term strength and durability. Full article
Show Figures

Figure 1

16 pages, 3203 KB  
Article
Cement–Industrial Waste Slag-Based Synergistic Preparation of Flowable Solidified Soil: Mechanisms and Process Optimization
by Hang Yu, Dongxing Wang and Yuhao Shi
Appl. Sci. 2025, 15(11), 5964; https://doi.org/10.3390/app15115964 - 26 May 2025
Viewed by 646
Abstract
In order to study the cement–industrial waste-based synergistic curing of silt soil, orthogonal design tests were used to prepare a new curing agent using cement, fly ash, blast furnace slag, and phosphogypsum as curing materials. In order to evaluate the cement–industrial waste-cured soils, [...] Read more.
In order to study the cement–industrial waste-based synergistic curing of silt soil, orthogonal design tests were used to prepare a new curing agent using cement, fly ash, blast furnace slag, and phosphogypsum as curing materials. In order to evaluate the cement–industrial waste-cured soils, unconfined compressive strength tests, fluidity tests, wet and dry cycle tests, and electron microscope scanning tests were carried out. The mechanical properties and microstructure of the cement–industrial slag were revealed and used to analyze the curing mechanism. The results showed that, among the cement–industrial wastes, cement and blast furnace slag had a significant effect on the unconfined compressive strength of the specimens, and the optimal ratio for early strength was cement–fly ash–slag–phosphogypsum = 1:0.11:0.44:0.06; the optimal ratio for late strength was cement–fly ash–slag–phosphogypsum = 1:0.44:0.44:0.06. In the case of a 140% water content, the 28d compressive strengths of curing agent Ratios I and II were 550.3 kPa and 586.5 kPa, respectively. When a polycarboxylic acid water-reducing agent was mixed at 6.4%, the mobilities of curing agent Ratios I and II increased by 32.1% and 35.8%, and the 28d compressive strengths were 504.1 kPa and 548.8 kPa, respectively. When calcium chloride was incorporated at 1.5%, the early strength of the cured soil increased by 33% and 29.1% compared to that of the unadulterated case year on year, and the mobility was almost unchanged. From microanalysis, it was found that the cement–industrial waste produced the expansion hydration products calcium alumina (AFt) and calcium silicate (C-S-H) during the hydration process. The results of this study provide a certain basis and reference value for the use of marine soft soil as a fluid filling material. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

15 pages, 4312 KB  
Article
Insights into Hydration Kinetics of Cement Pastes Evaluated by Low-Field Nuclear Magnetic Resonance: Effects of Super-Absorbent Polymer as Internal Curing Agent and Calcium Oxide as Expansive Agent
by Meixin Liu, Yuan Hu, Jing Li, Xiaolin Liu, Huiwen Sun, Yunfei Di, Xia Wu and Junyi Zhang
Materials 2025, 18(4), 836; https://doi.org/10.3390/ma18040836 - 14 Feb 2025
Cited by 2 | Viewed by 1033
Abstract
Understanding the hydration kinetics of cement paste is essential for adjusting the early-age performance of concrete. Low-field nuclear magnetic resonance (LF-NMR) has emerged as an innovative technique to evaluate cement hydration progress by analyzing the evolution of transverse relaxation time (T2 [...] Read more.
Understanding the hydration kinetics of cement paste is essential for adjusting the early-age performance of concrete. Low-field nuclear magnetic resonance (LF-NMR) has emerged as an innovative technique to evaluate cement hydration progress by analyzing the evolution of transverse relaxation time (T2) signals. This study provides insights into the influence of a super-absorbent polymer (SAP) as an internal curing agent and calcium oxide (CaO) as an expansive agent (EA) on LF-NMR spectroscopy of cement paste for the first time. The chemical compositions of the cement and CaO-based EA were determined by X-ray fluorescence, while the morphological characterizations of the cement, SAP and CaO-based EA materials were characterized by scanning electron microscopy. Based on the extreme points in the first-order derivatives of the T2 signal maximum amplitude curve, the hydration progress was analyzed and identified with four stages in detail. The results showed that the use of the SAP with a higher content retarded the hydration kinetics more evidently at a very early age, thus prolonging the duration of the induction and acceleration stages. The use of the CaO-based EA shortened the induction, acceleration and deceleration stages, which verified its promotion of hydration kinetics in the presence of the SAP. The combination of 3 wt% SAP and 2 wt% CaO consumed more water content synergistically in the first 100 h by hydration reactions. These findings revealed the roles of SAP and CaO-based EA (commonly adopted for low-shrinkage concrete) in adjusting hydration parameters and the microstructure evolution of cement-based materials, which would further offer fundamental knowledge for the early-age cracking control of concrete structures. Full article
Show Figures

Figure 1

14 pages, 3181 KB  
Article
Influence of PEA on Volume Stability of Cement-Based Grouting Materials and Its Mechanism
by Zheng Che, Tian-Liang Wang, Zheng-Guo Zhou, Shuo Wang and Xin-Wei Ma
Materials 2025, 18(4), 749; https://doi.org/10.3390/ma18040749 - 8 Feb 2025
Cited by 3 | Viewed by 773
Abstract
Traditional expansive agents often fail to address early-stage cracking issues of grouting. A plastic expansive agent (PEA) can generate evenly distributed and closely packed microbubbles in the cement-basted grouting materials during the grout’s setting process to cause volume expansion. However, its expansion mechanism [...] Read more.
Traditional expansive agents often fail to address early-stage cracking issues of grouting. A plastic expansive agent (PEA) can generate evenly distributed and closely packed microbubbles in the cement-basted grouting materials during the grout’s setting process to cause volume expansion. However, its expansion mechanism is still unclear, and this restricts its practical application in engineering. Thus, the effects of PEA on the volume stability of grouting were evaluated in this research, and its mechanism was analyzed by setting time, pH, compressive strength, and bubble spacing coefficient. The results indicated that an increase in PEA content enhanced the volume expansion rate of the grout, while the bubble spacing coefficient gradually decreased and air contents increased. However, it was not advisable to blindly increase its contents. A higher content could lead to a less dense pore structure and a decrease in compressive strength. Therefore, the optimal content for PEA was approximately between 0.04% and 0.06%. Additionally, the expansion process of PEA was related to cement hydration. Therefore, by adjusting the mixture proportion, its expansion process could be designed to exhibit microexpansion properties. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

30 pages, 17875 KB  
Article
Design and Performance Evaluation of a Cementitious Repair Grouting Mortar for Cement Pavement Slab Cavity
by Sibo Huang, Chong Li and Zejie Zhang
Buildings 2024, 14(12), 4083; https://doi.org/10.3390/buildings14124083 - 23 Dec 2024
Cited by 1 | Viewed by 1601
Abstract
To address the severe damage caused by voids beneath cement concrete pavement slabs, which compromise pavement performance and lifespan, there is an urgent need to develop an economical and efficient grouting material for slab void repair. This study employed a two-step orthogonal experiment [...] Read more.
To address the severe damage caused by voids beneath cement concrete pavement slabs, which compromise pavement performance and lifespan, there is an urgent need to develop an economical and efficient grouting material for slab void repair. This study employed a two-step orthogonal experiment design (OED) method to optimize the composition of grouting material. Results show that the plain cement mortar achieves the best flowability, setting time, compressive strength, or flexural strength when the water-to-binder ratio is 0.375, with 20% quartz sand, 2% coal ash, and 5% ground calcium carbonate. For the high-performance cement mortar developed, the optimal water-to-binder ratio is 0.35, with 0.5% redispersible latex powder, 0.2% polypropylene fiber, 0.6% water-reducing agent, 0.8% early-strength agent, and 2.0% expansion agent. Under these optimal conditions, the grouting material with a flowability of 15 s has a compressive strength and flexural strength of 76.98 MPa and 11.89 MPa, respectively, and achieves 77.4% of its 28-day compressive strength and 94.0% of its 28-day flexural strength by day 3. This grouting material also possesses a slight expansion within 0.1% at 3, 7, and 28 days, categorizing it as a micro-expansion mortar. The bond strength at the mortar-concrete interface exceeds the tensile strength of the mortar itself, ensuring no debonding at the interface before grouting material failure. The XRD, SEM, and infrared spectra results explain the early strength development mechanism of this cement mortar. Full article
(This article belongs to the Special Issue Research on Advanced Materials in Road Engineering)
Show Figures

Figure 1

17 pages, 4150 KB  
Article
Relationship Between Expansion and Strength of Cement Paste with CaO-Based Expansive Agent
by Tengfei Hua, Zhiwei Cao, Shijun Zhang and Rongxin Guo
Materials 2024, 17(24), 6125; https://doi.org/10.3390/ma17246125 - 14 Dec 2024
Cited by 3 | Viewed by 1174
Abstract
In order to explore the intrinsic relationship between the expansion and strength of cementitious materials with CaO-based expansion agent (CEA), the effects of CEA on the expansion rate, strength, microstructure, and hydration products of cement paste were studied. The interaction mechanism between the [...] Read more.
In order to explore the intrinsic relationship between the expansion and strength of cementitious materials with CaO-based expansion agent (CEA), the effects of CEA on the expansion rate, strength, microstructure, and hydration products of cement paste were studied. The interaction mechanism between the expansion rate and compressive strength of cement paste with CEA was discussed. The results show that the addition of CEA increases the expansion rate, porosity, and hydration degree of cement paste while reducing the compactness and compressive strength of cement paste. As the CEA dosage increases, the expansion rate of cement paste gradually increases. During the expansion of cement paste, microcracks may occur. The larger the expansion rate, the more microcracks there are, and the compressive strength decreases linearly with the increase in the expansion rate. When the CEA dosage is the same, the expansion rate of cement paste gradually increases with the increase of mineral admixture content, and the expansion rate decreases linearly with the increase of compressive strength. Full article
Show Figures

Figure 1

23 pages, 15251 KB  
Article
Strength Properties and Microscopic Experimental Study of Modified Sawdust Based on Solid Waste Synergistic Utilization
by Yu Cheng, Na Jiang, Wentong Wang and Lu Jin
Materials 2024, 17(23), 5808; https://doi.org/10.3390/ma17235808 - 27 Nov 2024
Viewed by 1120
Abstract
Sawdust is the cutting tailings produced during stone processing, which is difficult to deal with and has a huge stock. Therefore, it is particularly important to enhance the comprehensive utilization of sawdust. The aim of this study was to synergistically utilize sawdust with [...] Read more.
Sawdust is the cutting tailings produced during stone processing, which is difficult to deal with and has a huge stock. Therefore, it is particularly important to enhance the comprehensive utilization of sawdust. The aim of this study was to synergistically utilize sawdust with other industrial wastes (fly ash, silt, and red mud), add cement as a curing agent to prepare modified sawdust, and analyze its performance through an unconfined compressive strength test, dry and wet cycle tests, and SEM. The results showed that the compressive strength of modified sawdust with different solid waste dosages was more than 2.5 MPa after 7 days of maintenance, the strength was basically more than 4 MPa after 28 days of maintenance, and 8% solid waste dosage had the best effect. In addition, the modified saw mud with 8% fly-ash dosage had superior wet and dry cycle resistance, with expansion and shrinkage lower than 0.5% and good stability. This study provides a new idea for the synergistic utilization of saw mud and other solid wastes, and it is recommended to consider 8% solid waste dosage to optimize the performance in practical applications. Full article
Show Figures

Figure 1

21 pages, 7718 KB  
Article
Study on Performance and Engineering Application of Novel Expansive Superfine Cement Slurry
by Xiao Feng, Xiaowei Cao, Lianghao Li, Zhiming Li, Qingsong Zhang, Wen Sun, Benao Hou, Chi Liu and Zhenzhong Shi
Materials 2024, 17(22), 5597; https://doi.org/10.3390/ma17225597 - 15 Nov 2024
Cited by 5 | Viewed by 1235
Abstract
Superfine cement is widely used in building reinforcement and repair, special concrete manufacturing, and environmental protection engineering due to its high toughness, high durability, good bonding strength, and environmental friendliness. However, there are some problems in superfine cement slurry, such as high bleeding [...] Read more.
Superfine cement is widely used in building reinforcement and repair, special concrete manufacturing, and environmental protection engineering due to its high toughness, high durability, good bonding strength, and environmental friendliness. However, there are some problems in superfine cement slurry, such as high bleeding rate, prolonged setting time, and consolidated body volume retraction. In this article, on the premise of using the excellent injectability of superfine cement slurry, the fluidity, setting time, reinforcement strength, and volume expansion rate of novel expansive superfine cement slurries with varying proportions were analyzed by adding expansion agent UEA, naphthalene-based water reducer FDN-C, and triisopropanolamine accelerating agent TIPA. The results show that under most mix ratios, the bleeding rate and fluidity of the novel superfine cement slurry initially increase and decrease with rising water-reducing agent dosage. The initial setting time generally decreases with accelerating agent dosage, reaching a minimum value of 506 min, representing a 33.68% reduction compared to the benchmark group (traditional superfine cement). Under normal conditions, the compressive strength of the net slurry consolidation body is positively correlated with expansion agent dosage, achieving maximum strengths of 8.11 MPa at three days and 6.93 MPa at 28 days; these values are respectively higher by 6.7 MPa and 2.6 MPa compared to those in the benchmark group. On the seventh day, the volume expansion rate of the traditional superfine cement solidified sand body ranges from −0.19% to −0.1%, while that for the corresponding body formed from the novel superfine cement is between 0.41% and 1.33%, representing a difference of 0.6–1.43%. After the on-site treatment of water and sand-gushing strata, the core monitor rate of the inspection hole exceeds 70%. The permeability coefficient of the stratum decreases to a range between 1.47 × 10−6 and 8.14 × 10−6 cm/s, resulting in nearly a thousandfold increase in stratum impermeability compared to its original state. Hence, the findings of this research hold practical importance for the future application of such materials in the development of stratum reinforcement or building repair. Full article
Show Figures

Figure 1

Back to TopTop