Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (231)

Search Parameters:
Keywords = cell-free manufacturing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3243 KiB  
Article
Design of Experiments Leads to Scalable Analgesic Near-Infrared Fluorescent Coconut Nanoemulsions
by Amit Chandra Das, Gayathri Aparnasai Reddy, Shekh Md. Newaj, Smith Patel, Riddhi Vichare, Lu Liu and Jelena M. Janjic
Pharmaceutics 2025, 17(8), 1010; https://doi.org/10.3390/pharmaceutics17081010 - 1 Aug 2025
Viewed by 235
Abstract
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription [...] Read more.
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription medication for pain reaching approximately USD 17.8 billion. Theranostic pain nanomedicine therefore emerges as an attractive analgesic strategy with the potential for increased efficacy, reduced side-effects, and treatment personalization. Theranostic nanomedicine combines drug delivery and diagnostic features, allowing for real-time monitoring of analgesic efficacy in vivo using molecular imaging. However, clinical translation of these nanomedicines are challenging due to complex manufacturing methodologies, lack of standardized quality control, and potentially high costs. Quality by Design (QbD) can navigate these challenges and lead to the development of an optimal pain nanomedicine. Our lab previously reported a macrophage-targeted perfluorocarbon nanoemulsion (PFC NE) that demonstrated analgesic efficacy across multiple rodent pain models in both sexes. Here, we report PFC-free, biphasic nanoemulsions formulated with a biocompatible and non-immunogenic plant-based coconut oil loaded with a COX-2 inhibitor and a clinical-grade, indocyanine green (ICG) near-infrared fluorescent (NIRF) dye for parenteral theranostic analgesic nanomedicine. Methods: Critical process parameters and material attributes were identified through the FMECA (Failure, Modes, Effects, and Criticality Analysis) method and optimized using a 3 × 2 full-factorial design of experiments. We investigated the impact of the oil-to-surfactant ratio (w/w) with three different surfactant systems on the colloidal properties of NE. Small-scale (100 mL) batches were manufactured using sonication and microfluidization, and the final formulation was scaled up to 500 mL with microfluidization. The colloidal stability of NE was assessed using dynamic light scattering (DLS) and drug quantification was conducted through reverse-phase HPLC. An in vitro drug release study was conducted using the dialysis bag method, accompanied by HPLC quantification. The formulation was further evaluated for cell viability, cellular uptake, and COX-2 inhibition in the RAW 264.7 macrophage cell line. Results: Nanoemulsion droplet size increased with a higher oil-to-surfactant ratio (w/w) but was no significant impact by the type of surfactant system used. Thermal cycling and serum stability studies confirmed NE colloidal stability upon exposure to high and low temperatures and biological fluids. We also demonstrated the necessity of a solubilizer for long-term fluorescence stability of ICG. The nanoemulsion showed no cellular toxicity and effectively inhibited PGE2 in activated macrophages. Conclusions: To our knowledge, this is the first instance of a celecoxib-loaded theranostic platform developed using a plant-derived hydrocarbon oil, applying the QbD approach that demonstrated COX-2 inhibition. Full article
(This article belongs to the Special Issue Quality by Design in Pharmaceutical Manufacturing)
Show Figures

Graphical abstract

27 pages, 3211 KiB  
Article
Hybrid Deep Learning-Reinforcement Learning for Adaptive Human-Robot Task Allocation in Industry 5.0
by Claudio Urrea
Systems 2025, 13(8), 631; https://doi.org/10.3390/systems13080631 - 26 Jul 2025
Viewed by 530
Abstract
Human-Robot Collaboration (HRC) is pivotal for flexible, worker-centric manufacturing in Industry 5.0, yet dynamic task allocation remains difficult because operator states—fatigue and skill—fluctuate abruptly. I address this gap with a hybrid framework that couples real-time perception and double-estimating reinforcement learning. A Convolutional Neural [...] Read more.
Human-Robot Collaboration (HRC) is pivotal for flexible, worker-centric manufacturing in Industry 5.0, yet dynamic task allocation remains difficult because operator states—fatigue and skill—fluctuate abruptly. I address this gap with a hybrid framework that couples real-time perception and double-estimating reinforcement learning. A Convolutional Neural Network (CNN) classifies nine fatigue–skill combinations from synthetic physiological cues (heart-rate, blink rate, posture, wrist acceleration); its outputs feed a Double Deep Q-Network (DDQN) whose state vector also includes task-queue and robot-status features. The DDQN optimises a multi-objective reward balancing throughput, workload and safety and executes at 10 Hz within a closed-loop pipeline implemented in MATLAB R2025a and RoboDK v5.9. Benchmarking on a 1000-episode HRC dataset (2500 allocations·episode−1) shows the hybrid CNN+DDQN controller raises throughput to 60.48 ± 0.08 tasks·min−1 (+21% vs. rule-based, +12% vs. SARSA, +8% vs. Dueling DQN, +5% vs. PPO), trims operator fatigue by 7% and sustains 99.9% collision-free operation (one-way ANOVA, p < 0.05; post-hoc power 1 − β = 0.87). Visual analyses confirm responsive task reallocation as fatigue rises or skill varies. The approach outperforms strong baselines (PPO, A3C, Dueling DQN) by mitigating Q-value over-estimation through double learning, providing robust policies under stochastic human states and offering a reproducible blueprint for multi-robot, Industry 5.0 factories. Future work will validate the controller on a physical Doosan H2017 cell and incorporate fairness constraints to avoid workload bias across multiple operators. Full article
(This article belongs to the Section Systems Engineering)
Show Figures

Figure 1

22 pages, 1258 KiB  
Review
Advances in Cryopreservation Strategies for 3D Biofabricated Constructs: From Hydrogels to Bioprinted Tissues
by Kaoutar Ziani, Laura Saenz-del-Burgo, Jose Luis Pedraz and Jesús Ciriza
Int. J. Mol. Sci. 2025, 26(14), 6908; https://doi.org/10.3390/ijms26146908 - 18 Jul 2025
Viewed by 303
Abstract
The cryopreservation of three-dimensional (3D) biofabricated constructs is a key enabler for their clinical application in regenerative medicine. Unlike two-dimensional (2D) cultures, 3D systems such as encapsulated cell spheroids, molded hydrogels, and bioprinted tissues present specific challenges related to cryoprotectant (CPA) diffusion, thermal [...] Read more.
The cryopreservation of three-dimensional (3D) biofabricated constructs is a key enabler for their clinical application in regenerative medicine. Unlike two-dimensional (2D) cultures, 3D systems such as encapsulated cell spheroids, molded hydrogels, and bioprinted tissues present specific challenges related to cryoprotectant (CPA) diffusion, thermal gradients, and ice formation during freezing and thawing. This review examines the current strategies for preserving 3D constructs, focusing on the role of biomaterials as cryoprotective matrices. Natural polymers (e.g., hyaluronic acid, alginate, chitosan), protein-based scaffolds (e.g., silk fibroin, sericin), and synthetic polymers (e.g., polyethylene glycol (PEG), polyvinyl alcohol (PVA)) are evaluated for their ability to support cell viability, structural integrity, and CPA transport. Special attention is given to cryoprotectant systems that are free of dimethyl sulfoxide (DMSO), and to the influence of hydrogel architecture on freezing outcomes. We have compared the efficacy and limitations of slow freezing and vitrification protocols and review innovative approaches such as temperature-controlled cryoprinting, nano-warming, and hybrid scaffolds with improved cryocompatibility. Additionally, we address the regulatory and manufacturing challenges associated with developing Good Manufacturing Practice (GMP)-compliant cryopreservation workflows. Overall, this review provides an integrated perspective on material-based strategies for 3D cryopreservation and identifies future directions to enable the long-term storage and clinical translation of engineered tissues. Full article
(This article belongs to the Special Issue Rational Design and Application of Functional Hydrogels)
Show Figures

Figure 1

16 pages, 4905 KiB  
Article
Characteristics of Laser-Remelted Al–Ca–Cu–Mn (Zr) Alloys as a New Material for Additive Manufacturing
by Nikolay V. Letyagin, Torgom K. Akopyan, Pavel A. Palkin, Stanislav O. Cherkasov, Anastasiya S. Fortuna, Alexandr B. Lyukhter and Ruslan Yu. Barkov
J. Manuf. Mater. Process. 2025, 9(7), 242; https://doi.org/10.3390/jmmp9070242 - 17 Jul 2025
Viewed by 396
Abstract
In this study, prospects of designing new Al–Ca–Cu–Mn (Zr) alloys for additive manufacturing (AM) were evaluated for the example of laser remelting of thin-sheet rolled products. The new as-cast alloys have a hypereutectic structure containing Al27Ca3Cu7 primary crystals [...] Read more.
In this study, prospects of designing new Al–Ca–Cu–Mn (Zr) alloys for additive manufacturing (AM) were evaluated for the example of laser remelting of thin-sheet rolled products. The new as-cast alloys have a hypereutectic structure containing Al27Ca3Cu7 primary crystals and ultrafine eutectic particles of (Al,Cu)4Ca and Al27Ca3Cu7 phases in equilibrium with the aluminum solid solution. The solid solutions are additionally strengthened by alloying with Mn and micro additions of Zr, which contribute to the formation of coarsening-resistant phases without compromising the manufacturability of the alloys. Laser remelting, which simulates AM-typical solidification conditions, promotes the formation of a pseudoeutectic cellular structure without the occurrence of undesirable primary Al27Ca3Cu7. The size of the dendritic cells and eutectic particles is 10 times smaller (for solidification rates of ~200 K/s) than that of the as-cast state. This structure provides for a higher hardness of the laser-remelted alloy (96 HV) as compared to the as-cast alloy (85 HV). Data for the alloy after 350–400 °C long-term annealing for up to 100 h show that the hardness of the Al–Ca–Cu–Mn–Zr alloys declines relatively slowly by ~7.5% as compared to the Zr-free alloy, whose hardness decreases by ~22%. Thus, one can consider these alloys as a promising candidate for AM processes that require high thermal stability. Full article
(This article belongs to the Special Issue Laser Surface Modification: Advances and Applications)
Show Figures

Graphical abstract

23 pages, 2234 KiB  
Article
Novel (1S,3R)-RSL3-Encapsulated Polyunsaturated Fatty Acid Rich Liposomes Sensitise Multiple Myeloma Cells to Ferroptosis-Mediated Cell Death
by Ali Habib, Rachel L. Mynott, Oliver G. Best, Isabella A. Revesz, Clive A. Prestidge and Craig T. Wallington-Gates
Int. J. Mol. Sci. 2025, 26(14), 6579; https://doi.org/10.3390/ijms26146579 - 9 Jul 2025
Viewed by 312
Abstract
Multiple myeloma (MM) is an incurable malignancy of plasma cells that accounts for 10% of all haematological malignancies diagnosed worldwide. The poor outcome of patients with MM highlights the ongoing need for novel treatment strategies. Ferroptosis is a recently characterised form of non-apoptotic [...] Read more.
Multiple myeloma (MM) is an incurable malignancy of plasma cells that accounts for 10% of all haematological malignancies diagnosed worldwide. The poor outcome of patients with MM highlights the ongoing need for novel treatment strategies. Ferroptosis is a recently characterised form of non-apoptotic programmed cell death. Phospholipids (PLs) containing polyunsaturated fatty acids (PUFAs) play a crucial role as ferroptosis substrates when oxidised to form toxic lipid reactive oxygen species (ROS). Using a range of scientific techniques, we demonstrate a strong correlation between the PL profile of MM and diffuse large B cell lymphoma (DLBCL) cells with their sensitivity to ferroptosis. Using this PL profiling, we manufacture liposomes that are themselves composed of PL-PUFA ferroptosis substrates relatively deficient in MM cells, with and without the GPX4 inhibitor, RSL3, for investigation of their ferroptosis-inducing potential. PL-PUFAs were more abundant in DLBCL than MM cell lines, consistent with greater ferroptosis sensitivity. In contrast, MM cells generally contained a significantly higher proportion of PLs containing monounsaturated fatty acids. Altering the lipid composition of MM cells through exogenous supplementation with PL-PUFAs induced ferroptosis-mediated cell death and further sensitised these cells to RSL3. Liposomes predominantly comprising PL-PUFAs were subsequently manufactured and loaded with RSL3. Uptake, cytotoxicity and lipid ROS studies demonstrated that these novel liposomes were readily taken up by MM cells. Those containing RSL3 were more effective at inducing ferroptosis than empty liposomes or free RSL3, resulting in IC50 values an average 7.1-fold to 14.5-fold lower than those for free RSL3, from the micromolar to nanomolar range. We provide a better understanding of the mechanisms associated with ferroptosis resistance of MM cells and suggest that strategies such as liposomal delivery of relatively deficient ferroptosis-inducing PL-PUFAs together with other targeted agents could harness ferroptosis for the personalised treatment of MM and other cancers. Full article
(This article belongs to the Special Issue Advances in Novel Therapeutic Strategies for Cancers)
Show Figures

Figure 1

27 pages, 18210 KiB  
Review
Cell-Free Protein Synthesis Reactor Formats: A Brief History and Analysis
by Dallin M. Chipman, Anna C. Woolley, Davu N. Chau, William A. Lance, Joseph P. Talley, Tyler P. Green, Benjamin C. Robbins and Bradley C. Bundy
SynBio 2025, 3(3), 10; https://doi.org/10.3390/synbio3030010 - 1 Jul 2025
Viewed by 685
Abstract
Cell-free protein synthesis (CFPS) has transformed protein production capabilities by eliminating cellular constraints, enabling the rapid expression of difficult-to-produce proteins in an open, customizable environment. As CFPS applications expand from fundamental research to industrial production, therapeutic manufacturing, and point-of-care diagnostics, the diverse array [...] Read more.
Cell-free protein synthesis (CFPS) has transformed protein production capabilities by eliminating cellular constraints, enabling the rapid expression of difficult-to-produce proteins in an open, customizable environment. As CFPS applications expand from fundamental research to industrial production, therapeutic manufacturing, and point-of-care diagnostics, the diverse array of reactor formats has become increasingly important yet challenging to navigate. This review examines the evolution and characteristics of thirteen major CFPS reactor formats, from traditional batch systems to advanced platforms. The historical development of CFPS reactors from the 1960s to present day is presented. Additionally, for each format, operational principles, advantages, limitations, and notable applications are evaluated. The review concludes with a comparative assessment of reactor performance across critical parameters, including productivity, scalability, technical complexity, environmental stability, and application suitability. To our knowledge this structured analysis is the first to focus predominantly on the various reactor formats of cell-free systems and to provide a guide to assist researchers in choosing the reactor type that best fits their specific applications. Full article
Show Figures

Figure 1

15 pages, 2266 KiB  
Article
SCAPS-1D Simulation of Various Hole Transport Layers’ Impact on CsPbI2Br Perovskite Solar Cells Under Indoor Low-Light Conditions
by Chih-Hsi Peng and Yi-Cheng Lin
Solids 2025, 6(3), 31; https://doi.org/10.3390/solids6030031 - 21 Jun 2025
Viewed by 731
Abstract
This study presents the first comprehensive theoretical investigation utilizing SCAPS-1D simulation to systematically evaluate eight hole transport materials for CsPbI2Br perovskite solar cells under authentic indoor LED conditions (560 lux, 5700 K color temperature). Unlike previous studies employing simplified illumination assumptions, [...] Read more.
This study presents the first comprehensive theoretical investigation utilizing SCAPS-1D simulation to systematically evaluate eight hole transport materials for CsPbI2Br perovskite solar cells under authentic indoor LED conditions (560 lux, 5700 K color temperature). Unlike previous studies employing simplified illumination assumptions, our work establishes fundamental design principles for indoor photovoltaics through rigorous material property correlations. The investigation explores the influence of layer thickness and defect concentration on performance to identify optimal parameters. Through detailed energy band alignment analysis, we demonstrate that CuI achieves superior performance (PCE: 23.66%) over materials with significantly higher mobility, revealing that optimal band alignment supersedes carrier mobility under low-light conditions. Analysis of HTL and absorber layer thickness, bulk defect concentration, interface defect density, and an HTL-free scenario showed that interface defect concentration and absorber layer parameters have greater influence than HTL thickness. Remarkably, ultra-thin HTL layers (0.04 μm) maintain >99% efficiency, offering substantial cost reduction potential for large-scale manufacturing. Under optimized conditions of a 0.87 μm absorber layer thickness, defect concentration of 1015 cm−3, interface defect concentration of 109 cm−3, and CuI doping concentration of 1017 cm−3, PCE reached 28.57%, while the HTL-free structure achieved 17.6%. This study establishes new theoretical foundations for indoor photovoltaics, demonstrating that material selection criteria differ fundamentally from outdoor applications. Full article
Show Figures

Figure 1

27 pages, 3222 KiB  
Article
DNN-Augmented Kinematically Decoupled Three-DoF Origami Parallel Robot for High-Precision Heave and Tilt Control
by Gaokun Shi, Hassen Nigatu, Zhijian Wang and Yongsheng Huang
Actuators 2025, 14(6), 291; https://doi.org/10.3390/act14060291 - 13 Jun 2025
Viewed by 346
Abstract
This paper presents a three-degrees-of-freedom origami parallel robot that is free from parasitic motion. This robot is designed to achieve one translational and two rotational motions within its workspace, enabling precise orientation about a fixed point—a capability unattainable for parallel robots with parasitic [...] Read more.
This paper presents a three-degrees-of-freedom origami parallel robot that is free from parasitic motion. This robot is designed to achieve one translational and two rotational motions within its workspace, enabling precise orientation about a fixed point—a capability unattainable for parallel robots with parasitic motion. The elimination of parasitic motion is critical, allowing the use of this device in applications requiring high precision. The robot’s key kinematic features include a parasitic motion-free workspace, large orientational capability, compactness, decoupled motion, simplicity in manufacturing and control, mechanically pivoted rotation of the moving platform, and scalability. These characteristics make the robot particularly well-suited for micromanipulation tasks in both manufacturing and medical applications. In manufacturing, it can enable high-precision operations such as micro-assembly, optical fiber alignment, and semiconductor packaging. In medicine, it can support delicate procedures such as microsurgery and cell injection, where sub-micron accuracy, high stability, and precise motion decoupling are critical requirements. The use of nearly identical limbs simplifies the architecture, facilitating easier design, manufacture, and control. The kinematics of the robot is analyzed using reciprocal screw theory for an analytic constraint-embedded Jacobian. To further enhance operational accuracy and robustness, particularly in the presence of uncertainties or disturbances, a deep neural network (DNN)-based state estimation method is integrated, providing accurate forward kinematic predictions. The construction of the robot utilizes origami-inspired limbs and joints, enhancing miniaturization, manufacturing simplicity, and foldability. Although capable of being scaled up or further miniaturized, its current size is 66 mm × 68 mm × 100 mm. The robot’s moving platform is theoretically and experimentally proven to be free of parasitic motion and possesses a large orientation capability. Its unique features are demonstrated, and its potential for high-precision applications is thoroughly discussed. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

22 pages, 4924 KiB  
Article
Electrospun Polybenzimidazole Membranes: Fabrication and Fine-Tuning Through Physical and Statistical Approaches
by Emmanuel De Gregorio, Giuseppina Roviello, Valentina Naticchioni, Viviana Cigolotti, Alfonso Pozio, Luis Alexander Hein, Carlo De Luca, Claudio Ferone, Antonio Rinaldi and Oreste Tarallo
Polymers 2025, 17(12), 1594; https://doi.org/10.3390/polym17121594 - 6 Jun 2025
Viewed by 588
Abstract
Polybenzimidazole (PBI), a high-performance polymer known for its exceptional thermal stability and chemical resistance, was processed by solution electrospinning to manufacture fibrous non-woven membranes. The process was repeated under different conditions by adjusting four main settings: the polymer solution concentration, the flow rate, [...] Read more.
Polybenzimidazole (PBI), a high-performance polymer known for its exceptional thermal stability and chemical resistance, was processed by solution electrospinning to manufacture fibrous non-woven membranes. The process was repeated under different conditions by adjusting four main settings: the polymer solution concentration, the flow rate, the voltage applied between the needle and the collector, and the separating distance. To clarify the interplay between process parameters and material properties, a Design of Experiment (DOE) approach was used to systematically analyze the effects of said parameters on microstructural properties, including fiber diameter, porosity, and air permeability, pointing out that the increase in viscosity improves fiber uniformity, while optimizing the applied voltage and the needle–collector distance enhances jet stability and solvent evaporation, crucial for defect-free fibrous microstructures. Post-processing via calendering further refined the membrane texture and properties, for example by reducing porosity and air permeability without significantly altering the fibrous morphology, particularly at low lamination ratios. Thermal and mechanical evaluations highlighted that the obtained electrospun PBI membranes exhibited enhanced flexibility, but lower tensile strength compared to cast films due to the underlying open pore microstructure. This integrated approach—combining experimental characterization, DOE-guided optimization, and post-processing via calendering—provides a systematic framework for tailoring PBI membranes for specific applications, such as filtration, fuel cells, and molecular sieving. The findings highlight the potential of PBI-based electrospun membranes as versatile materials, offering high thermal stability, chemical resistance, and tunable properties, thereby establishing a foundation for further innovation in advanced polymeric membrane design and applications for energy and sustainability. Full article
Show Figures

Graphical abstract

20 pages, 1713 KiB  
Review
Rosmarinic Acid as Bioactive Compound: Molecular and Physiological Aspects of Biosynthesis with Future Perspectives
by Dragana Jakovljević, Marzena Warchoł and Edyta Skrzypek
Cells 2025, 14(11), 850; https://doi.org/10.3390/cells14110850 - 5 Jun 2025
Viewed by 752
Abstract
The ester of caffeic acid with α-hydroxydihydrocaffeic acid, named rosmarinic acid (α-o-caffeoyl-3,4-dihydroxyphenyllactic acid; RA) can occur as oligomeric molecules, or in free, esterified, and glycosidic forms. Although it is commonly found among the members of the plants from the Lamiaceae (mints) and Boraginaceae [...] Read more.
The ester of caffeic acid with α-hydroxydihydrocaffeic acid, named rosmarinic acid (α-o-caffeoyl-3,4-dihydroxyphenyllactic acid; RA) can occur as oligomeric molecules, or in free, esterified, and glycosidic forms. Although it is commonly found among the members of the plants from the Lamiaceae (mints) and Boraginaceae (borages) families, only certain plant species produce a comparatively high concentration of RA. This valuable bioactive compound exhibits anti-cancer, anti-angiogenic, antioxidant, anti-inflammatory, antiviral, and antimicrobial properties, among others. As it is difficult to obtain high quantities of RA from natural sources, and since chemical manufacturing is costly and challenging, various biotechnological methods have recently been investigated to boost RA production. Plant cell tissue culture has been used to promote RA production in various plant species, particularly medicinal ones, with elicitation being the most commonly used technique. This review explores the main steps involved in RA biosynthesis in plants, including the molecular mechanisms and physiological alterations underlying its function, along with the primary mechanisms of RA accumulation in response to elicitation. Recent progress in synthetic biology-based RA synthesis, as well as metabolic engineering techniques to enhance the industrial production of this valuable bioactive constituent, are also discussed. Full article
(This article belongs to the Special Issue Antioxidants in Redox Homeostasis of Plant Development)
Show Figures

Figure 1

19 pages, 1331 KiB  
Article
Safety Toxicology Study of Reassortant Mopeia–Lassa Vaccine in Guinea Pigs
by Bradley S. Wahle, Peter Pushko, Katie Albanese, Dylan M. Johnson, Irina Tretyakova, Igor S. Lukashevich and Thomas Rudge
Future Pharmacol. 2025, 5(2), 26; https://doi.org/10.3390/futurepharmacol5020026 - 31 May 2025
Viewed by 625
Abstract
(1) Background: Mopeia–Lassa reassortant ML29 virus is an investigational, reassortant virus vaccine for the prevention of Lassa fever caused by Lassa virus (LASV). (2) Methods: The vaccine virus ML29-SF was prepared in Vero cells using a serum-free culture medium under Good Manufacturing Practice. [...] Read more.
(1) Background: Mopeia–Lassa reassortant ML29 virus is an investigational, reassortant virus vaccine for the prevention of Lassa fever caused by Lassa virus (LASV). (2) Methods: The vaccine virus ML29-SF was prepared in Vero cells using a serum-free culture medium under Good Manufacturing Practice. A 2-week repeat dose toxicity study was performed in guinea pigs under Good Laboratory Practice (GLP) regulations to assess the local and systemic toxicological effects. (3) Results: Following an intramuscular (IM) or subcutaneous (SC) injection of 104 PFU of ML29-SF LASV vaccine at the start of the study, with a second dose 15 days later, no toxicological response attributable to the vaccine was observed. Vaccine-related effects were not observed in any in-life or post-mortem parameter evaluated, including clinical observations, injection site observations, body temperature, body weight, food consumption, ophthalmology, immunology, hematology, clinical chemistry, gross anatomical pathology, organ weights, and histopathology. An immunogenic response, as measured by the elicitation of IgG antibodies against major LASV immunogens, nucleocapsid and glycoprotein precursor, was observed in all vaccine-treated animals prior to the booster dose (Study Day 15) which endured through the end of the study (Study Day 42). There was no evidence of viral shedding in any vaccinated animal. (4) Conclusions: Overall, this single-dose vaccine was locally and systemically well tolerated even after a two-dose repeat administration, confirming the high level of safety of ML29-SF vaccination and supporting the future evaluation of this LASV vaccine, including in clinical trials. Full article
Show Figures

Figure 1

30 pages, 3281 KiB  
Review
The Bioengineering of Insect Cell Lines for Biotherapeutics and Vaccine Production: An Updated Review
by Michał Sułek and Agnieszka Szuster-Ciesielska
Vaccines 2025, 13(6), 556; https://doi.org/10.3390/vaccines13060556 - 23 May 2025
Viewed by 2218
Abstract
Insect cell lines are a cornerstone of recombinant protein production, providing a versatile platform for biopharmaceutical and research applications. In the early 20th century, scientists first attempted to culture insect cells in vitro, developing continuous cell lines to produce the first insect cell-derived [...] Read more.
Insect cell lines are a cornerstone of recombinant protein production, providing a versatile platform for biopharmaceutical and research applications. In the early 20th century, scientists first attempted to culture insect cells in vitro, developing continuous cell lines to produce the first insect cell-derived recombinant protein, IFN-β. Initial successes, along with advancements in the use of insect cells for recombinant protein manufacturing, primarily relied on baculovirus expression vector systems (BEVSs), which enable heterologous gene expression in infected cells. Today, growing attention is focused on baculovirus-free systems based on the transfection of insect cells with plasmid DNA. This approach simplifies the final product purification process and facilitates the development of stable monoclonal cell lines that produce recombinant proteins or protein complexes, particularly virus-like particles (VLPs). Thanks to advancements in genetic engineering and the application of adaptive laboratory evolution (ALE) methods, significant strides have been made in overcoming many limitations associated with insect cell BEVSs, ultimately enhancing the reliability, yield, and quality of the biomanufacturing process. Our manuscript discusses the history of developing insect cell lines, presents various recombinant protein production systems utilizing these cells, and summarizes modifications aimed at improving insect cell lines for recombinant protein biomanufacturing. Finally, we explore their implications in pharmaceutical production, particularly on Nuvaxovid®/Covovax, which is the latest approved vaccine developed using insect cell BEVSs for protection against SARS-CoV-2. Full article
Show Figures

Figure 1

20 pages, 8006 KiB  
Article
Early Development of an Innovative Nanoparticle-Based Multimodal Tool for Targeted Drug Delivery: A Step-by-Step Approach
by Chiara Barattini, Angela Volpe, Daniele Gori, Daniele Lopez, Alfredo Ventola, Stefano Papa, Mariele Montanari and Barbara Canonico
Cells 2025, 14(9), 670; https://doi.org/10.3390/cells14090670 - 3 May 2025
Viewed by 772
Abstract
Prostate cancer is the most common tumor in men in developed countries and it often responds poorly to conventional treatments. Monoclonal antibody (MoAb) therapy, for this pathology, has grown tremendously in the past decades, exploiting naked and conjugated antibodies to cytotoxic payloads to [...] Read more.
Prostate cancer is the most common tumor in men in developed countries and it often responds poorly to conventional treatments. Monoclonal antibody (MoAb) therapy, for this pathology, has grown tremendously in the past decades, exploiting naked and conjugated antibodies to cytotoxic payloads to form antibody drug conjugates (ADCs). Several studies have been carried out conjugating biomolecules against prostate-specific membrane antigen (PSMA), highly expressed in this tumor, to cytotoxic drugs. Nano-based formulations show high potential in targeted drug delivery to enhance the bioavailability of drugs. Our research aimed to evaluate the feasibility of setting up a nanoparticle-based multimodal tool for targeted drug delivery, describing the step-by-step approach and to perform a first screening of these fluorescent PEGylated silica nanoparticles employed in selective cancer cell targeting and killing. These nanoparticles featured a core–shell structure to contemporarily conjugate the antibody and the cytotoxic payload monomethyl auristatin E (MMAE) using a step-by-step approach. We compared the cytotoxic effect of this multimodal nanotool near the antibody-MMAE and free MMAE. We found a lower cytotoxicity effect of the nanoparticle-based construct compared to free drugs, likely because of the preservation of the previously observed receptor-mediated endocytosis. Nanomedicine is confirmed as a powerful alternative to organic drug delivery systems, even if some aspects, such as drug loading efficacy, release, scalable manufacturing and long-term stability, need to be deepened. Full article
Show Figures

Figure 1

21 pages, 27840 KiB  
Article
Polymer-Functionalized Magnetic Nanoparticles for Targeted Quercetin Delivery: A Potential Strategy for Colon Cancer Treatment
by Júlia Borges de Macedo, Julia Narayana Schoroeder Bueno, Carla Cristine Kanunfre, José Ricardo de Arruda Miranda, Andris Figueiroa Bakuzis and Priscileila Colerato Ferrari
Pharmaceutics 2025, 17(4), 467; https://doi.org/10.3390/pharmaceutics17040467 - 3 Apr 2025
Viewed by 788
Abstract
Background/Objectives: Nanoparticle-based drug delivery systems improve pharmacokinetic aspects, including controlled release and drug targeting, increasing therapeutic efficacy, and reducing toxicity in conventional colon cancer treatment. The superparamagnetism of magnetic nanoparticles (MNP) appears to be a potential alternative for magnetothermal therapy, inducing tumor [...] Read more.
Background/Objectives: Nanoparticle-based drug delivery systems improve pharmacokinetic aspects, including controlled release and drug targeting, increasing therapeutic efficacy, and reducing toxicity in conventional colon cancer treatment. The superparamagnetism of magnetic nanoparticles (MNP) appears to be a potential alternative for magnetothermal therapy, inducing tumor cell death by an external magnetic field. Therefore, this study aimed to develop chitosan (CS) and folate-chitosan (FA-CS)-coated MNP to improve the stability and targeting of the system for quercetin (Q) delivery. Methods: After FA-CS synthesis and 32 factorial design, polymer-functionalized MNPs were produced for quercetin loading, characterized, and evaluated by drug dissolution and cytotoxicity assay. Results: The factorial design indicated the positive influence of CS on MNPs’ Zeta potential, followed by the CS–temperature interaction. Optimized formulations had hydrodynamic diameters of 122.32 ± 8.56 nm, Zeta potentials of +30.78 ± 0.8 mV, and loading efficiencies of 80.45% (MNP-CS-Q) and 54.4% (MNP-FA-CS-Q). The 24 h drug release was controlled in MNP-CS-Q (up to 6.4%) and MNP-FA-CS-Q (up to 7.7%) in a simulated tumor medium, with Fickian diffusion release mechanism correlated to the Korsmeyer–Peppas model (R > 0.99). The cytotoxicity assay in HCT-116 showed a higher (p < 0.001) dose-dependent antitumor effect of quercetin-loaded MNP compared to free drug, with IC50s of 1.46 (MNP-CS) and 1.30 µg·mL−1 (MNP-FA-CS). Conclusions: Therefore, this study contributes to the development of biomedical nanotechnology and the magnetic debate by highlighting the antitumor potential of quercetin magnetic nanoparticles. The experimental design allows the discussion of critical manufacturing variables and the determination of optimal parameters for the formulations. Full article
Show Figures

Graphical abstract

17 pages, 3028 KiB  
Article
Enhancing the Efficacy of CAR-T Cell Production Using BX795 and Rosuvastatin in a Serum-Free Medium
by Abed Al-Kader Yassin, Rajashri Banerji, Baisali Bhattacharya, Olga Radinsky, Uzi Hadad, Bar Kaufman and Angel Porgador
Int. J. Mol. Sci. 2025, 26(7), 2988; https://doi.org/10.3390/ijms26072988 - 25 Mar 2025
Viewed by 942
Abstract
Chimeric Antigen Receptor T-cell (CAR-T) therapy has emerged as a transformative approach for cancer treatment, demonstrating remarkable success in patients with relapsed and refractory hematological malignancies. However, challenges persist in optimizing CAR-T cell production and improving therapeutic outcomes. One of the major hurdles [...] Read more.
Chimeric Antigen Receptor T-cell (CAR-T) therapy has emerged as a transformative approach for cancer treatment, demonstrating remarkable success in patients with relapsed and refractory hematological malignancies. However, challenges persist in optimizing CAR-T cell production and improving therapeutic outcomes. One of the major hurdles is the efficiency of retroviral or lentiviral transduction during CAR-T cell manufacturing. Additionally, the heterogeneity of T-cell populations isolated from patients can impact CAR-T cell effectiveness and persistence in vivo. This article explores a novel strategy to address these challenges by focusing on serum-free medium and additive optimization. We propose a unique approach that incorporates the culturing of T cells in Nutri-T medium, along with 24 h of exposure to combined low concentrations of BX795 and rosuvastatin, to enhance the transduction efficacy and functionality of CAR-T cells. The results presented here provide promising insights into the potential of this strategy to produce more effective CAR-T cells for immunotherapy, ultimately advancing the field and benefiting cancer patients worldwide. Full article
(This article belongs to the Special Issue Targeted Therapy of Cancer: Innovative Drugs and Molecular Tools)
Show Figures

Figure 1

Back to TopTop