Cell-Free Protein Synthesis Reactor Formats: A Brief History and Analysis
Abstract
1. Introduction
2. Historical Evolution of CFPS Reactor Types
3. Types of CFPS Reactors
3.1. Batch Reactors
3.1.1. Advantages
3.1.2. Disadvantages
3.1.3. Applications
3.2. Well Plate Reactors
3.2.1. Advantages
3.2.2. Disadvantages
3.2.3. Applications
3.3. Fed-Batch Reactors
3.3.1. Advantages
3.3.2. Disadvantages
3.3.3. Applications
3.4. Tube-in-Tube Reactors
3.4.1. Advantages
3.4.2. Disadvantages
3.4.3. Applications
3.5. Foamed Batch Reactors
3.5.1. Advantages
3.5.2. Disadvantages
3.5.3. Applications
3.6. Emulsion-Based Reactors
3.6.1. Advantages
3.6.2. Disadvantages
3.6.3. Applications
3.7. Continuous Reactors
3.7.1. Advantages
3.7.2. Disadvantages
3.7.3. Applications
3.8. Microfluidic Reactors
3.8.1. Advantages
3.8.2. Disadvantages
3.8.3. Applications
3.9. Dialyzed Reactors
3.9.1. Advantages
3.9.2. Disadvantages
3.9.3. Applications
3.10. Bilayer Reactors
3.10.1. Advantages
3.10.2. Disadvantages
3.10.3. Applications
3.11. Lyophilized Reactors
3.11.1. Advantages
3.11.2. Disadvantages
3.11.3. Applications
3.12. Wearable Reactors
3.12.1. Advantages
3.12.2. Disadvantages
3.12.3. Applications
3.13. Paper-Based Reactors
3.13.1. Advantages
3.13.2. Disadvantages
3.13.3. Applications
4. Comparative Analysis
4.1. Operational Complexity vs. Performance
4.2. Advanced Exchange Systems
4.3. Miniaturized High-Throughput Systems
4.4. Field-Deployable Systems
5. Remaining Limitations in Cell-Free Protein Synthesis Reactors
5.1. Cross-Format Compatibility and Standardization
5.2. Fundamental Energy and Substrate Limitations
5.3. Process Monitoring and Control Gaps
5.4. Regulatory and Infrastructure Barriers
5.5. Technology Transfer and Scalability Gaps
5.6. Future
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CFPS | Cell-free protein synthesis |
CFCF | Continuous-flow cell-free |
CECF | Continuous-exchange cell-free |
PURE | Protein synthesis Using Recombinant Elements |
GFP | Green fluorescent protein |
ICH | International Council for Harmonisation |
References
- Carlson, E.D.; Gan, R.; Hodgman, C.E.; Jewett, M.C. Cell-free protein synthesis: Applications come of age. Biotechnol. Adv. 2012, 30, 1185–1194. [Google Scholar] [CrossRef] [PubMed]
- Gregorio, N.E.; Levine, M.Z.; Oza, J.P. A User’s Guide to Cell-Free Protein Synthesis. Method Protoc. 2019, 2, 24. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.T.; Wilding, K.M.; Hunt, J.M.; Bennett, A.M.; Bundy, B.C. The emerging age of cell-free synthetic biology. FEBS Lett. 2014, 588, 2755–2761. [Google Scholar] [CrossRef] [PubMed]
- Zawada, J.F.; Yin, G.; Steiner, A.R.; Yang, J.H.; Naresh, A.; Roy, S.M.; Gold, D.S.; Heinsohn, H.G.; Murray, C.J. Microscale to Manufacturing Scale-up of Cell-Free Cytokine Production-A New Approach for Shortening Protein Production Development Timelines. Biotechnol. Bioeng. 2011, 108, 1570–1578. [Google Scholar] [CrossRef]
- Rice, A.J.; Sword, T.T.; Chengan, K.; Mitchell, D.A.; Mouncey, N.J.; Moore, S.J.; Bailey, C.B. Cell-free synthetic biology for natural product biosynthesis and discovery. Chem. Soc. Rev. 2025, 54, 4314–4352. [Google Scholar] [CrossRef]
- Salas-Bruggink, D.I.J.; Martin, J.S.S.; Leiva, G.; Blamey, J.M. Extremozymes: Challenges and opportunities on the road to novel enzymes production. Process Biochem. 2024, 143, 323–336. [Google Scholar] [CrossRef]
- Kim, D.M.; Swartz, J.R. Regeneration of adenosine triphosphate from glycolytic intermediates for cell-free protein synthesis. Biotechnol. Bioeng. 2001, 74, 309–316. [Google Scholar] [CrossRef]
- Shrestha, P.; Michael, H.T.; Bundy, B.C. Streamlined Extract Preparation for Escherichia Coli-Based Cell-Free Protein Synthesis by Sonication or Bead Vortex Mixing. Biotechniques 2012, 53, 163–174. [Google Scholar] [CrossRef]
- Spirin, A.S.; Baranov, V.I.; Ryabova, L.A.; Ovodov, S.Y.; Alakhov, Y.B. A Continuous Cell-Free Translation System Capable of Producing Polypeptides in High-Yield. Science 1988, 242, 1162–1164. [Google Scholar] [CrossRef]
- Murakami, S.; Matsumoto, R.; Kanamori, T. Constructive approach for synthesis of a functional IgG using a reconstituted cell-free protein synthesis system. Sci. Rep. 2019, 9, 671. [Google Scholar] [CrossRef]
- Martin, R.W.; Majewska, N.I.; Chen, C.X.; Albanetti, T.E.; Jimenez, R.B.C.; Schmelzer, A.E.; Jewett, M.C.; Roy, V. Development of a CHO-Based Cell-Free Platform for Synthesis of Active Monoclonal Antibodies. ACS Synth. Biol. 2017, 6, 1370–1379. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.; Garces, E.D.; Yang, J.H.; Zhang, J.; Tran, C.; Steiner, A.R.; Roos, C.; Bajad, S.; Hudak, S.; Penta, K.; et al. Aglycosylated antibodies and antibody fragments produced in a scalable in vitro transcription-translation system. mAbs 2012, 4, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-O.; Nielsen, G.H.; Wilding, K.M.; Cooper, M.A.; Wood, D.W.; Bundy, B.C. Towards On-Demand, E. coli-Based Cell-Free Protein Synthesis of Tissue Plasminogen Activator. Methods Protoc. 2019, 2, 52. [Google Scholar] [CrossRef]
- Yang, S.O.; Talley, J.P.; Nielsen, G.H.; Wilding, K.M.; Bundy, B.C. Streamlined Production, Protection, and Purification of Enzyme Biocatalysts Using Virus-like Particles and a Cell-Free Protein Synthesis System. SynBio 2025, 3, 5. [Google Scholar] [CrossRef]
- Armero-Gimenez, J.; Wilbers, R.; Schots, A.; Williams, C.; Finnern, R. Rapid screening and scaled manufacture of immunogenic virus-like particles in a tobacco BY-2 cell-free protein synthesis system. Front. Immunol. 2023, 14, 1088852. [Google Scholar] [CrossRef]
- Deuker, D.; Asilonu, E.; Bracewell, D.G.; Frank, S. Adeno-Associated Virus 5 Protein Particles Produced by E. coli Cell-Free Protein Synthesis. ACS Synth. Biol. 2024, 13, 2710–2717. [Google Scholar] [CrossRef]
- Salehi, A.S.M.; Smith, M.T.; Bennett, A.M.; Williams, J.B.; Pitt, W.G.; Bundy, B.C. Cell-free protein synthesis of a cytotoxic cancer therapeutic: Onconase production and a just-add-water cell-free system. Biotechnol. J. 2016, 11, 274–281. [Google Scholar] [CrossRef]
- Orth, J.H.C.; Schorch, B.; Boundy, S.; Ffrench-Constant, R.; Kubick, S.; Aktories, K. Cell-free synthesis and characterization of a novel cytotoxic pierisin-like protein from the cabbage butterfly Pieris rapae. Toxicon 2011, 57, 199–207. [Google Scholar] [CrossRef]
- Woelbern, A.M.; Ramm, F. Circumventing the Impossible: Cell-Free Synthesis of Protein Toxins for Medical and Diagnostic Applications. Int. J. Mol. Sci. 2024, 25, 13293. [Google Scholar] [CrossRef]
- Ebbert, L.E.; Free, T.J.; Soltani, M.; Bundy, B.C. The Design and Cell-Free Protein Synthesis of a Pembrolizumab Single-Chain Variable Fragment. Drugs Drug Candidates 2025, 4, 3. [Google Scholar] [CrossRef]
- Krebs, S.K.; Stech, M.; Jorde, F.; Rakotoarinoro, N.; Ramm, F.; Marinoff, S.; Bahrke, S.; Danielczyk, A.; Wüstenhagen, D.A.; Kubick, S. Synthesis of an Anti-CD7 Recombinant Immunotoxin Based on PE24 in CHO and E. coli Cell-Free Systems. Int. J. Mol. Sci. 2022, 23, 13697. [Google Scholar] [CrossRef]
- Liu, Y.; Fritz, B.R.; Anderson, M.J.; Schoborg, J.A.; Jewett, M.C. Characterizing and Alleviating Substrate Limitations for Improved in vitro Ribosome Construction. ACS Synth. Biol. 2015, 4, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, A.; Ivanova, K.; Thiele, J. Regulating Protein Immobilization During Cell-Free Protein Synthesis in Hyaluronan Microgels. Adv. Biol. 2025, 9, 2400668. [Google Scholar] [CrossRef] [PubMed]
- Warfel, K.F.; Williams, A.; Wong, D.A.; Sobol, S.E.; Desai, P.; Li, J.; Chang, Y.F.; DeLisa, M.P.; Karim, A.S.; Jewett, M.C. A Low-Cost, Thermostable, Cell-Free Protein Synthesis Platform for On-Demand Production of Conjugate Vaccines. ACS Synth. Biol. 2023, 12, 95–107. [Google Scholar] [CrossRef]
- Hu, V.T.; Kamat, N.P. Cell-free protein synthesis systems for vaccine design and production. Curr. Opin. Biotech. 2023, 79, 102888. [Google Scholar] [CrossRef]
- Caschera, F.; Lee, J.W.; Ho, K.K.Y.; Liu, A.P.; Jewett, M.C. Cell-free compartmentalized protein synthesis inside double emulsion templated liposomes with in vitro synthesized and assembled ribosomes. Chem. Commun. 2016, 52, 5467–5469. [Google Scholar] [CrossRef]
- Siquenique, S.; Ackerman, S.; Schroeder, A.; Sarmento, B. Bioengineering lipid-based synthetic cells for therapeutic protein delivery. Trends Biotechnol. 2025, 43, 348–363. [Google Scholar] [CrossRef]
- Talley, J.P.; Free, T.J.; Green, T.P.; Chipman, D.M.; Bundy, B.C. Eliminating Assay Background of a Low-Cost, Colorimetric Glutamine Biosensor by Engineering an Alternative Formulation of Cell-Free Protein Synthesis. Chemosensors 2025, 13, 206. [Google Scholar] [CrossRef]
- Pardee, K.; Green, A.A.; Takahashi, M.K.; Braff, D.; Lambert, G.; Lee, J.W.; Ferrante, T.; Ma, D.; Donghia, N.; Fan, M. Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 2016, 165, 1255–1266. [Google Scholar] [CrossRef]
- Pardee, K.; Green, A.A.; Ferrante, T.; Cameron, D.E.; DaleyKeyser, A.; Yin, P.; Collins, J.J. Paper-Based Synthetic Gene Networks. Cell 2014, 159, 940–954. [Google Scholar] [CrossRef]
- Nguyen, P.Q.; Soenksen, L.R.; Donghia, N.M.; Angenent-Mari, N.M.; de Puig, H.; Huang, A.; Lee, R.; Slomovic, S.; Galbersanini, T.; Lansberry, G.; et al. Wearable materials with embedded synthetic biology sensors for biomolecule detection. Nat. Biotechnol. 2021, 39, 1366–1374. [Google Scholar] [CrossRef] [PubMed]
- Salehi, A.S.M.; Yang, S.O.; Earl, C.C.; Tang, M.J.S.; Hunt, J.P.; Smith, M.T.; Wood, D.W.; Bundy, B.C. Biosensing estrogenic endocrine disruptors in human blood and urine: A RAPID cell-free protein synthesis approach. Toxicol. Appl. Pharm. 2018, 345, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Gan, R.; Cabezas, M.D.; Pan, M.; Zhang, H.B.; Hu, G.; Clark, L.G.; Jewett, M.C.; Nicol, R. High-Throughput Regulatory Part Prototyping and Analysis by Cell-Free Protein Synthesis and Droplet Microfluidics. ACS Synth. Biol. 2022, 11, 2108–2120. [Google Scholar] [CrossRef]
- Holstein, J.M.; Gylstorff, C.; Hollfelder, F. Cell-free Directed Evolution of a Protease in Microdroplets a Ultrahigh Throughput. ACS Synth. Biol. 2021, 10, 252–257. [Google Scholar] [CrossRef]
- Hunt, A.C.; Voegeli, B.; Hassan, A.O.; Guerrero, L.; Kightlinger, W.; Yoesep, D.J.; Krueger, A.; DeWinter, M.; Diamond, M.S.; Karim, A.S.; et al. A rapid cell-free expression and screening platform for antibody discovery. Nat. Commun. 2023, 14, 3897. [Google Scholar] [CrossRef]
- Nirenberg, M.; Matthaei, J.H. Dependence of Cell-Free Protein Synthesis in E Coli Upon Naturally Occurring or Synthetic Polyribonucleotides. Proc. Natl. Acad. Sci. USA 1961, 47, 1588–1602. [Google Scholar] [CrossRef]
- Katzen, F.; Chang, G.; Kudlicki, W. The past, present and future of cell-free protein synthesis. Trends Biotechnol. 2005, 23, 150–156. [Google Scholar] [CrossRef]
- Kim, D.M.; Swartz, J.R. Prolonging cell-free protein synthesis with a novel ATP regeneration system. Biotechnol. Bioeng. 1999, 66, 180–188. [Google Scholar] [CrossRef]
- Miyazaki-Imamura, C.; Oohira, K.; Kitagawa, R.; Nakano, H.; Yamane, T.; Takahashi, H. Improvement of H2O2 stability of manganese peroxidase by combinatorial mutagenesis and high-throughput screening using in vitro expression with protein disulfide isomerase. Protein Eng. 2003, 16, 423–428. [Google Scholar] [CrossRef]
- Lin, X.; Zhou, C.; Zhu, S.; Deng, H.; Zhang, J.; Lu, Y. O(2)-Tuned Protein Synthesis Machinery in Escherichia coli-Based Cell-Free System. Front. Bioeng. Biotechnol. 2020, 8, 312. [Google Scholar] [CrossRef]
- Nelson, J.A.D.; Barnett, R.J.; Hunt, J.P.; Foutz, I.; Welton, M.; Bundy, B.C. Hydrofoam and oxygen headspace bioreactors improve cell-free therapeutic protein production yields through enhanced oxygen transport. Biotechnol. Prog. 2021, 37, e3079. [Google Scholar] [CrossRef] [PubMed]
- Tawfik, D.S.; Griffiths, A.D. Man-made cell-like compartments for molecular evolution. Nat. Biotechnol. 1998, 16, 652–656. [Google Scholar] [CrossRef]
- Sawasaki, T.; Hasegawa, Y.; Tsuchimochi, M.; Kamura, N.; Ogasawara, T.; Kuroita, T.; Endo, Y. A bilayer cell-free protein synthesis system for high-throughput screening of gene products. FEBS Lett. 2002, 514, 102–105. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.M.; Choi, C.Y. A semicontinuous prokaryotic coupled transcription/translation system using a dialysis membrane. Biotechnol. Prog. 1996, 12, 645–649. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Hino, M.; Kakuhata, R.; Nojima, T.; Shinohara, Y.; Baba, Y.; Fujii, T. Evaluation of cell-free protein synthesis using PDMS-based microreactor Arrays. Anal. Sci. 2008, 24, 243–246. [Google Scholar] [CrossRef]
- Martin, G.A.; Kawaguchi, R.; Lam, Y.; DeGiovanni, A.; Fukushima, M.; Mutter, W. High-Yield, In Vitro Protein Expression Using a Continuous-Exchange, Coupled Transcription/Translation System. Biotechniques 2001, 31, 948–953. [Google Scholar] [CrossRef]
- Calhoun, K.A.; Swartz, J.R. Energizing cell-free protein synthesis with glucose metabolism. Biotechnol. Bioeng. 2005, 90, 606–613. [Google Scholar] [CrossRef]
- Wang, Y.R.; Zhang, Y.H.P. Cell-free protein synthesis energized by slowly-metabolized maltodextrin. BMC Biotechnol. 2009, 9, 58. [Google Scholar] [CrossRef]
- Kim, H.C.; Kim, T.W.; Kim, D.M. Prolonged production of proteins in a cell-free protein synthesis system using polymeric carbohydrates as an energy source. Process Biochem. 2011, 46, 1366–1369. [Google Scholar] [CrossRef]
- Shimizu, Y.; Inoue, A.; Tomari, Y.; Suzuki, T.; Yokogawa, T.; Nishikawa, K.; Ueda, T. Cell-free translation reconstituted with purified components. Nat. Biotechnol. 2001, 19, 751–755. [Google Scholar] [CrossRef]
- Cui, Y.; Chen, X.J.; Wang, Z.; Lu, Y. Cell-Free PURE System: Evolution and Achievements. Biodesign Res. 2022, 2022, 9847014. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.T.; Berkheimer, S.D.; Werner, C.J.; Bundy, B.C. Lyophilized Escherichia coli-based cell-free systems for robust, high-density, long-term storage. Biotechniques 2014, 56, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Wilding, K.M.; Zhao, E.L.; Earl, C.C.; Bundy, B.C. Thermostable lyoprotectant-enhanced cell-free protein synthesis for on-demand endotoxin-free therapeutic production. New Biotechnol. 2019, 53, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Borkowski, O.; Koch, M.; Zettor, A.; Pandi, A.; Batista, A.C.; Soudier, P.; Faulon, J.-L. Large scale active-learning-guided exploration for in vitro protein production optimization. Nat. Commun. 2020, 11, 1872. [Google Scholar] [CrossRef]
- Toh, M.; Chengan, K.; Hanson, T.; Freemont, P.S.; Moore, S.J. A High-Yield Streptomyces Transcription-Translation Toolkit for Synthetic Biology and Natural Product Applications. J. Vis. Exp. 2021, 175, e63012. [Google Scholar] [CrossRef]
- Hunt, J.P.; Wilding, K.M.; Barnett, R.J.; Robinson, H.; Soltani, M.; Cho, J.E.; Bundy, B.C. Engineering Cell-Free Protein Synthesis for High-Yield Production and Human Serum Activity Assessment of Asparaginase: Toward On-Demand Treatment of Acute Lymphoblastic Leukemia. Biotechnol. J. 2020, 15, e1900294. [Google Scholar] [CrossRef]
- Zhou, C.J.; Lin, X.M.; Lu, Y.; Zhang, J.S. Flexible on-demand cell-free protein synthesis platform based on a tube-in-tube reactor. React. Chem. Eng. 2020, 5, 270–277. [Google Scholar] [CrossRef]
- Chang, J.C.; Swank, Z.; Keiser, O.; Maerkl, S.J.; Amstad, E. Microfluidic device for real-time formulation of reagents and their subsequent encapsulation into double emulsions. Sci. Rep. 2018, 8, 8143. [Google Scholar] [CrossRef]
- Kigawa, T.; Yabuki, T.; Yoshida, Y.; Tsutsui, M.; Ito, Y.; Shibata, T.; Yokoyama, S. Cell-free production and stable-isotope labeling of milligram quantities of proteins. FEBS Lett. 1999, 442, 15–19. [Google Scholar] [CrossRef]
- Kim, D.M.; Swartz, J.R. Prolonging cell-free protein synthesis by selective reagent additions. Biotechnol. Prog. 2000, 16, 385–390. [Google Scholar] [CrossRef]
- Voloshin, A.M.; Swartz, J.R. Efficient and scalable method for scaling up cell free protein synthesis in batch mode. Biotechnol. Bioeng. 2005, 91, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.W.; Kim, D.M.; Choi, C.Y. Rapid production of milligram quantities of proteins in a batch cell-free protein synthesis system. J. Biotechnol. 2006, 124, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, T.; Sridharan, K.; Manley, B.; Cunningham, D.; Narva, K. Development of dsRNA as a Sustainable Bioinsecticide: From Laboratory to Field. In Crop Protection Products for Sustainable Agriculture; ACS Symposium Series; American Chemical Society: Washington, WA, USA, 2021; Volume 1390, pp. 65–82. [Google Scholar]
- Gupta, M.D.; Flaskamp, Y.; Roentgen, R.; Juergens, H.; Armero-Gimenez, J.; Albrecht, F.; Hemmerich, J.; Arfi, Z.A.; Neuser, J.; Spiegel, H.; et al. Scaling eukaryotic cell-free protein synthesis achieved with the versatile and high-yielding tobacco BY-2 cell lysate. Biotechnol. Bioeng. 2023, 120, 2890–2906. [Google Scholar] [CrossRef]
- Dopp, J.L.; Reuel, N.F. Process optimization for scalable E. coli extract preparation for cell-free protein synthesis. Biochem. Eng. J. 2018, 138, 21–28. [Google Scholar] [CrossRef]
- Kanter, G.; Yang, J.; Voloshin, A.; Levy, S.; Swartz, J.R.; Levy, R. Cell-free production of scFv fusion proteins: An efficient approach for personalized lymphoma vaccines. Blood 2007, 109, 3393–3399. [Google Scholar] [CrossRef]
- Peñalber-Johnstone, C.; Ge, X.D.; Tran, K.; Selock, N.; Sardesai, N.; Gurramkonda, C.; Pilli, M.; Tolosa, M.; Tolosa, L.; Kostov, Y.; et al. Optimizing cell-free protein expression in CHO: Assessing small molecule mass transfer effects in various reactor configurations. Biotechnol. Bioeng. 2017, 114, 1478–1486. [Google Scholar] [CrossRef]
- Sawasaki, T.; Hasegawa, Y.; Morishita, R.; Seki, M.; Shinozaki, K.; Endo, Y. Genome-scale, biochemical annotation method based on the wheat germ cell-free protein synthesis system. Phytochemistry 2004, 65, 1549–1555. [Google Scholar] [CrossRef]
- Morishita, R.; Sugiyama, S.; Denda, M.; Tokunaga, S.; Kido, K.; Shioya, R.; Ozawa, S.; Sawasaki, T. CF-PA2Vtech: A cell-free human protein array technology for antibody validation against human proteins. Sci. Rep. 2019, 9, 19349. [Google Scholar] [CrossRef]
- Park, C.G.; Kwon, M.A.; Song, J.K.; Kim, D.M. Cell-Free Synthesis and Multifold Screening of Candida Antarctica Lipase B (CalB) Variants After Combinatorial Mutagenesis of Hot Spots. Biotechnol. Prog. 2011, 27, 47–53. [Google Scholar] [CrossRef]
- Bundy, B.C.; Hunt, J.P.; Jewett, M.C.; Swartz, J.R.; Wood, D.W.; Frey, D.D.; Rao, G. Cell-free biomanufacturing. Curr. Opin. Chem. Eng. 2018, 22, 177–183. [Google Scholar] [CrossRef]
- Jackson, K.; Jin, S.G.; Fan, Z.H. Optimization of a miniaturized fluid array device for cell-free protein synthesis. Biotechnol. Bioeng. 2015, 112, 2459–2467. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Xie, B.; Chen, J.; Fan, Y.; Zhang, J. An efficient and safe platform based on the tube-in-tube reactor for implementing gas-liquid processes in flow. Green Chem. Eng. 2023, 4, 251–263. [Google Scholar] [CrossRef]
- Maharjan, A.; Park, J.H. Cell-free protein synthesis system: A new frontier for sustainable biotechnology-based products. Biotechnol. Appl. Biochem. 2023, 70, 2136–2149. [Google Scholar] [CrossRef]
- Jewett, M.C.; Calhoun, K.A.; Voloshin, A.; Wuu, J.J.; Swartz, J.R. An integrated cell-free metabolic platform for protein production and synthetic biology. Mol. Syst. Biol. 2008, 4, 220. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Oakeshott, J.G.; Easton, C.J.; Peat, T.S.; Surjadi, R.; Zhu, Y. A double-emulsion microfluidic platform for in vitro green fluorescent protein expression. J. Micromech. Microeng. 2011, 21, 054032. [Google Scholar] [CrossRef]
- Gan, R.; Yamanaka, Y.; Kojima, T.; Nakano, H. Microbeads Display of Proteins Using Emulsion PCR and Cell-Free Protein Synthesis. Biotechnol. Prog. 2008, 24, 1107–1114. [Google Scholar] [CrossRef]
- Calviello, L.; Stano, P.; Mavelli, F.; Luisi, P.L.; Marangoni, R. Quasi-cellular systems: Stochastic simulation analysis at nanoscale range. BMC Bioinform. 2013, 14, S7. [Google Scholar] [CrossRef]
- Sakamoto, R.; Noireaux, V.; Maeda, Y.T. Anomalous Scaling of Gene Expression in Confined Cell-Free Reactions. Sci. Rep. 2018, 8, 7364. [Google Scholar] [CrossRef]
- Gallo, V.; Stano, P.; Luisi, P.L. Protein Synthesis in Sub-Micrometer Water-in-Oil Droplets. Chembiochem 2015, 16, 2073–2079. [Google Scholar] [CrossRef]
- Nuti, N.; Rottmann, P.; Stucki, A.; Koch, P.; Panke, S.; Dittrich, P.S. A Multiplexed Cell-Free Assay to Screen for Antimicrobial Peptides in Double Emulsion Droplets. Angew. Chem. Int. Ed. 2022, 61, e202114632. [Google Scholar] [CrossRef]
- Lu, H.F.; Ouyang, J.P.; Liu, W.Q.; Wu, C.Z.; Li, J. Enzyme-Polymer-Conjugate-Based Pickering Emulsions for Cell-Free Expression and Cascade Biotransformation. Angew. Chem. Int. Ed. 2023, 62, e202312906. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, N.; Kitaoka, Y.; Niwano, M. Enhancement of Protein-Synthesis in Continuous-Flow, Cell-Free System by Improvement of Membrane Permeation. J. Ferment. Bioeng. 1995, 80, 403–405. [Google Scholar] [CrossRef]
- Lamla, T.; Stiege, W.; Erdmann, V.A. An Improved Protein Bioreactor: Efficient Product Isolation During in vitro Protein Biosynthesis. Mol. Cell. Proteom. 2002, 1, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Jackson, K.; Fan, Z.H. Cell-Free Protein Synthesis in Miniaturized Array Devices and Effects of Device Orientation. J. Lab. Autom. 2014, 19, 366–374. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Sugimoto, S.; Shen, X.C.; Nagamune, T.; Yao, S.L.; Suzuki, E. In-place condensation of reaction mixture using hollow fiber membrane reactors improved productivity of cell-free protein synthesis. Biochem. Eng. J. 1999, 3, 151–155. [Google Scholar] [CrossRef]
- Aquino, A.K.; Manzer, Z.A.; Daniel, S.; DeLisa, M.P. Glycosylation-on-a-Chip: A Flow-Based Microfluidic System for Cell-Free Glycoprotein Biosynthesis. Front. Mol. Biosci. 2021, 8, 782905. [Google Scholar] [CrossRef]
- Murphy, T.W.; Sheng, J.Y.; Naler, L.B.; Feng, X.Y.; Lu, C. On-chip manufacturing of synthetic proteins for point-of-care therapeutics. Microsyst. Nanoeng. 2019, 5, 13. [Google Scholar] [CrossRef]
- Timm, A.C.; Shankles, P.G.; Foster, C.M.; Doktycz, M.J.; Retterer, S.T. Characterization of extended channel bioreactors for continuous-flow protein production. J. Vac. Sci. Technol. B 2015, 33, 06FM02-1–06FM02-8. [Google Scholar] [CrossRef]
- Niederholtmeyer, H.; Stepanova, V.; Maerkl, S.J. Implementation of cell-free biological networks at steady state. Proc. Natl. Acad. Sci. USA 2013, 110, 15985–15990. [Google Scholar] [CrossRef]
- Takeda, H.; Ogasawara, T.; Ozawa, T.; Muraguchi, A.; Jih, P.J.; Morishita, R.; Uchigashima, M.; Watanabe, M.; Fujimoto, T.; Iwasaki, T.; et al. Production of monoclonal antibodies against GPCR using cell-free synthesized GPCR antigen and biotinylated liposome-based interaction assay. Sci. Rep. 2015, 5, 11333. [Google Scholar] [CrossRef]
- Aoki, M.; Matsuda, T.; Tomo, Y.; Miyata, Y.; Inoue, M.; Kigawa, T.; Yokoyama, S. Automated system for high-throughput protein production using the dialysis cell-free method. Protein Expres Purif. 2009, 68, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Shimono, K.; Goto, M.; Kikukawa, T.; Miyauchi, S.; Shirouzu, M.; Kamo, N.; Yokoyama, S. Production of functional bacteriorhodopsin by an Escherichia coli cell-free protein synthesis system supplemented with steroid detergent and lipid. Protein Sci. 2009, 18, 2160–2171. [Google Scholar] [CrossRef] [PubMed]
- Periasamy, A.; Shadiac, N.; Amalraj, A.; Garajová, S.; Nagarajan, Y.; Waters, S.; Mertens, H.D.T.; Hrmova, M. Cell-free protein synthesis of membrane (1,3)-β-D-glucan (curdlan) synthase: Co-translational insertion in liposomes and reconstitution in nanodiscs. BBA-Biomembr. 2013, 1828, 743–757. [Google Scholar] [CrossRef] [PubMed]
- Takai, K.; Sawasaki, T.; Endo, Y. The Wheat-Germ Cell-Free Expression System. Curr. Pharm. Biotechno 2010, 11, 272–278. [Google Scholar] [CrossRef]
- Basu, D.; Castellano, J.M.; Thomas, N.; Mishra, R.K. Cell-free protein synthesis and purification of human dopamine D2 receptor long isoform. Biotechnol. Prog. 2013, 29, 601–608. [Google Scholar] [CrossRef]
- Nozawa, A.; Nanamiya, H.; Miyata, T.; Linka, N.; Endo, Y.; Weber, A.P.M.; Tozawa, Y. A Cell-Free Translation and Proteoliposome Reconstitution System for Functional Analysis of Plant Solute Transporters. Plant Cell Physiol. 2007, 48, 1815–1820. [Google Scholar] [CrossRef]
- Goshima, N.; Kawamura, Y.; Fukumoto, A.; Miura, A.; Honma, R.; Satoh, R.; Wakamatsu, A.; Yamamoto, J.-i.; Kimura, K.; Nishikawa, T. Human protein factory for converting the transcriptome into an in vitro–expressed proteome. Nat. Methods 2008, 5, 1011–1017. [Google Scholar] [CrossRef]
- Shivakumar, T.; Clark, J.; Goode, A.; Anyanwu, V.E.; Williams, P.M. A Design of Experiments Approach for Enhancing Room Temperature Stability of a Lyophilised and Paper-Based Bacterial Cell-Free System. Bioengineering 2025, 12, 223. [Google Scholar] [CrossRef]
- Gregorio, N.E.; Kao, W.Y.; Williams, L.C.; Hight, C.M.; Patel, P.; Watts, K.R.; Oza, J.P. Unlocking Applications of Cell-Free Biotechnology through Enhanced Shelf Life and Productivity of E. coli Extracts. Acs Synth. Biol. 2020, 9, 766–778. [Google Scholar] [CrossRef]
- Lee, M.S.; Raig, R.M.; Gupta, M.K.; Lux, M.W. Lyophilized Cell-Free Systems Display Tolerance to Organic Solvent Exposure. ACS Synth. Biol. 2020, 9, 1951–1957. [Google Scholar] [CrossRef]
- DeWinter, M.A.; Thames, A.H.; Guerrero, L.; Kightlinger, W.; Karim, A.S.; Jewett, M.C. Point-of-Care Peptide Hormone Production Enabled by Cell-Free Protein Synthesis. ACS Synth. Biol. 2023, 12, 1216–1226. [Google Scholar] [CrossRef]
- Soltani, M.; Hunt, J.P.; Bundy, B.C. Rapid RNase inhibitor production to enable low-cost, on-demand cell-free protein synthesis biosensor use in human body fluids. Biotechnol. Bioeng. 2021, 118, 3973–3983. [Google Scholar] [CrossRef] [PubMed]
- Blum, S.M.; Lee, M.S.; Mgboji, G.E.; Funk, V.L.; Beabout, K.; Harbaugh, S.V.; Roth, P.A.; Liem, A.T.; Miklos, A.E.; Emanuel, P.A.; et al. Impact of Porous Matrices and Concentration by Lyophilization on Cell-Free Expression. ACS Synth. Biol. 2021, 10, 1116–1131. [Google Scholar] [CrossRef] [PubMed]
- Brookwell, A.; Oza, J.P.; Caschera, F. Biotechnology Applications of Cell-Free Expression Systems. Life 2021, 11, 1367. [Google Scholar] [CrossRef]
- Hunt, J.P.; Zhao, E.L.; Free, T.J.; Soltani, M.; Warr, C.A.; Benedict, A.B.; Takahashi, M.K.; Griffitts, J.S.; Pitt, W.G.; Bundy, B.C. Towards detection of SARS-CoV-2 RNA in human saliva: A paper-based cell-free toehold switch biosensor with a visual bioluminescent output. New Biotechnol. 2022, 66, 53–60. [Google Scholar] [CrossRef]
- Free, T.J.; Talley, J.P.; Hyer, C.D.; Miller, C.J.; Griffitts, J.S.; Bundy, B.C. Engineering the Signal Resolution of a Paper-Based Cell-Free Glutamine Biosensor with Genetic Engineering, Metabolic Engineering, and Process Optimization. Sensors 2024, 24, 3073. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, C.; Bi, H.; Zhang, X.; Xue, B.; Li, C.; Wang, S.; Yang, X.; Qiu, Z.; Wang, J.; et al. A cell-free paper-based biosensor dependent on allosteric transcription factors (aTFs) for on-site detection of harmful metals Hg(2+) and Pb(2+) in water. J. Hazard. Mater. 2022, 438, 129499. [Google Scholar] [CrossRef]
- Grawe, A.; Dreyer, A.; Vornholt, T.; Barteczko, U.; Buchholz, L.; Drews, G.; Ho, U.L.; Jackowski, M.E.; Kracht, M.; Luders, J.; et al. A paper-based, cell-free biosensor system for the detection of heavy metals and date rape drugs. PLoS ONE 2019, 14, e0210940. [Google Scholar] [CrossRef]
- Cao, M.; Sun, Q.; Zhang, X.; Ma, Y.; Wang, J. Detection and differentiation of respiratory syncytial virus subgroups A and B with colorimetric toehold switch sensors in a paper-based cell-free system. Biosens. Bioelectron. 2021, 182, 113173. [Google Scholar] [CrossRef]
- Free, T.J.; Tucker, R.W.; Simonson, K.M.; Smith, S.A.; Lindgren, C.M.; Pitt, W.G.; Bundy, B.C. Engineering at-home dilution and filtration methods to enable paper-based colorimetric biosensing in human blood with cell-free protein synthesis. Biosensors 2023, 13, 104. [Google Scholar] [CrossRef]
- Chiba, C.H.; Knirsch, M.C.; Azzoni, A.R.; Moreira, A.R.; Stephano, M.A. Cell-free protein synthesis: Advances on production process for biopharmaceuticals and immunobiological products. Biotechniques 2021, 70, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Kathirvel, I.; Gayathri Ganesan, N. Computational Strategies to Enhance Cell-Free Protein Synthesis Efficiency. BioMedInformatics 2024, 4, 2022–2042. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chipman, D.M.; Woolley, A.C.; Chau, D.N.; Lance, W.A.; Talley, J.P.; Green, T.P.; Robbins, B.C.; Bundy, B.C. Cell-Free Protein Synthesis Reactor Formats: A Brief History and Analysis. SynBio 2025, 3, 10. https://doi.org/10.3390/synbio3030010
Chipman DM, Woolley AC, Chau DN, Lance WA, Talley JP, Green TP, Robbins BC, Bundy BC. Cell-Free Protein Synthesis Reactor Formats: A Brief History and Analysis. SynBio. 2025; 3(3):10. https://doi.org/10.3390/synbio3030010
Chicago/Turabian StyleChipman, Dallin M., Anna C. Woolley, Davu N. Chau, William A. Lance, Joseph P. Talley, Tyler P. Green, Benjamin C. Robbins, and Bradley C. Bundy. 2025. "Cell-Free Protein Synthesis Reactor Formats: A Brief History and Analysis" SynBio 3, no. 3: 10. https://doi.org/10.3390/synbio3030010
APA StyleChipman, D. M., Woolley, A. C., Chau, D. N., Lance, W. A., Talley, J. P., Green, T. P., Robbins, B. C., & Bundy, B. C. (2025). Cell-Free Protein Synthesis Reactor Formats: A Brief History and Analysis. SynBio, 3(3), 10. https://doi.org/10.3390/synbio3030010