Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (865)

Search Parameters:
Keywords = cationic nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6373 KB  
Review
Polyacrylamide-Based Polymers for Slickwater Fracturing Fluids: A Review of Molecular Design, Drag Reduction Mechanisms, and Gelation Methods
by Wenbin Cai, Weichu Yu, Fei Ding, Kang Liu, Wen Xin, Zhiyong Zhao and Chao Xiong
Gels 2026, 12(2), 101; https://doi.org/10.3390/gels12020101 - 26 Jan 2026
Viewed by 339
Abstract
Slickwater fracturing has become an adopted technology for enhancing hydrocarbon recovery from unconventional, low-permeability reservoirs such as shale and tight formations, owing to its ability to generate complex fracture networks at a low cost. Polyacrylamide and polyacrylamide-based gels serve as key additives in [...] Read more.
Slickwater fracturing has become an adopted technology for enhancing hydrocarbon recovery from unconventional, low-permeability reservoirs such as shale and tight formations, owing to its ability to generate complex fracture networks at a low cost. Polyacrylamide and polyacrylamide-based gels serve as key additives in these fluids, primarily functioning as drag reducers and thickeners. However, downhole environments of high-temperature (>120 °C) and high-salinity (>1 × 104 mg/L) reservoirs pose challenges, leading to thermal degradation and chain collapse of conventional polyacrylamide, which results in performance loss. To address these limitations, synthesis methods including aqueous solution polymerization, inverse emulsion polymerization, and aqueous dispersion polymerization have been developed. This review provides an overview of molecular design methods aimed at enhancing performance stability of polyacrylamide-based polymers under extreme conditions. Approaches for improving thermal stability involve synthesis of ultra-high-molecular-weight polyacrylamide, copolymerization with resistant monomers, and incorporation of nanoparticles. Methods for enhancing salt tolerance focus on grafting anionic, cationic, or zwitterionic side chains onto the polymer backbone. The drag reduction mechanisms and gelation methods of these polymers in slickwater fracturing fluids are discussed. Finally, this review outlines research directions for developing next-generation polyacrylamide polymers tailored for extreme reservoir conditions, offering insights for academic research and field applications. Full article
(This article belongs to the Topic Polymer Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Figure 1

18 pages, 8849 KB  
Article
Innovative Titanium Implants Coated with miR-21-Loaded Nanoparticle for Peri-Implantitis Prevention
by Anna Valentino, Raffaele Conte, Pierfrancesco Cerruti, Roberta Condò, Gianfranco Peluso and Anna Calarco
Pharmaceutics 2026, 18(1), 142; https://doi.org/10.3390/pharmaceutics18010142 - 22 Jan 2026
Viewed by 176
Abstract
Background/Objectives: Peri-implantitis is a chronic inflammatory condition affecting tissues surrounding dental implants and is characterized by progressive marginal bone loss that can ultimately lead to implant failure. Reduced vascularization and impaired immune clearance in peri-implant tissues contribute to persistent inflammation and limited therapeutic [...] Read more.
Background/Objectives: Peri-implantitis is a chronic inflammatory condition affecting tissues surrounding dental implants and is characterized by progressive marginal bone loss that can ultimately lead to implant failure. Reduced vascularization and impaired immune clearance in peri-implant tissues contribute to persistent inflammation and limited therapeutic efficacy. MicroRNAs (miRNAs), particularly miR-21, have emerged as key regulators of inflammatory responses and bone remodeling. The objective of this study was to develop a bioactive dental implant coating capable of locally delivering miR-21 to modulate inflammation and promote peri-implant tissue regeneration, thereby preventing peri-implantitis. Methods: Cationic nanoparticles were synthesized using lecithin and low-molecular-weight polyethylenimine (PEI) as a non-viral delivery system for miR-21. Lecithin was employed to enhance biocompatibility, while PEI functionalization provided a positive surface charge to improve miRNA complexation and cellular uptake. The resulting lecithin–PEI nanoparticles (LEC–PEI NPs) were incorporated into a chitosan-based coating and applied to titanium implant surfaces to obtain a sustained miR-21–releasing system (miR21-implant). Transfection efficiency and biological activity were evaluated in human periodontal ligament fibroblasts (hPDLFs) and compared with a commercial transfection reagent (Lipofectamine). Release kinetics and long-term activity of miR-21 from the coating were also assessed. Results: MiR-21-loaded LEC–PEI nanoparticles demonstrated significantly higher transfection efficiency than Lipofectamine and retained marked biological activity in hPDLFs relevant to peri-implantitis prevention. The chitosan-based nanoparticle coating enabled controlled and sustained miR-21 release over time, supporting prolonged modulation of inflammatory and osteogenic signaling pathways involved in peri-implant tissue homeostasis. Conclusions: The miR21-implant system, based on lecithin–PEI nanoparticles incorporated into a chitosan coating, represents a promising therapeutic strategy for peri-implantitis prevention. By enabling sustained local delivery of miR-21, this approach has the potential to preserve peri-implant bone architecture, modulate chronic inflammation, and enhance the osseointegration of titanium dental implants. Full article
Show Figures

Graphical abstract

30 pages, 8636 KB  
Article
Bio-Derived Cellulose Nanofibers for the Development Under Environmentally Assessed Conditions of Cellulose/ZnO Nanohybrids with Enhanced Biocompatibility and Antimicrobial Properties
by Kyriaki Marina Lyra, Aggeliki Papavasiliou, Caroline Piffet, Lara Gumusboga, Jean-Michel Thomassin, Yana Marie, Alexandre Hoareau, Vincent Moulès, Javier Alcodori, Pau Camilleri Lledó, Albany Milena Lozano Násner, Jose Gallego, Elias Sakellis, Fotios K. Katsaros, Dimitris Tsiourvas and Zili Sideratou
Materials 2026, 19(2), 346; https://doi.org/10.3390/ma19020346 - 15 Jan 2026
Viewed by 335
Abstract
The development of eco-friendly antimicrobial materials is essential for addressing antibiotic resistance, while reducing environmental impact. In this study, bio-derived anionic and cationic cellulose nanofibers (a-CNF and c-CNF) were employed as templating matrices for the in situ hydrothermal synthesis of cellulose/ZnO nanohybrids. Physicochemical [...] Read more.
The development of eco-friendly antimicrobial materials is essential for addressing antibiotic resistance, while reducing environmental impact. In this study, bio-derived anionic and cationic cellulose nanofibers (a-CNF and c-CNF) were employed as templating matrices for the in situ hydrothermal synthesis of cellulose/ZnO nanohybrids. Physicochemical characterization confirmed efficient cellulose functionalization and high-quality nanofibrillation, as well as the formation of uniformly dispersed ZnO nanoparticles (≈10–20 nm) strongly integrated within the cellulose network. The ZnO content was 30 and 20 wt. % for a-CNF/ZnO and c-CNF/ZnO, respectively. Antibacterial evaluation against Escherichia coli and Staphylococcus aureus revealed enhanced activity for both hybrids, with c-CNF/ZnO displaying the lowest MIC/MBC values (50/100 μg/mL). Antiviral assays revealed complete feline calicivirus inactivation at 100 μg/mL for c-CNF/ZnO, while moderate activity was observed against bovine coronavirus, highlighting the role of surface charge. Cytotoxicity assays on mammalian cells demonstrated high biocompatibility at antimicrobial concentrations. Life cycle assessment showed that c-CNF/ZnO exhibits a lower overall environmental burden than a-CNF/ZnO, with electricity demand being the main contributor, indicating clear opportunities for further reductions through process optimization and scale-up. Overall, these results demonstrate that CNF/ZnO nanohybrids effectively combine renewable biopolymers with ZnO antimicrobial functionality, offering a sustainable and safe platform for biomedical and environmental applications. Full article
(This article belongs to the Special Issue Νanoparticles for Biomedical Applications (2nd Edition))
Show Figures

Graphical abstract

21 pages, 8700 KB  
Article
Efficient Oral Insulin Delivery Through Thiolated Trimethyl Chitosan-Grafted β-Cyclodextrin Nanoparticles
by Lizhen Yu, Fengge Wang, Shuyun Bao, Yue Zhang, Xuebin Shen, Desheng Wang, Zhisheng Liu, Xinyi Liu, Lihua Li and Renmin Gong
Pharmaceutics 2026, 18(1), 97; https://doi.org/10.3390/pharmaceutics18010097 - 12 Jan 2026
Viewed by 296
Abstract
Background: Oral insulin improves compliance and convenience in patients with diabetes who require regular needle injections. However, the clinical application of oral insulin preparations has been limited due to instability and inefficient permeation through the gastrointestinal tract. In this study, a novel [...] Read more.
Background: Oral insulin improves compliance and convenience in patients with diabetes who require regular needle injections. However, the clinical application of oral insulin preparations has been limited due to instability and inefficient permeation through the gastrointestinal tract. In this study, a novel cationic polysaccharide nanodrug delivery platform was designed for efficient oral insulin delivery. Methods: The innovative thiolated trimethyl chitosan-grafted β-cyclodextrin (NCT) was synthesized by utilizing N-trimethyl chitosan (TMC) as the polymer backbone. This involved modifying TMC with thiol group-containing N-acetylcysteine and carboxymethyl-β-cyclodextrin that possesses hydrophobic cavities via an amide condensation reaction. Subsequently, this polymer was employed to construct the NCT nanoparticle system using an ionic cross-linking method. The physicochemical properties of the NCT nanoparticles were systematically analyzed, and their therapeutic efficacy was comprehensively evaluated in streptozotocin (STZ)-induced animal models. Results: The NCT nanoparticles demonstrated mucus adhesion, permeability, and pH sensitivity, which facilitated a slow and controlled release within the gastrointestinal microenvironment due to both ionic electrostatic interactions and disulfide bonding interactions. The experiments revealed in vivo that insulin/NCT nanoparticles extended the retention time of insulin in the small intestine. Blood glucose levels decreased to approximately 39% of the initial level at 5 h post-administration while exhibiting smooth hypoglycemic efficacy. Simultaneously, insulin bioavailability increased to 12.58%. Conclusions: The NCT nanoparticles effectively protect insulin from degradation in the gastrointestinal microenvironment while overcoming intestinal barriers, thereby providing a promising approach to oral biomolecule delivery. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

16 pages, 2446 KB  
Article
Bridging Molecular Modeling Insights and Experimental Findings: A Comparative Study on Surfactant Effects in Al2O3 Nanofluids
by Beytullah Erdoğan and Çağlar Çelik Bayar
Nanomaterials 2026, 16(2), 92; https://doi.org/10.3390/nano16020092 - 11 Jan 2026
Viewed by 230
Abstract
This study aimed to prepare water-based nanofluids using Al2O3 nanoparticles with different types of surfactants, and to investigate the colloidal and thermophysical properties of the obtained nanofluids. In this context, water-based Al2O3 nanofluids have been prepared using [...] Read more.
This study aimed to prepare water-based nanofluids using Al2O3 nanoparticles with different types of surfactants, and to investigate the colloidal and thermophysical properties of the obtained nanofluids. In this context, water-based Al2O3 nanofluids have been prepared using six surfactants with anionic, cationic, and nonionic characteristics SDS, CTAC, PVP, Tween 80, PVA, and Triton X-100. The electrostatic colloidal stability of the prepared samples has been determined by zeta potential and particle size measurements. To understand the interactions at the molecular level and the stabilities in terms of interaction Gibbs free energy, nanoparticle–surfactant interactions have been modeled using the DFT (Density Functional Theory) method. The overall colloidal stability rankings of nanofluids have been performed using both zeta potential measurements and DFT analysis. Furthermore, the thermophysical properties of nanofluids, which are crucial for industrial applications, have been measured. The results showed that the type of surfactant has a significant effect on the colloidal and thermophysical properties of nanofluids. It has been concluded that Al2O3-SDS and Al2O3-CTAC nanofluids can be used in cooling systems due to their high zeta potential and thermal conductivity, and low viscosity and size. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Figure 1

39 pages, 1558 KB  
Review
Rewriting Tumor Entry Rules: Microfluidic Polyplexes and Tumor-Penetrating Strategies—A Literature Review
by Simona Ruxandra Volovat, Iolanda Georgiana Augustin, Constantin Volovat, Ingrid Vasilache, Madalina Ostafe, Diana Ioana Panaite, Alin Burlacu and Cristian Constantin Volovat
Pharmaceutics 2026, 18(1), 84; https://doi.org/10.3390/pharmaceutics18010084 - 9 Jan 2026
Viewed by 493
Abstract
Cancer immunotherapy increasingly relies on nucleic acid-based vaccines, yet achieving efficient and safe delivery remains a critical limitation. Polyplexes—electrostatic complexes of cationic polymers and nucleic acids—have emerged as versatile carriers offering greater chemical tunability and multivalent targeting capacity compared to lipid nanoparticles, with [...] Read more.
Cancer immunotherapy increasingly relies on nucleic acid-based vaccines, yet achieving efficient and safe delivery remains a critical limitation. Polyplexes—electrostatic complexes of cationic polymers and nucleic acids—have emerged as versatile carriers offering greater chemical tunability and multivalent targeting capacity compared to lipid nanoparticles, with lower immunogenicity than viral vectors. This review summarizes key design principles governing polyplex performance, including polymer chemistry, architecture, and assembly route—emphasizing microfluidic fabrication for improved size control and reproducibility. Mechanistically, effective systems support stepwise delivery: tumor targeting, cellular uptake, endosomal escape (via proton-sponge, membrane fusion, or photochemical disruption), and compartment-specific cargo release. We discuss therapeutic applications spanning plasmid DNA, siRNA, miRNA, mRNA, and CRISPR-based editing, highlighting preclinical data across multiple tumor types and early clinical evidence of on-target knockdown in human cancers. Particular attention is given to physiological barriers and engineering strategies—including size-switching systems, charge-reversal polymers, and tumor-penetrating peptides—that improve intratumoral distribution. However, significant challenges persist, including cationic toxicity, protein corona formation, manufacturing variability, and limited clinical responses to date. Current evidence supports polyplexes as a modular platform complementary to lipid nanoparticles in selected oncology indications, though realizing this potential requires continued optimization alongside rigorous translational development. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

16 pages, 2716 KB  
Article
Targeting of Bacteria Using Amylase-Degradable, Copper-Loaded Starch Nanoparticles
by Nathan A. Jones, Usha Kadiyala, Benjamin Serratos, J. Scott VanEpps and Joerg Lahann
Antibiotics 2026, 15(1), 56; https://doi.org/10.3390/antibiotics15010056 - 4 Jan 2026
Viewed by 522
Abstract
Background/Objectives: The treatment of bacterial infections is complicated by emerging antibiotic resistance. This paper identifies a novel approach with a nanoparticle that targets bacterial surface charge and is responsive to the nutrient environment (i.e., glucose) and presence of metabolically active bystander species (i.e., [...] Read more.
Background/Objectives: The treatment of bacterial infections is complicated by emerging antibiotic resistance. This paper identifies a novel approach with a nanoparticle that targets bacterial surface charge and is responsive to the nutrient environment (i.e., glucose) and presence of metabolically active bystander species (i.e., amylase secretion) within microbial communities. Methods: Thus, metabolically responsive composite nanoparticles (440 ± 58 nm) were fabricated via electrohydrodynamic jetting of a cationic starch polymer incorporating 5–7 nm copper nanoparticles (0.3 wt%). Starch was selected as the base polymer, as it is a common carbon source for amylase-producing bacterial communities, in particular under glucose-limited growth conditions. Results: The resulting positively charged particles effectively associated with Gram-positive Staphylococcus aureus, forming co-aggregates with bacterial cells and exhibiting antibacterial activity tenfold greater than free copper nanoparticles. In co-cultures of S. aureus and the amylase-producing bystander species, Bacillus subtilis, enzymatic degradation of the copper–starch nanoparticles increased antibacterial activity against S. aureus by 44%. Conclusions: This work highlights the potential for metabolically regulated particles as a novel paradigm for selective, narrow-spectrum antibacterial therapies that exploit ecological interactions within microbial communities. Full article
(This article belongs to the Special Issue Nanoparticles as Antibacterial/Antibiofilm Agents)
Show Figures

Graphical abstract

13 pages, 2361 KB  
Article
Nanoparticles Composed of β-Cyclodextrin and Sodium p-Styrenesulfonate for the Reversible Symmetric Adsorption of Rhodamine B
by Yinli Liu, Qingfeng Zhou, Yiyang Zuo, Jintao Qian, Pan Zhang and Xiaogang Yang
Symmetry 2026, 18(1), 55; https://doi.org/10.3390/sym18010055 - 27 Dec 2025
Viewed by 377
Abstract
Nanomaterials have been extensively employed for the efficient removal of the cationic dye rhodamine B (RhB) from aqueous solutions. However, challenges such as complex synthesis processes, limited adsorption capacity, and poor cycling stability remain to be addressed. In this research, a novel nanoparticle-based [...] Read more.
Nanomaterials have been extensively employed for the efficient removal of the cationic dye rhodamine B (RhB) from aqueous solutions. However, challenges such as complex synthesis processes, limited adsorption capacity, and poor cycling stability remain to be addressed. In this research, a novel nanoparticle-based β-cyclodextrin and sodium p-styrenesulfonate composite (M-β-SCDP) was synthesized via a two-step method to enhance its adsorption capabilities for RhB from water. The modification resulted in a material enriched with active sites (−OH, −SO3−) and a mesoporous structure, greatly enhancing its adsorption capacity to 2392.34 mg·g−1 for RhB removal from water solutions. The M-β-SCDP exhibited excellent reversible symmetric adsorption, which remained stable after 10 regeneration cycles with no loss in adsorption capacity. The simple manufacturing process, along with its effective adsorption capabilities and outstanding reusability, indicates that M-β-SCDP has great potential for real-world use in efficiently treating RhB in water. Full article
(This article belongs to the Section Chemistry: Symmetry/Asymmetry)
Show Figures

Figure 1

20 pages, 4456 KB  
Article
Enhanced Adsorption of Metformin Using Cu and ZnO Nanoparticles Anchored on Carboxylated Graphene Oxide
by Abeer H. Aljadaani, Amr A. Yakout and Hany Abdel-Aal
Polymers 2026, 18(1), 71; https://doi.org/10.3390/polym18010071 - 26 Dec 2025
Viewed by 425
Abstract
Pharmaceutical residues are increasingly emerging in global drinking water sources, posing serious ecological and public health challenges by altering the physicochemical balance of aquatic systems. Among available purification approaches, adsorption remains one of the most promising techniques due to its simplicity, cost-effectiveness, and [...] Read more.
Pharmaceutical residues are increasingly emerging in global drinking water sources, posing serious ecological and public health challenges by altering the physicochemical balance of aquatic systems. Among available purification approaches, adsorption remains one of the most promising techniques due to its simplicity, cost-effectiveness, and efficiency. In this work, a ternary nanocomposite of Cu- and ZnO-decorated carboxylated graphene oxide (Cu/ZnO@CGO) was synthesized and utilized for highly efficient and ultrafast removal of the antidiabetic drug metformin from aqueous environments. The adsorption mechanism arises from a synergistic combination of surface complexation on Cu nanoparticles, cation–π and π–π electron donor–acceptor interactions with the CGO aromatic structure, and hydrogen bonding through the amino groups of metformin and the oxygen-rich functional moieties of ZnO and CGO. The nanocomposite was thoroughly characterized using FTIR, XPS, XRD, SEM, HRTEM, and TGA analyses, confirming its well-defined hybrid structure. Unlike conventional single-phase or binary systems, the Cu/ZnO@CGO nanocomposite demonstrated remarkable cooperative effects that enhanced its performance through the integration of metal–ligand coordination, π–π stacking, cation–π forces, and hydrogen bonding. These interactions contributed to an outstanding adsorption capacity of 232.56 mg·g−1 and an exceptionally fast equilibrium time of only 25 min. Moreover, the material maintained excellent reusability, with merely a 4.1% decline in efficiency after five regeneration cycles, and achieved almost complete removal of metformin (99.7 ± 3.4%) from several real water samples, namely river, tap, and bottled water. The unique structural design of Cu/ZnO@CGO prevents CGO aggregation and facilitates efficient contaminant capture even at trace concentrations, establishing it as a highly competitive and sustainable adsorbent for pharmaceutical wastewater treatment. Overall, this study highlights a novel and rationally engineered nanocomposite whose synergistic surface chemistry bridges adsorption and detoxification, providing valuable insight into the next generation of multifunctional graphene-based materials for environmental remediation. Full article
(This article belongs to the Special Issue Polymeric Materials Based on Graphene Derivatives and Composites)
Show Figures

Figure 1

1 pages, 140 KB  
Retraction
RETRACTED: Atta et al. Synthesis of Environmentally Friendly Highly Dispersed Magnetite Nanoparticles Based on Rosin Cationic Surfactants as Thin Film Coatings of Steel. Int. J. Mol. Sci. 2014, 15, 6974–6989
by Ayman M. Atta, Gamal A. El-Mahdy, Hamad A. Al-Lohedan and Sami A. Al-Hussain
Int. J. Mol. Sci. 2026, 27(1), 11; https://doi.org/10.3390/ijms27010011 - 19 Dec 2025
Viewed by 283
Abstract
The journal retracts the article “Synthesis of Environmentally Friendly Highly Dispersed Magnetite Nanoparticles Based on Rosin Cationic Surfactants as Thin Film Coatings of Steel” [...] Full article
(This article belongs to the Section Materials Science)
14 pages, 2719 KB  
Article
In Situ Growth of Cross-Linked Ti2Nb10O29 Nanoparticles on Inner/Outer Surfaces of Carbon Microtubes for High-Efficiency Lithium Storage
by Zhi Nie, Hualin Xiong, Changlong Du, Lei Yu, Lianrui Li, Gengping Wan and Guizhen Wang
Batteries 2025, 11(12), 462; https://doi.org/10.3390/batteries11120462 - 16 Dec 2025
Viewed by 318
Abstract
Improving electronic and ionic transport and the structural stability of electrode materials is essential for the development of advanced lithium-ion batteries. Despite its great potential as a high-power anode, Ti2Nb10O29 (TNO) still underperforms due to its unsatisfactory electronic [...] Read more.
Improving electronic and ionic transport and the structural stability of electrode materials is essential for the development of advanced lithium-ion batteries. Despite its great potential as a high-power anode, Ti2Nb10O29 (TNO) still underperforms due to its unsatisfactory electronic and ionic conductivity. Here, a TNO/carbon microtube (TNO@CMT) composite is constructed via an ethanol-assisted solvothermal process and controlled annealing. The hollow carbon framework derived from kapok fibers provides a lightweight conductive skeleton and abundant nucleation sites for uniform TNO growth. By tuning precursor concentration, the interfacial structure and loading are precisely regulated, optimizing electron/ion transport. The optimized TNO@CMT-2 exhibits uniformly dispersed TNO nanoparticles anchored on both inner and outer CMT surfaces, enabling rapid electron transfer, short Li+ diffusion paths, and high structural stability. Consequently, it delivers a reversible capacity of 314.9 mAh g−1 at 0.5 C, retains 75.8% capacity after 1000 cycles at 10 C, and maintains 147.96 mAh g−1 at 40 C. Furthermore, the Li+ diffusion coefficient of TNO/CMT-2 is 5.4 × 10−11 cm2 s−1, which is nearly four times higher than that of pure TNO. This work presents a promising approach to designing multi-cation oxide/carbon heterostructures that synergistically enhance charge and ion transport, offering valuable insights for next-generation high-rate lithium-ion batteries. Full article
Show Figures

Graphical abstract

17 pages, 2516 KB  
Article
Cationic Surface Modification Combined with Collagen Enhances the Stability and Delivery of Magnetosomes for Tumor Hyperthermia
by Yu Wang, Conghao Lin, Yubing Zhang, Wenjun Li, Hongli Cui, Bohan Li, Zhengyi Liu, Kang Wang, Qi Wang, Yinchu Wang, Kangning Lv, Yandi Huang, Hongqin Zhuang and Song Qin
J. Funct. Biomater. 2025, 16(12), 461; https://doi.org/10.3390/jfb16120461 - 12 Dec 2025
Viewed by 1413
Abstract
Magnetosomes (MTS), membrane-enclosed magnetic nanoparticles naturally biomineralized by magnetotactic bacteria, are promising materials for tumor hyperthermia owing to their good biocompatibility and heating efficiency. However, their application is limited by poor suspension stability and low injectability at high concentrations. This study aimed to [...] Read more.
Magnetosomes (MTS), membrane-enclosed magnetic nanoparticles naturally biomineralized by magnetotactic bacteria, are promising materials for tumor hyperthermia owing to their good biocompatibility and heating efficiency. However, their application is limited by poor suspension stability and low injectability at high concentrations. This study aimed to enhance magnetosome stability and delivery performance through surface cationization combined with collagen matrix stabilization. The resulting cationic magnetosomes (CMTS) exhibited an increased positive charge on the outer membrane. Collagen, functioning as a negatively charged matrix under mildly alkaline conditions, effectively stabilized the cationic magnetosomes, forming CMTS–collagen aqueous suspensions (CMTS-Colas) that remained well-suspended for over 24 h and could be easily resuspended after 10 days of storage. Compared with native magnetosome suspensions, CMTS in collagen displayed smaller hydrodynamic diameters and significantly improved injectability through 26G and 31G fine needles. Under an alternating magnetic field, 2 mg/mL CMTS-Colas efficiently induced over 98% apoptosis in hepatoma cells after two treatment sessions and led to complete loss of cell viability after three sessions. These findings demonstrate that CMTS-Colas substantially improve the suspension stability and injectability of magnetosomes while maintaining strong hyperthermic efficacy, suggesting a promising strategy for stabilizing magnetosomes and potentially benefiting other charged, aggregation-prone magnetic biomaterials. Full article
(This article belongs to the Special Issue Biomaterials for Drug Delivery and Cancer Therapy)
Show Figures

Graphical abstract

15 pages, 2424 KB  
Article
Ionomer-Regulated Cu/Co Tandem Catalysis for Efficient Electrochemical Nitrate-to-Ammonia Conversion
by Quan Zhou, Lewa Zhang, Ziluo Wang, Qiutong Wang and Chenyuan Zhu
Catalysts 2025, 15(12), 1156; https://doi.org/10.3390/catal15121156 - 9 Dec 2025
Viewed by 593
Abstract
Electrochemical nitrate reduction to ammonia offers a sustainable route for nitrogen fixation, yet achieving high efficiency and selectivity remains challenging. Here, a Sustainion-enabled Cu/Co tandem catalyst is developed to couple compositional synergy with ionomer-mediated interfacial regulation. The optimized Cu60Co40/Sus/C [...] Read more.
Electrochemical nitrate reduction to ammonia offers a sustainable route for nitrogen fixation, yet achieving high efficiency and selectivity remains challenging. Here, a Sustainion-enabled Cu/Co tandem catalyst is developed to couple compositional synergy with ionomer-mediated interfacial regulation. The optimized Cu60Co40/Sus/C electrode delivers a Faradaic efficiency of 91.3% and an NH3 yield rate of 2.63 mmol gcat.−1 h−1 at −0.3 V vs. RHE, surpassing Cu-Co/Nafion/C and Cu-Co/C counterparts. Structural analyses confirm that Sustainion prevents nanoparticle aggregation and maintains robust Cu/Co interfaces. Electrochemical and in situ spectroscopic studies reveal that the cationic quaternary ammonium groups of Sustainion electrostatically enrich NO3/NO2 intermediates, facilitating their adsorption and hydrogenation toward NH3 formation. The combined structural stabilization and intermediate modulation enable efficient tandem catalysis between Cu-driven nitrate activation and Co-mediated hydrogenation. This work provides molecular-level insight into ionomer–catalyst interactions and highlights interfacial engineering as a powerful strategy for sustainable ammonia synthesis. Full article
Show Figures

Graphical abstract

17 pages, 1007 KB  
Review
Gemini Surfactants: Advances in Applications and Prospects for the Future
by Iwona Kowalczyk, Adrianna Szulc and Bogumił Brycki
Molecules 2025, 30(23), 4599; https://doi.org/10.3390/molecules30234599 - 29 Nov 2025
Cited by 3 | Viewed by 994
Abstract
Cationic gemini surfactants, which constitute a unique class of amphiphilic molecules composed of two hydrophilic ammonium groups and two hydrocarbon tails connected by a spacer, have emerged as highly versatile functional agents with superior interfacial activity and self-assembly behavior compared to conventional monomeric [...] Read more.
Cationic gemini surfactants, which constitute a unique class of amphiphilic molecules composed of two hydrophilic ammonium groups and two hydrocarbon tails connected by a spacer, have emerged as highly versatile functional agents with superior interfacial activity and self-assembly behavior compared to conventional monomeric analogs. Their structural tunability enables precise control over physicochemical properties, making them attractive for applications across diverse scientific and industrial domains. In biomedical sciences, gemini surfactants act as potent antimicrobial and anti-biofilm agents, as well as efficient carriers for drug and gene delivery. In nanotechnology and optoelectronics, they facilitate the synthesis and stabilization of nanoparticles, quantum dots, and perovskite nanocrystals, leading to improved colloidal stability, enhanced photophysical performance, and extended material lifetimes. Within the petroleum industry, gemini surfactants have proven effective in enhanced oil recovery (EOR) by reducing interfacial tension and in crude oil transportation as drag-reducing agents (DRAs), significantly lowering viscosity, turbulence, and pipeline energy losses. This review summarizes recent advances in the chemistry, mechanisms of action, and applications of gemini surfactants, highlighting their multifunctionality and emphasizing their potential in the development of next-generation sustainable technologies. Full article
Show Figures

Figure 1

18 pages, 5356 KB  
Article
Block Copolymer–Sodium Oleate Complexes Through Electrostatic Interactions for Curcumin Encapsulation
by Evanthia Ganou, Michaila Akathi Pantelaiou, Varvara Chrysostomou, Karolina Olszowska, Barbara Trzebicka and Stergios Pispas
Materials 2025, 18(23), 5375; https://doi.org/10.3390/ma18235375 - 28 Nov 2025
Viewed by 587
Abstract
Polyelectrolyte-based complexes have attracted attention, as the interaction of the oppositely charged components results in nanoparticle formation through an easy but highly efficient method, avoiding the use of strong solvents, extreme temperatures, and toxic chemicals. Sodium oleate (NaOL) is a widely used surfactant [...] Read more.
Polyelectrolyte-based complexes have attracted attention, as the interaction of the oppositely charged components results in nanoparticle formation through an easy but highly efficient method, avoiding the use of strong solvents, extreme temperatures, and toxic chemicals. Sodium oleate (NaOL) is a widely used surfactant in the pharmaceutical industry due to its availability, eco-friendliness, and low cost. In the present study, the neutral-cationic block copolymer poly(oligo(ethylene glycol) methyl ether methacrylate)–b–quaternized poly(2-(dimethylamino) ethyl methacrylate) (POEGMA-b-Q(PDMAEMA)) is mixed with the anionic surfactant sodium oleate for the formation of nanoscale polyelectrolyte complexes through electrostatic interactions. Different weight ratios of copolymer to surfactant are studied. Then, the co-solvent protocol was implemented, and curcumin is successfully loaded in the formed particles for drug delivery applications. The size and morphology of the macromolecular complexes are examined via Dynamic Light Scattering (DLS) and Cryogenic Transmission Electron Microscopy (cryo-TEM). The methods that we have used have indicated that the polymer–surfactant complexes form spherical complexes, worm-like and vesicle-like structures. When curcumin was introduced, encapsulation was effectively achieved into micelles, giving rise to vesicle-like shapes. The success of curcumin encapsulation is confirmed by Ultraviolet–Visible absorption (UV–Vis) and fluorescence (FS) spectroscopy. POEGMA-b-Q(PDMAEMA)–sodium oleate polyelectrolyte complexes revealed promising attributes as efficient drug carrier systems for pharmaceutical formulations. Full article
(This article belongs to the Special Issue Νanoparticles for Biomedical Applications (2nd Edition))
Show Figures

Graphical abstract

Back to TopTop