Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = cation nonstoichiometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5579 KiB  
Article
Oxygen Nonstoichiometry, Electrical Conductivity, Chemical Expansion and Electrode Properties of Perovskite-Type SrFe0.9V0.1O3−δ
by Aleksei I. Ivanov, Sergey S. Nikitin, Mariya S. Dyakina, Ekaterina V. Tsipis, Mikhail V. Patrakeev, Dmitrii A. Agarkov, Irina I. Zverkova, Andrey O. Zhigachev, Victor V. Kedrov and Vladislav V. Kharton
Materials 2025, 18(3), 493; https://doi.org/10.3390/ma18030493 - 22 Jan 2025
Cited by 1 | Viewed by 1152
Abstract
X-ray diffraction analysis of the pseudo-binary SrFe1−xVxO3−δ system showed that the solid solution formation limit at atmospheric oxygen pressure corresponds to x ≈ 0.1. SrFe0.9V0.1O3−δ has a cubic perovskite-type structure with the [...] Read more.
X-ray diffraction analysis of the pseudo-binary SrFe1−xVxO3−δ system showed that the solid solution formation limit at atmospheric oxygen pressure corresponds to x ≈ 0.1. SrFe0.9V0.1O3−δ has a cubic perovskite-type structure with the Pm3¯m space group. The oxygen nonstoichiometry variations in SrFe0.9V0.1O3−δ, measured by coulometric titration in the oxygen partial pressure range of 10−21 to 0.5 atm at 1023–1223 K, can be adequately described using an ideal solution approximation with V5+ as the main oxidation state of vanadium cations. This approach was additionally validated by statistical thermodynamic modeling. The incorporation of vanadium decreases both oxygen deficiency and the average iron oxidation state with respect to undoped SrFeO3−δ. As a result, the electrical conductivity, thermal expansion and chemical expansivity associated with the oxygen vacancy formation all become lower compared to strontium ferrite. At 923 K, the conductivity of SrFe0.9V0.1O3−δ is 14% lower than that of SrFeO3−δ but 21% higher compared to SrFe0.9Ta0.1O3−δ. The area-specific polarization resistance of the porous SrFe0.9V0.1O3−δ electrode deposited onto 10 mol.% scandia- and 1 mol.% yttria-co-stabilized zirconia solid electrolyte with a protective Ce0.9Gd0.1O2−δ interlayer, was 0.34 Ohm×cm2 under open-circuit conditions at 1173 K in air. Full article
Show Figures

Figure 1

18 pages, 4526 KiB  
Article
Effect of Cation Nonstoichiometry on Hydration and Charge Transport Processes in Yb-Doped SrZrO3 Perovskite-Type Proton Conductor for Ceramic Electrochemical Cells
by Adelya Khaliullina, Anastasia Meshcherskikh and Liliya Dunyushkina
Processes 2023, 11(10), 2939; https://doi.org/10.3390/pr11102939 - 10 Oct 2023
Cited by 3 | Viewed by 1294
Abstract
The effect of Sr deficiency on the hydration process and ionic and electronic conductivity of Yb-doped SrZrO3 proton conductors with a perovskite-type structure was investigated. Dense SrxZr0.95Yb0.05O3-δ (x = 0.94–1.00) ceramics were prepared using solution [...] Read more.
The effect of Sr deficiency on the hydration process and ionic and electronic conductivity of Yb-doped SrZrO3 proton conductors with a perovskite-type structure was investigated. Dense SrxZr0.95Yb0.05O3-δ (x = 0.94–1.00) ceramics were prepared using solution combustion synthesis. Thermogravimetry and Raman spectroscopy methods were used to determine the concentration of bulk protonic species. Sr deficiency was found to enhance the hydration ability of the zirconate; however, lowering of Sr content to x = 0.94 deteriorated the proton uptake. The conductivity of the SrxZr0.95Yb0.05O3-δ series depending on the oxygen partial pressure at different humidities was studied by the four-probe direct current technique. Sr-deficient ceramics with x = 0.96 and 0.98 were shown to become purely protonic conductors in humid atmospheres at a temperature close to 500 °C. The ionic conductivity reaches its highest value at a Sr content of x = 0.98 (2 × 10−4 S cm−1 at 500 °C and pH2O = 3.17 kPa). The hydration behavior and transport properties of SrxZr0.95Yb0.05O3-δ are discussed in terms of the defect chemistry model that assumes the distribution of Yb ions over Sr and Zr sites at a large Sr deficiency. Full article
Show Figures

Figure 1

28 pages, 1570 KiB  
Review
Nonstoichiometric Strontium Ferromolybdate as an Electrode Material for Solid Oxide Fuel Cells
by Gunnar Suchaneck and Evgenii Artiukh
Inorganics 2022, 10(12), 230; https://doi.org/10.3390/inorganics10120230 - 29 Nov 2022
Cited by 15 | Viewed by 3005
Abstract
This review is devoted to the application of Sr2FeMoO6−δ (SFM) and Sr2F1.5Mo0.5O6−δ (SF1.5M) in La1−xSrxGa1−yMgyO3−δ (LSGM)-based SOFCs. We consider the most relevant [...] Read more.
This review is devoted to the application of Sr2FeMoO6−δ (SFM) and Sr2F1.5Mo0.5O6−δ (SF1.5M) in La1−xSrxGa1−yMgyO3−δ (LSGM)-based SOFCs. We consider the most relevant physical properties (crystal structure, thermodynamic stability, iron and molybdenum valence states, oxygen vacancy formation and oxygen non-stoichiometry, electrical conductivity), A- and B-site ion substitution, and the performance of SF1+xM SOFCs (polarization resistance, operation with hydrogen, operation with hydrocarbons and methanol). Their properties can be tailored to a particular application by the substitution of different metal cations into their lattices. SF1+xM materials are excellent catalysts in hydrocarbon oxidation and can prevent carbon deposition due to the ability to exchange lattice oxygen with the gaseous phase. Moreover, they are sulfur tolerant. This opens the way to direct hydrocarbon-fueled SOFCs, eliminating the need for external fuel reforming and sulfur removal components. Such SOFCs can be greatly simplified and operate with much higher overall efficiency, thus contributing to the solution to the lack of energy problem in our modern world. Full article
(This article belongs to the Special Issue Mixed Metal Oxides II)
Show Figures

Figure 1

16 pages, 6763 KiB  
Article
Synthesis and Properties of the Gallium-Containing Ruddlesden-Popper Oxides with High-Entropy B-Site Arrangement
by Juliusz Dąbrowa, Jan Adamczyk, Anna Stępień, Marek Zajusz, Karolina Bar, Katarzyna Berent and Konrad Świerczek
Materials 2022, 15(18), 6500; https://doi.org/10.3390/ma15186500 - 19 Sep 2022
Cited by 8 | Viewed by 2729
Abstract
For the first time, the possibility of obtaining B-site disordered, Ruddlesden–Popper type, high-entropy oxides has been proven, using as an example the LnSr(Co,Fe,Ga,Mn,Ni)O4 series (Ln = La, Pr, Nd, Sm, or Gd). The materials were synthesized using the Pechini method, followed by [...] Read more.
For the first time, the possibility of obtaining B-site disordered, Ruddlesden–Popper type, high-entropy oxides has been proven, using as an example the LnSr(Co,Fe,Ga,Mn,Ni)O4 series (Ln = La, Pr, Nd, Sm, or Gd). The materials were synthesized using the Pechini method, followed by sintering at a temperature of 1200 °C. The XRD analysis indicated the single-phase, I4/mmm structure of the Pr-, Nd-, and Sm-based materials, with a minor content of secondary phase precipitates in La- and Gd-based materials. The SEM + EDX analysis confirms the homogeneity of the studied samples. Based on the oxygen non-stoichiometry measurements, the general formula of LnSr(Co,Fe,Ga,Mn,Ni)O4+δ, is established, with the content of oxygen interstitials being surprisingly similar across the series. The temperature dependence of the total conductivity is similar for all materials, with the highest conductivity value of 4.28 S/cm being reported for the Sm-based composition. The thermal expansion coefficient is, again, almost identical across the series, with the values varying between 14.6 and 15.2 × 10−6 K−1. The temperature stability of the selected materials is verified using the in situ high-temperature XRD. The results indicate a smaller impact of the lanthanide cation type on the properties than has typically been reported for conventional Ruddlesden–Popper type oxides, which may result from the high-entropy arrangement of the B-site cations. Full article
Show Figures

Figure 1

17 pages, 2776 KiB  
Article
Sr Doping and Oxygen Vacancy Formation in La1−xSrxScO3−δ Solid Solutions: Computational Modelling
by Yuri A. Mastrikov, Denis Gryaznov, Guntars Zvejnieks, Maksim N. Sokolov, Māra Putniņa and Eugene A. Kotomin
Crystals 2022, 12(9), 1300; https://doi.org/10.3390/cryst12091300 - 14 Sep 2022
Cited by 4 | Viewed by 2699
Abstract
Sr-doped lanthanum scandate La1−xSrxScO3−δ (LSS) is a promising perovskite-type material for electrochemical applications such as proton conductors. Oxygen vacancy is a common defect in ABO3-type perovskites. It controls ion transport as well as [...] Read more.
Sr-doped lanthanum scandate La1−xSrxScO3−δ (LSS) is a promising perovskite-type material for electrochemical applications such as proton conductors. Oxygen vacancy is a common defect in ABO3-type perovskites. It controls ion transport as well as proton uptake. The energetic, structural, and electronic properties of oxygen vacancy in LSS are studied deploying the DFT method with meta-GGA functional. The vacancy formation energies in LSS were calculated for various Sr concentrations. Unlike other perovskites, in this material, the electrons are trapped at the oxygen vacancy site (the F-type centres, common in ionic oxides like MgO and Al2O3) rather than localised on the nearest to the vacancy B-cations. The process of oxygen vacancy formation is considered relative to Sr concentration x and oxygen nonstoichiometry factor δ. Three primary regimes are discussed: (I) localized at the vacancy electrons, x/δ < 2, (II) electron charge balanced system, x/δ = 2, and (III) delocalized electron holes, x/δ > 2. For x/δ ≥ 2 oxygen vacancy formation energy reaches the saturation level of ~3.5 eV, which is potentially beneficial for the proton uptake. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

20 pages, 4341 KiB  
Article
Structural Features and Defect Equilibrium in Cubic PrBa1−xSrxFe2O6−δ
by Ilia A. Leonidov, Alexey A. Markov, Mikhail A. Zavyalov, Oleg V. Merkulov, Elisaveta V. Shalaeva, Sergey S. Nikitin, Ekaterina V. Tsipis and Mikhail V. Patrakeev
Materials 2022, 15(13), 4390; https://doi.org/10.3390/ma15134390 - 21 Jun 2022
Cited by 7 | Viewed by 1850
Abstract
The structure, oxygen non-stoichiometry, and defect equilibrium in perovskite-type PrBa1−xSrxFe2O6−δ (x = 0, 0.25, 0.50) synthesized at 1350 °C were studied. For all compositions, X-ray diffraction testifies to the formation of a cubic [...] Read more.
The structure, oxygen non-stoichiometry, and defect equilibrium in perovskite-type PrBa1−xSrxFe2O6−δ (x = 0, 0.25, 0.50) synthesized at 1350 °C were studied. For all compositions, X-ray diffraction testifies to the formation of a cubic structure (S.G. Pm3¯m), but an electron diffraction study reveals additional diffuse satellites around each Bragg spot, indicating the primary incommensurate modulation with wave vectors about ±0.43a*. The results were interpreted as a sign of the short-order in both A-cation and anion sublattices in the areas of a few nanometers in size, and of an intermediate state before the formation of an ordered superstructure. An increase in oxygen deficiency was found to promote the ordering, whereas partial substitution of barium by strontium caused the opposite effect. The oxygen content in oxides as a function of oxygen partial pressure and temperature was measured by coulometric titration, and the data were used for the modeling of defect equilibrium in oxides. The simulation results implied oxygen vacancy ordering in PrBa1−xSrxFe2O6−δ that is in agreement with the electron diffraction study. Besides oxidation and charge disproportionation reactions, the reactions of oxygen vacancy distribution between non-equivalent anion positions, and their trapping in clusters with Pr3+ ions were taken into account by the model. It was demonstrated that an increase in the strontium content in Pr0.5Ba0.5−xSrxFeO3−δ suppressed ordering of oxygen vacancies, increased the binding energy of oxygen ions in the oxides, and resulted in an increase in the concentration of p-type carriers. Full article
Show Figures

Figure 1

23 pages, 6845 KiB  
Article
Mixed Ionic-Electronic Conductivity, Redox Behavior and Thermochemical Expansion of Mn-Substituted 5YSZ as an Interlayer Material for Reversible Solid Oxide Cells
by Alejandro Natoli, Blanca I. Arias-Serrano, Enrique Rodríguez-Castellón, Agnieszka Żurawska, Jorge R. Frade and Aleksey. A. Yaremchenko
Materials 2021, 14(3), 641; https://doi.org/10.3390/ma14030641 - 30 Jan 2021
Cited by 10 | Viewed by 3571
Abstract
Manganese-substituted 5 mol.% yttria-stabilized zirconia (5YSZ) was explored as a prospective material for protective interlayers between electrolyte and oxygen electrodes in reversible solid oxide fuel/electrolysis cells. [(ZrO2)0.95(Y2O3)0.05]1−x[MnOy]x [...] Read more.
Manganese-substituted 5 mol.% yttria-stabilized zirconia (5YSZ) was explored as a prospective material for protective interlayers between electrolyte and oxygen electrodes in reversible solid oxide fuel/electrolysis cells. [(ZrO2)0.95(Y2O3)0.05]1−x[MnOy]x (x = 0.05, 0.10 and 0.15) ceramics with cubic fluorite structure were sintered in air at 1600 °C. The characterization included X-ray diffraction (XRD), scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), thermogravimetry and dilatometry in controlled atmospheres, electrical conductivity measurements, and determination of oxygen-ion transference numbers by the electromotive force (EMF) technique. Mn-substituted 5YSZ solid solutions exhibit variable oxygen nonstoichiometry with manganese cations in a mixed 2+/3+ oxidation state under oxidizing conditions. Substitution by manganese gradually increases the extent of oxygen content variation on thermal/redox cycling, chemical contribution to thermal expansion and dimensional changes on reduction. It also deteriorates oxygen-ionic conductivity and improves p-type electronic conductivity under oxidizing conditions, leading to a gradual transformation from predominantly ionic to prevailing electronic transport with increasing x. Mn2+/3+→Mn2+ transformation under reducing atmospheres is accompanied by the suppression of electronic transport and an increase in ionic conductivity. All Mn-substituted 5YSZ ceramics are solid electrolytes under reducing conditions. Prolonged treatments in reducing atmospheres, however, promote microstructural changes at the surface of bulk ceramics and Mn exsolution. Mn-substituted 5YSZ with 0.05 ≤ x < 0.10 is considered the most suitable for the interlayer application, due to the best combination of relevant factors, including oxygen content variations, levels of ionic/electronic conductivity and thermochemical expansion. Full article
(This article belongs to the Special Issue Feature Papers in Energy Materials)
Show Figures

Figure 1

15 pages, 1915 KiB  
Article
Peculiar Properties of Electrochemically Oxidized SmBaCo2−xMnxO5+δ (x = 0; 0.5 and 1) A-Site Ordered Perovskites
by Anna Olszewska, Konrad Świerczek and Anna Niemczyk
Crystals 2020, 10(3), 205; https://doi.org/10.3390/cryst10030205 - 16 Mar 2020
Cited by 4 | Viewed by 2324
Abstract
Fully-stoichiometric SmBaCo2-xMnxO6 oxides (x = 0, 0.5, 1) were obtained through the electrochemical oxidation method performed in 1 M KOH solution from starting materials having close to equilibrium oxygen content. Cycling voltammetry scans allow us to recognize the [...] Read more.
Fully-stoichiometric SmBaCo2-xMnxO6 oxides (x = 0, 0.5, 1) were obtained through the electrochemical oxidation method performed in 1 M KOH solution from starting materials having close to equilibrium oxygen content. Cycling voltammetry scans allow us to recognize the voltage range (0.3–0.55 V vs. Hg/HgO electrode) for which electrochemical oxidation occurs with high efficiency. In a similarly performed galvanostatic experiment, the value of the stabilized voltage recorded during the oxidation increased with higher Mn content, which seems to relate to the electronic structure of the compounds. Results of the iodometric titration and thermogravimetric analysis prove that the proposed technique allows for an increase in the oxygen content in SmBaCo2-xMnxO5+δ materials to values close to 6 (δ ≈ 1). While the expected significant enhancement of the total conductivity was observed for the oxidized samples, surprisingly, their crystal structure only underwent slight modification. This can be interpreted as due to the unique nature of the oxygen intercalation process at room temperature. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Graphical abstract

22 pages, 15159 KiB  
Article
Solid Phases Precipitating in Artificial Urine in the Absence and Presence of Bacteria Proteus mirabilis—A Contribution to the Understanding of Infectious Urinary Stone Formation
by Jolanta Prywer, Marcin Kozanecki, Ewa Mielniczek-Brzóska and Agnieszka Torzewska
Crystals 2018, 8(4), 164; https://doi.org/10.3390/cryst8040164 - 9 Apr 2018
Cited by 22 | Viewed by 7268
Abstract
Magnesium ammonium phosphate hexahydrate, called struvite, is the dominant component of infectious urinary stones. In addition to struvite, infectious urinary stones include solid phases with poor crystallinity as well as amorphous matter. This article is devoted to the analysis of these solid phases, [...] Read more.
Magnesium ammonium phosphate hexahydrate, called struvite, is the dominant component of infectious urinary stones. In addition to struvite, infectious urinary stones include solid phases with poor crystallinity as well as amorphous matter. This article is devoted to the analysis of these solid phases, because they have not been characterized well until now. The solid phases tested were obtained from artificial urine in the absence and presence of Proteus mirabilis. The solid phases were characterized by different techniques (X-ray Diffraction, Energy Dispersive X-ray, Scanning Electron Microscopy, as well as Raman and Infrared Spectroscopies). According to the results these phases are carbonate apatite (CA), hydroxylapatite (HAP), amorphous calcium carbonate (ACC), amorphous calcium phosphate (ACP) and/or amorphous carbonated calcium phosphate (ACCP). Carbonate apatite and hydroxylapatite may occur in non-stoichiometric forms, i.e., various anions can be substituted for CO32−, OH, and PO43− groups in them. The non-stoichiometry of carbonate apatite and hydroxylapatite also implies a deficiency of calcium ions, i.e., calcium ions may be partially replaced by other cations. Experimental techniques and chemical speciation analysis demonstrate that the presence of magnesium influences the formation of CA and HAP. Full article
(This article belongs to the Section Biomolecular Crystals)
Show Figures

Figure 1

Back to TopTop