Peculiar Properties of Electrochemically Oxidized SmBaCo2−xMnxO5+δ (x = 0; 0.5 and 1) A-Site Ordered Perovskites
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Electrochemical Oxidation of SmBaCo1.5Mn0.5O5+δ
3.2. Physicochemical Properties of the Electrochemically Oxidized SmBaCo2−xMnxO6
3.2.1. Crystal Structure
3.2.2. Transport Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mizusaki, J. Nonstoichiometry, Diffusion, and electrical properties of perovskite-type oxide electrode materials. Solid State Ionics 1992, 52, 79–91. [Google Scholar] [CrossRef]
- Tsvetkov, D.S.; Sereda, V.V.; Zuev, A.Y. Oxygen nonstoichiometry and defect structure of the double perovskite GdBaCo2O6−δ. Solid State Ionics 2010, 180, 1620–1625. [Google Scholar] [CrossRef]
- Akahoshi, D.; Ueda, Y. Oxygen Nonstoichiometry, Structures, and Physical Properties of YBaCo2O5+x (0.00 ≤ x ≤ 0.52). J. Solid State Chem. 2001, 156, 355–363. [Google Scholar] [CrossRef]
- Grenier, J.C.; Wattiaux, A.; Monroux, C.; Pouchard, M.; Locquet, J.P. Electrochemical oxygen insertion into La2CuO4-related compounds. Physica C 1994, 235, 79–82. [Google Scholar] [CrossRef]
- Bezdicka, P.; Wattiaux, A.; Grenier, J.C.; Pouchard, M.; Hagenmuller, P. Preparation and Characterization of Fully Stoichiometric SrCoO3 by Electrochemical Oxidation. Z. Annorg. Allg. Chem. 1993, 619, 7–12. [Google Scholar] [CrossRef]
- Grenier, J.C.; Wattiaux, A.; Doumerc, J.P.; Dordor, P.; Fournes, L.; Chaminade, J.P.; Pochard, M. Electrochemical Oxygen Intercalation into Oxide Networks. J. Solid State Chem. 1992, 30, 20–30. [Google Scholar] [CrossRef]
- Grenier, J.C.; Pouchard, M.; Wattiaux, A. Electrochemical synthesis: Oxygen intercalation. Curr. Opin. Solid State. Mater. Sci. 1990, 1, 233–240. [Google Scholar] [CrossRef]
- Grenier, J.C.; Wattiaux, A.; Fournes, L.; Pouchard, M.; Etourneau, J. The Electrochemical Oxidation: A New Way for Preparing Highly Oxidized Ferrites. J. Phys. IV Fr. 1997, 7, 7–10. [Google Scholar] [CrossRef] [Green Version]
- Nemudry, A.; Goldberg, E.L.; Aguirre, M.; Alario-Franco, M.Á. Electrochemical topotactic oxidation of nonstoichiometric perovskites at ambient temperature. Solid State Sci. 2002, 4, 677–690. [Google Scholar] [CrossRef]
- Ceretti, M.; Wahyudi, O.; André, G.; Meven, M.; Villesuzanne, A.; Paulus, W. (Nd/Pr)2NiO4+δ: Reaction Intermediates and Redox Behavior Explored by in Situ Neutron Powder Diffraction during Electrochemical Oxygen Intercalation. Inorg. Chem. 2018, 47, 4657–4666. [Google Scholar] [CrossRef]
- Bezdicka, P.; Foumes, L.; Wattiaux, A.; Grenier, J.C.; Pouchard, M. Mosbauer Characteristics of the Sr2CoFeO6 Perovskite Obtained by Electrochemical Oxidation. Solid State Commun. 1994, 91, 501–505. [Google Scholar] [CrossRef]
- Grenier, J.C.; Wattiaux, A.; Demourgues, A.; Pouchard, M.; Hagenmuller, P. Electrochemical oxidation: A new way for preparing high oxidation states of transition metals. Solid State Ionics 1993, 65, 825–832. [Google Scholar] [CrossRef]
- Guo, W.; Guo, R.; Liu, L.; Cai, G.; Zhang, C.; Wu, C.; Liu, C.; Jiang, H. Thermal and electrochemical properties of layered perovskite PrBaCo2-xMnxO5+d (x = 0.1, 0.2 and 0.3) cathode materials for intermediate temperature solid oxide fuel cells. Int. J. Hydrog. Energy 2015, 40, 12457–12465. [Google Scholar] [CrossRef]
- Muñoz-Gil, D.; Urones-Garrote, E.; Pérez-Coll, D.; Amador, U.; García-Martín, S. Crystal structure and compositional effects on the electrical and electrochemical properties of GdBaCo2-xMnxO5+δ 0 ≤ x ≤ 2 oxides for use as air electrodes in solid oxide fuel cells. J. Mater. Chem. A 2018, 6, 5452–5460. [Google Scholar] [CrossRef]
- Olszewska, A.; Świerczek, K.; Skubida, W.; Du, Z.; Zhao, H. Versatile Application of Redox Processes for REBaCoMnO5+δ (RE: La, Pr, Nd, Sm, Gd, and Y) Oxides. J. Phys. Chem. C 2019, 123, 48–61. [Google Scholar] [CrossRef]
- Broux, T.; Bahout, M.; Hanlon, J.M.; Hernandez, O.; Paofai, S.; Bernov, A.; Skinner, S.J. High temperature structural stability, electrical properties and chemical reactivity of NdBaCo2-xMnxO5+d (0 ≤ x ≤ 2) for use as cathodes in solid oxide fuel cells. J. Mater. Chem. A 2014, 2, 17015–17023. [Google Scholar] [CrossRef]
- Olszewska, A.; Du, Z.; Świerczek, K.; Zhao, H.; Dabrowski, B. Novel ReBaCo1.5Mn0.5O5+δ (Re: La, Pr, Nd, Sm, Gd and Y) perovskite oxide: Influence of manganese doping on crystal structure, oxygen nonstoichiometry, thermal expansion, transport properties, and application as cathode materials in Solid Oxide Fuel Cells. J. Mater. Chem. A 2018, 6, 13271. [Google Scholar] [CrossRef]
- King, G.; Woodward, P.M. Cation ordering in perovskites. J. Mater. Chem. 2010, 20, 5785–5796. [Google Scholar] [CrossRef]
- Uberuaga, B.P.; Pilania, G. Effect of cation ordering on oxygen vacancy diffusion pathways in double perovskites. Chem. Mater. 2015, 27, 5020–5026. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Zhou, J.-S. Localized to Itinerant Electronic Transition in Perovskite Oxides; Springer: New York, NY, USA, 2001; pp. 63–129. [Google Scholar]
- Muller, K.; Tool, K. Properties of Perovskites and Other Oxides; World Scientific Publishing Co.: Singapore, 2010; pp. 26–121. [Google Scholar]
- Wolfram, T.; Ellialtioglu, S. Electronic and Optical Properties of d-Band Perovskites; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Tilley, R. Perovskites, Structure-Property Relationships; John Wiley & Sons Ltd.: Chichister, UK, 2016. [Google Scholar]
- Soediono, B. General Structure Analysis System. J. Chem. Inform. Model. 1989, 53, 160. [Google Scholar]
- Toby, B.H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 2001, 34, 210–213. [Google Scholar] [CrossRef] [Green Version]
- Dees, D.W.; Claar, T.D.; Fee, D.C. Conductivity of Porous Ni/ZrO2-Y2O3 Cermets. J. Electrochem. Soc. 1987, 134, 1241–2146. [Google Scholar] [CrossRef]
- Wang, L.; Merkle, R.; Mastrikov, Y.A.; Kotomin, E.A.; Maier, J. Oxygen exchange kinetics on solid oxide fuel cell cathode materials—General trends and their mechanistic interpretation. J. Mater. Res. 2012, 27, 2000–2008. [Google Scholar] [CrossRef]
- Riva, M.; Kubicek, M.; Hao, X.; Franceschi, G.; Gerhold, S.; Schmid, M.; Hutter, H.; Fleig, J.; Franchini, C.; Yildiz, B. Diebold, Influence of surface atomic structure demonstrated on oxygen incorporation mechanism at a model perovskite oxide. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Staykov, A.; Téllez, H.; Akbay, T.; Druce, J.; Ishihara, T.; Kilner, J. Oxygen Activation and Dissociation on Transition Metal Free Perovskite Surfaces. Chem. Mater. 2015, 27, 8273–8281. [Google Scholar] [CrossRef]
- Bahout, M.; Pramana, S.; Hanlon, J.; Dorcet, V.; Smith, R.; Paofai, S.; Skinner, S.J. Stability of NdBaCo2-xMnxO5+d (x = 0, 0.5) layered high-temperature in situ neutron powder. J. Mater. Chem. A 2015, 3, 15420–15431. [Google Scholar] [CrossRef] [Green Version]
- Olszewska, A.; Świerczek, K. ReBaCo2-xMnxO5+δ (Re: Rare earth element) layered perovskites for application as cathodes in Solid Oxide Fuel Cells. E3S Web Conf. EDP Sci. 2019, 108, 01020. [Google Scholar] [CrossRef]
- Olszewska, A.; Zhang, Y.; Du, Z.; Marzec, M.; Świerczek, K.; Zhao, H.; Dabrowski, B. Mn-rich SmBaCo0.5Mn1.5O5+d double perovskite cathode material for SOFCs. Int. J. Hydrog. Energy 2019, 44, 27587–27599. [Google Scholar] [CrossRef]
- Klimkowicz, A.; Świerczek, K.; Takasaki, A.; Molenda, J.; Dabrowski, B. Crystal structure and oxygen storage properties of BaLnMn2O5+d (Ln: Pr, Nd, Sm, Gd, Dy, Er and Y) oxides. Mater. Res. Bull. 2015, 65, 116–122. [Google Scholar] [CrossRef]
- Świerczek, K.; Yoshikura, N.; Zheng, K.; Klimkowicz, A. Correlation between crystal and transport properties in LnBa0.5Sr0.5Co1.5Fe0.5O5+δ (Ln-selected lanthanides, Y). Solid State Ionics 2014, 262, 645–649. [Google Scholar] [CrossRef]
- Klimkowicz, A.; Świerczek, K.; Zheng, K.; Wallacher, D.; Takasaki, A. Oxygen release from BaLnMn2O6 (Ln: Pr, Nd, Y) under reducing conditions as studied by neutron diffraction. J. Mater. Sci. 2017, 52, 6476–6485. [Google Scholar] [CrossRef]
- Chakraborty, A.; Kunnikuruvan, S.; Kumar, S.; Markovsky, B.; Aurbach, D.; Dixit, M.; Major, D.T. Layered Cathode Materials for Lithium-Ion Batteries: Review of Computational Studies on LiNi1-x-yCoxMnyO2 and LiNi1-x-yCoxAlyO2. Chem. Mater. 2020. [Google Scholar] [CrossRef]
- Balasubramanian, M.; Mcbreen, J.; Davidson, I.J.; Whitfield, P.S.; Kargin, I. In situ X-ray absorption study of a layered manganese-chromium oxide- based cathode material. J. Electrochem. Soc. 2002, 149, A176–A184. [Google Scholar] [CrossRef]
- Tsai, Y.W.; Lee, J.F.; Liu, D.G.; Hwang, B.J. In-situ X-ray absorption spectroscopy investigations of a layered LiNi0.65Co0.25Mn0.1O2 cathode material for rechargeable lithium batteries. J. Mater. Chem. 2004, 14, 958–965. [Google Scholar] [CrossRef]
- Galasso, F.S. Structure, Properties and Preparation of Perovskite-Type Compounds; Pergamon Press: Oxford, UK, 1969; pp. 59–121. [Google Scholar]
- Kim, J.-H.; Mogni, L.; Prado, F.; Caneiro, A.; Alonso, J.A.; Manthiram, A. High Temperature Crystal Chemistry and Oxygen Permeation Properties of the Mixed Ionic–Electronic Conductors LnBaCo2O5+d (Ln = Lanthanide). J. Electrochem. Soc. 2009, 156, B1376–B1382. [Google Scholar] [CrossRef]
- Kim, J.-H.; Manthiram, A. LnBaCo2O5+d Oxides as Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells. J. Electrochem. Soc. 2008, 155, B385–B390. [Google Scholar] [CrossRef]
Composition | Space Group | a [Å] | b [Å] | c [Å] | V [Å3] | Oxygen Content |
---|---|---|---|---|---|---|
SmBaCo2O5+δ | Pmmm | 3.8894(1) | 3.9082(1) | 7.5703(1) | 115.07(1) | 5.58(1) |
3.8904(1) | 3.9027(1) | 7.5743(1) | 115.00(1) | 6.02(1) | ||
SmBaCo1.5Mn0.5O5+δ | P4/mmm | 3.8945(1) | - | 7.6254(1) | 115.65(1) | 5.75(1) |
3.9006(1) | - | 7.6283(1) | 116.06(1) | 5.99(1) | ||
SmBaCoMnO5+δ | Cmmm | 7.7559(1)b | 7.7863(1)b | 7.6729(1)b | 463.35(1)b | 5.91(1) |
3.8780(1)a | 3.8782(1)a | - | 115.84(1) | |||
7.7555(1) | 7.7905(1) | 7.6689(1) | 463.35(1) | 6.01(1) | ||
3.8778(1)a | 3.8953(1)a | - | 115.84(1) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olszewska, A.; Świerczek, K.; Niemczyk, A. Peculiar Properties of Electrochemically Oxidized SmBaCo2−xMnxO5+δ (x = 0; 0.5 and 1) A-Site Ordered Perovskites. Crystals 2020, 10, 205. https://doi.org/10.3390/cryst10030205
Olszewska A, Świerczek K, Niemczyk A. Peculiar Properties of Electrochemically Oxidized SmBaCo2−xMnxO5+δ (x = 0; 0.5 and 1) A-Site Ordered Perovskites. Crystals. 2020; 10(3):205. https://doi.org/10.3390/cryst10030205
Chicago/Turabian StyleOlszewska, Anna, Konrad Świerczek, and Anna Niemczyk. 2020. "Peculiar Properties of Electrochemically Oxidized SmBaCo2−xMnxO5+δ (x = 0; 0.5 and 1) A-Site Ordered Perovskites" Crystals 10, no. 3: 205. https://doi.org/10.3390/cryst10030205
APA StyleOlszewska, A., Świerczek, K., & Niemczyk, A. (2020). Peculiar Properties of Electrochemically Oxidized SmBaCo2−xMnxO5+δ (x = 0; 0.5 and 1) A-Site Ordered Perovskites. Crystals, 10(3), 205. https://doi.org/10.3390/cryst10030205