Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (82)

Search Parameters:
Keywords = casein micelles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5748 KiB  
Article
Potential and Challenges of a Targeted Membrane Pre-Fouling: Process Performance of Milk Protein Fractionation After the Application of a Transglutaminase Treatment of Casein Micelles
by Michael Reitmaier, Ulrich Kulozik and Petra Först
Foods 2025, 14(15), 2682; https://doi.org/10.3390/foods14152682 - 30 Jul 2025
Viewed by 160
Abstract
The covalent cross-linking of caseins by the enzyme transglutaminase (Tgase) stabilizes the structure of casein micelles. In our study, the effects of a pretreatment of skim milk (SM) by Tgase on milk protein fractionation by microfiltration were tested. Tgase was found to induce [...] Read more.
The covalent cross-linking of caseins by the enzyme transglutaminase (Tgase) stabilizes the structure of casein micelles. In our study, the effects of a pretreatment of skim milk (SM) by Tgase on milk protein fractionation by microfiltration were tested. Tgase was found to induce amount-dependent modifications of all milk proteins in SM and a reduction in deposit resistance for laboratory dead-end filtrations of up to 20%. This improvement in process performance could partially be confirmed in pilot-scale cross-flow filtrations of Tgase-pretreated SM and micellar casein solutions (MCC). These comparative trials with untreated retentates under a variation of ΔpTM (0.5–2 bar) at 10 and 50° revealed distinct differences in deposit behavior and achieved the reduction in deposit resistance in a range of 0–20%. The possibility of pre-fouling with enzymatically pretreated MCC prior to SM filtration was also investigated. Under different pre-fouling conditions, practical modes of retentate change, and pre-foulant compositions, a switch to untreated SM consistently resulted in an immediate and major increase in deposit resistance by 50–150%. This was partially related to the change in the ionic environment and the protein fraction. Nevertheless, our results underline the potential of Tgase pretreatment and pre-fouling approaches to alter filtration performance for different applications. Full article
(This article belongs to the Special Issue Membranes for Innovative Bio-Food Processing)
Show Figures

Graphical abstract

23 pages, 9287 KiB  
Article
Emulsifying Stability, Digestive Sustained Release, and Cellular Uptake of Alcohol-Soluble Artemisia argyi Flavonoids Were Improved by Glycosylation of Casein Micelles with Oat Glucan
by Ye Zhang, Dongliang Wang, Mengling Peng, Min Yang, Ya Yu, Mengting Yuan, Yanan Liu, Bingyu Zhu, Xiuheng Xue and Juhua Wang
Foods 2025, 14(14), 2435; https://doi.org/10.3390/foods14142435 - 10 Jul 2025
Viewed by 341
Abstract
Flavonoids, widely present in Artemisia argyi (AA), offer potential health benefits but are limited in food applications because of their bitter taste, inadequate absorption, and stability. Casein micelles encapsulation can enhance the flavonoid absorption, stability, and bioactivity. In this study, Artemisia argyi flavonoids [...] Read more.
Flavonoids, widely present in Artemisia argyi (AA), offer potential health benefits but are limited in food applications because of their bitter taste, inadequate absorption, and stability. Casein micelles encapsulation can enhance the flavonoid absorption, stability, and bioactivity. In this study, Artemisia argyi flavonoids (AAFs) were extracted using ultrasound-assisted extraction (UAE) to optimize the process. The glycosylation reaction between casein (CN) micelles and oat β-glucan (OBG) was employed to improve AAF’s emulsifying stability, sustained release during digestion, and cellular uptake. The maximum glycosylation degree of 32.33% was achieved at a CN-to-OBG ratio of 1:2, 120 min browning time, and 95 °C temperature. This glycosylated delivery system enhanced the emulsifying properties of the AAFs, digestive sustained release, and cellular uptake, showing potential as a cross-linking material for fat-soluble substances and medicines. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

13 pages, 2531 KiB  
Article
Casein Functionalization Using High-Pressure Homogenization and Emulsifying Salts
by Anthony Fuchs, Danielle Stroinski, Ashley Gruman and Grace Lewis
Polymers 2025, 17(7), 931; https://doi.org/10.3390/polym17070931 - 29 Mar 2025
Cited by 1 | Viewed by 621
Abstract
In milk, casein proteins orientate themselves into spherical micellar structures with hydrophobic casein subtypes concentrated in the core, while hydrophilic casein subtypes populate the exterior. Previous research demonstrated that milk with the addition of emulsifying salts coupled with high-pressure homogenization induced an unprecedented [...] Read more.
In milk, casein proteins orientate themselves into spherical micellar structures with hydrophobic casein subtypes concentrated in the core, while hydrophilic casein subtypes populate the exterior. Previous research demonstrated that milk with the addition of emulsifying salts coupled with high-pressure homogenization induced an unprecedented amount of casein micelle dissociation. This research aims to quantify the extent of casein micelle dissociation in diluted skim milk and evaluate the functionality of these proteins following emulsifying salt treatment coupled with high-pressure homogenization. To evaluate the extent of micellar dissociation, dilute skim milk solutions (20% v/v) were prepared with a varying amount of treatment: no processing (control), just emulsifying salts (Treatment E, 100 mM sodium hexametaphosphate), just high-pressure homogenization (Treatment H, at 300 MPa), and EH (a combination of E and H treatments). Samples were then put through varying filter sizes (0.22 µm, 0.05 µm), and the permeates were analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In the control group (20% skim milk), 9.35% ± 2.53% casein protein permeated through a 0.05 µm filter. Alternatively, 93.2% ± 7.71% casein protein was present in EH samples post-filtration through a 0.05 µm filter, demonstrating a significant processing-induced dissociation of casein micelles. A potential benefit to this casein micelle size reduction is the exposure of highly functional hydrophobic subunits from the core of the micelle. In agreement, compared to the control samples, the EH samples had higher foam expansion index values (138.3% ± 12.58% vs. 33.33% ± 14.43% at 0 h), foam stability (113.3% ± 5.774% vs. 21.67% ± 2.887% after 8 h), emulsifying activity (ca. two-fold higher), and interaction with caffeine. These data demonstrate that E, coupled with H, enhances skim milk system functionality, and these changes are likely due to micellar dissociation and protein conformational changes. This work has direct applications in dairy systems (e.g., dairy foams, dairy ingredients) as well as implications for potential processing strategies for other protein-rich systems. Full article
(This article belongs to the Special Issue Advanced Processing Strategy for Functional Polymer Materials)
Show Figures

Graphical abstract

16 pages, 1507 KiB  
Article
Effect of High-Pressure Homogenization and Wall Material Composition on the Encapsulation of Polyunsaturated Fatty Acids from Fish Processing
by Ioanna Semenoglou, Maria Katsouli, Maria Giannakourou and Petros Taoukis
Molecules 2025, 30(7), 1434; https://doi.org/10.3390/molecules30071434 - 24 Mar 2025
Viewed by 700
Abstract
Fish oil, a rich source of omega-3 polyunsaturated fatty acids (PUFA), is a vital nutritional component, but considering its susceptibility to oxidation, it could benefit from an effective encapsulation system. This study aims to optimize high-pressure homogenization (HPH) parameters (pressure, number of passes) [...] Read more.
Fish oil, a rich source of omega-3 polyunsaturated fatty acids (PUFA), is a vital nutritional component, but considering its susceptibility to oxidation, it could benefit from an effective encapsulation system. This study aims to optimize high-pressure homogenization (HPH) parameters (pressure, number of passes) and wall material composition to maximize the encapsulation efficiency (EE) of fish oil, using different concentrations of maltodextrin with Arabic gum or sodium alginate. Key metrics such as emulsion droplet size, encapsulation efficiency, color, and oxidation in the final freeze-dried product were evaluated. Optimal values were achieved at 60 MPa, resulting in the lowest mean droplet diameter (369.4 ± 3.8 nm) and narrow distribution (0.197 ± 0.011) of the fish oil micelles prepared with a mixture of Tween80 and sodium caseinate as an emulsifier, without significant oxidation after four cycles of homogenization, while 80 MPa led to the highest EE (up to 95.6%), but increased oxidation. The combination of 10% w/w Arabic gum or 1% w/w sodium alginate with 20% w/w maltodextrin achieved the highest EE (79.1–82.9%) and whiteness index (82.5–83.0), indicating neutral-colored well-encapsulated fish oil without oxidation, which is desirable for product stability. Selecting optimal HPH conditions and wall material is crucial for the encapsulation efficiency and oxidation stability of omega-3 PUFA delivered in dehydrated forms. Full article
(This article belongs to the Special Issue Current Emerging Trends of Extraction and Encapsulation in Food)
Show Figures

Figure 1

15 pages, 1673 KiB  
Article
Prenatal SARS-CoV-2 Infection Alters Human Milk-Derived Extracellular Vesicles
by Somchai Chutipongtanate, Supasek Kongsomros, Hatice Cetinkaya, Xiang Zhang, Damaris Kuhnell, Desirée Benefield, Wendy D. Haffey, Michael A. Wyder, Gaurav Kwatra, Shannon C. Conrey, Allison R. Burrell, Scott M. Langevin, Leyla Esfandiari, David S. Newburg, Kenneth D. Greis, Mary A. Staat and Ardythe L. Morrow
Cells 2025, 14(4), 284; https://doi.org/10.3390/cells14040284 - 15 Feb 2025
Cited by 1 | Viewed by 1252
Abstract
Human milk-derived extracellular vesicles (HMEVs) are key components in breast milk, promoting infant health and development. Maternal conditions could affect HMEV cargo; however, the impact of SARS-CoV-2 infection on HMEVs remains unknown. This study investigated the influence of SARS-CoV-2 infection during pregnancy on [...] Read more.
Human milk-derived extracellular vesicles (HMEVs) are key components in breast milk, promoting infant health and development. Maternal conditions could affect HMEV cargo; however, the impact of SARS-CoV-2 infection on HMEVs remains unknown. This study investigated the influence of SARS-CoV-2 infection during pregnancy on postpartum HMEV molecules. The median duration from SARS-CoV-2 test positivity to milk collection was 3 months. After defatting and casein micelle disaggregation, HMEVs were isolated from milk samples of nine mothers with prenatal SARS-CoV-2 and six controls by sequential centrifugation, ultrafiltration, and qEV-size exclusion chromatography. The presence of HMEV was confirmed via transmission electron microscopy. Nanoparticle tracking analysis demonstrated particle diameters of <200 nm and yields of >1 × 1011 particles per mL of milk. Western immunoblots detected ALIX, CD9, and HSP70, supporting the presence of HMEVs in the isolates. Cargo from thousands of HMEVs were analyzed using a multi-omics approach, including proteomics and microRNA sequencing, and predicted that mothers with prenatal SARS-CoV-2 infection produced HMEVs with enhanced functionalities involving metabolic reprogramming, mucosal tissue development, and immunomodulation. Our findings suggest that SARS-CoV-2 infection during pregnancy boosts mucosal site-specific functions of HMEVs, potentially protecting infants against viral infections. Further prospective studies should be pursued to reevaluate the short- and long-term benefits of breastfeeding in the post-COVID era. Full article
Show Figures

Figure 1

13 pages, 898 KiB  
Article
Changes in Microbial Safety and Quality of High-Pressure Processed Camel Milk
by Tareq M. Osaili, Dinesh Kumar Dhanasekaran, Fayeza Hasan, Reyad S. Obaid, Anas A. Al-Nabulsi, Amin N. Olaimat, Leila Cheikh Ismail, Nadia Alkalbani, Mutamed Ayyash, Gafar Babatunde Bamigbade, Richard Holley, Adan Shahzadi Cheema, Wael Ahmad Bani Odeh, Khalid Abdulla Mohd and Ayesha Khalid Haji Kamal
Foods 2025, 14(2), 320; https://doi.org/10.3390/foods14020320 - 19 Jan 2025
Viewed by 1496
Abstract
High-pressure processing (HPP) is used as a non-thermal approach for controlling microbial viability. The purposes of this study were to (i) establish the decimal reduction times (D-values) for pathogenic bacteria during 350 MPa HPP treatment,; (ii) evaluate the impact of 350 MPa HPP [...] Read more.
High-pressure processing (HPP) is used as a non-thermal approach for controlling microbial viability. The purposes of this study were to (i) establish the decimal reduction times (D-values) for pathogenic bacteria during 350 MPa HPP treatment,; (ii) evaluate the impact of 350 MPa HPP on total plate count (TPC), yeasts and molds (YM), and lactic acid bacteria (LAB) in camel milk; (iii) investigate the behavior of several spoilage-causing bacteria during storage at 4 °C and 10 °C for up to 10 d post-HPP treatment; and (iv) assess the effect of HPP on the protein degradation of camel milk. The D-values for L. monocytogenes, E. coli O157:H7, and Salmonella spp. were 3.77 ± 0.36 min, 1.48 ± 0.08 min, and 2.10 ± 0.13 min, respectively. The HPP treatment decreased pathogenic microorganisms by up to 2 to 3 log cfu/mL (depending on treatment conditions). However, HPP reduced TPC, YM, and LAB by <1 log cfu/mL, regardless of the length of pressure exposure. HPP treatment, even at extended holding times, did not significantly alter either the proteolytic activity or casein micelle structure in camel milk. This study highlights HPP as a promising non-thermal technique for enhancing the microbiological safety of camel milk. Full article
Show Figures

Figure 1

17 pages, 1559 KiB  
Review
Towards a Quantitative Description of Proteolysis: Contribution of Demasking and Hydrolysis Steps to Proteolysis Kinetics of Milk Proteins
by Mikhail M. Vorob’ev
Foods 2025, 14(1), 93; https://doi.org/10.3390/foods14010093 - 2 Jan 2025
Cited by 1 | Viewed by 2043
Abstract
The hydrolysis of proteins by proteases (proteolysis) plays a significant role in biology and food science. Despite the importance of proteolysis, a universal quantitative model of this phenomenon has not yet been created. This review considers approaches to modeling proteolysis in a batch [...] Read more.
The hydrolysis of proteins by proteases (proteolysis) plays a significant role in biology and food science. Despite the importance of proteolysis, a universal quantitative model of this phenomenon has not yet been created. This review considers approaches to modeling proteolysis in a batch reactor that take into account differences in the hydrolysis of the individual peptide bonds, as well as the limited accessibility (masking) for the enzymes of some hydrolysis sites in the protein substrate. Kinetic studies of the proteolysis of β-casein and β-lactoglobulin by various proteolytic enzymes throughout the whole degree of hydrolysis are reviewed. The two-step proteolysis model is regarded, which includes demasking of peptide bonds as a result of opening of the protein structure at the first stage, then hydrolysis of the demasked peptide bonds. To determine the kinetics of demasking, the shift in Trp fluorescence during opening of the protein substrate is analyzed. Two stages of demasking and secondary masking are also considered, explaining the appearance of unhydrolyzed peptide bonds at the end of proteolysis with decreasing enzyme concentrations. Proteolysis of a nanosized substrate is considered for the example of tryptic hydrolysis of β-CN micelles, leading to the formation and degradation of new nanoparticles and non-monotonic changes in the secondary protein structures during proteolysis. Full article
(This article belongs to the Special Issue Structural Characterization of Food Proteins and Peptides)
Show Figures

Figure 1

27 pages, 1017 KiB  
Review
Methods for Determining Polycyclic Aromatic Hydrocarbons (PAHs) in Milk: A Review
by Klara Żbik, Elżbieta Górska-Horczyczak, Magdalena Zalewska, Agnieszka Wierzbicka and Andrzej Półtorak
Appl. Sci. 2024, 14(23), 11387; https://doi.org/10.3390/app142311387 - 6 Dec 2024
Viewed by 1874
Abstract
This review aims to compile and present information on polycyclic aromatic hydrocarbons (PAHs) in milk, their effects on human health, relevant legal regulations, and methods for their detection. PAHs are hazardous environmental pollutants that can accumulate in milk due to their lipophilicity and [...] Read more.
This review aims to compile and present information on polycyclic aromatic hydrocarbons (PAHs) in milk, their effects on human health, relevant legal regulations, and methods for their detection. PAHs are hazardous environmental pollutants that can accumulate in milk due to their lipophilicity and feed, water, and grass contamination. Also, high-temperature processing in the milk industry can contribute to their formation. PAHs are recognized for their carcinogenic, mutagenic, and teratogenic properties, posing significant risks to human health. Milk presents a unique analytical challenge as a complex matrix; the fats where hydrophobic PAHs tend to accumulate are “trapped” within the membranes of casein micelles. This complexity makes the extraction and analysis of PAHs more demanding than other food matrices. Developments in chromatographic techniques provide effective methods for detecting PAHs in milk, ensuring adherence to regulatory standards. The proper planning of research and the use of these techniques will lead to accurate results. This review focuses specifically on methods for extracting and isolating PAHs from milk, and instrumental methods for their detection and quantification. Such a review may be valuable for researchers looking for methods to analyze PAHs in milk and dairy products. Full article
(This article belongs to the Special Issue Feature Review Papers in Section ‘Food Science and Technology')
Show Figures

Figure 1

10 pages, 1008 KiB  
Article
Determination of Protein Interaction in Milk Protein Concentrate Powders Manufactured from pH-Adjusted and Heat-Treated Skim Milk
by Kavya Dileep, Hari Meletharayil and Jayendra K. Amamcharla
Foods 2024, 13(23), 3832; https://doi.org/10.3390/foods13233832 - 28 Nov 2024
Viewed by 1767
Abstract
The influence of heating as a pretreatment on the structural and functional attributes of milk protein concentrate (MPC) powders derived from ultrafiltered/diafiltered (UF/DF) skim milk is under-reported. This research delves into the impact of pH and heat treatment on skim milk’s properties before [...] Read more.
The influence of heating as a pretreatment on the structural and functional attributes of milk protein concentrate (MPC) powders derived from ultrafiltered/diafiltered (UF/DF) skim milk is under-reported. This research delves into the impact of pH and heat treatment on skim milk’s properties before UF/DF and how these changes affect the resulting MPC powders. By adjusting the pH of skim milk to 6.5, 6.8, or 7.1 and applying thermal treatment at 90 °C for 15 min to one of two divided lots (with the other serving as a control), we studied the protein interactions in MPC. Post-heat treatment, the skim milk’s pH was adjusted back to 6.8, followed by ultrafiltration and spray drying to produce MPC powders with protein content of 82.38 ± 2.72% on a dry matter basis. MPC dispersions from these powders at 5% protein (w/w) were also evaluated for particle size, viscosity, and heat coagulation time (HCT) to further understand how the protein interactions in skim milk influence the properties of MPC dispersions. Capillary electrophoresis was used to assess the casein and whey protein distribution in both the soluble and colloidal phases. Findings revealed that preheating skim milk at pH 7.1 increased serum phase interactions, while heating skim milk preadjusted to a pH of 6.5 promoted whey protein–casein interactions at the micellar interface. Notably, the D (4,3) of casein micelles was larger for dispersions from milk with a preheated pH of 6.5 compared to other pH levels, correlating positively with enhanced dispersion viscosity due to increased volume fraction. These results support the potential for tailoring MPC powder functionality in various food applications through the precise control of the milk’s pre-treatment conditions. Full article
Show Figures

Figure 1

4 pages, 593 KiB  
Proceeding Paper
Formulation of Casein Hydrogels
by Vanina A. Guntero, María C. Acuña, Yamile S. Aon, Leandro Gabriel Gutierrez and Cristián A. Ferretti
Chem. Proc. 2024, 16(1), 96; https://doi.org/10.3390/ecsoc-28-20174 - 14 Nov 2024
Viewed by 255
Abstract
Protein-based hydrogels have attracted considerable interest due to their biocompatibility, nontoxic properties, biodegradability, and renewable nature, as well as their being inexpensive and easy to obtain. Hydrogel properties depend on the temperature, polymer concentration, pH, crosslinking levels, salt concentrations, and aging. Casein is [...] Read more.
Protein-based hydrogels have attracted considerable interest due to their biocompatibility, nontoxic properties, biodegradability, and renewable nature, as well as their being inexpensive and easy to obtain. Hydrogel properties depend on the temperature, polymer concentration, pH, crosslinking levels, salt concentrations, and aging. Casein is a natural protein present in bovine milk (about 80%), which exists in the form of various micelles. It is composed of α-s1, α-s2, β-, and κ-casein and tends toward self-assembly. Casein-based hydrogels are suitable for use in biomedical applications. Considering their potential applications in the field of medicine, in this work, our objective is to find the best conditions for the development of a casein hydrogel with tetracaine hydrochloride as the active compound. The tetracaine hydrochloride has anesthetic properties; therefore, it would allow for a painless and comfortable treatment to be offered to the patient. Accordingly, different hydrogel formulations were proposed. The selected components were casein, glycerol, tetracaine hydrochloride, potassium carbonate, and sodium alginate. Stability and swelling tests was carried out, and apparent density, pH, and moisture content were investigated. The formulation that allowed us to obtain hydrogel with the desired properties was composed of tetracaine hydrochloride 1%, casein 2%, glycerol 50%, sodium alginate 4%, and potassium carbonate solution 18% (the percentages use the casein as the basis). Full article
Show Figures

Figure 1

33 pages, 4683 KiB  
Article
Component Distribution, Shear-Flow Behavior, and Sol–Gel Transition in Mixed Dispersions of Casein Micelles and Serum Proteins
by Hossein Gholamian, Maksym Loginov, Marie-Hélène Famelart, Florence Rousseau, Fabienne Garnier-Lambrouin and Geneviève Gésan-Guiziou
Foods 2024, 13(21), 3480; https://doi.org/10.3390/foods13213480 - 30 Oct 2024
Viewed by 1362
Abstract
The shear flow and solid–liquid transition of mixed milk protein dispersions with varying concentrations of casein micelles (CMs) and serum proteins (SPs) are integral to key dairy processing operations, including microfiltration, ultrafiltration, diafiltration, and concentration–evaporation. However, the rheological behavior of these dispersions has [...] Read more.
The shear flow and solid–liquid transition of mixed milk protein dispersions with varying concentrations of casein micelles (CMs) and serum proteins (SPs) are integral to key dairy processing operations, including microfiltration, ultrafiltration, diafiltration, and concentration–evaporation. However, the rheological behavior of these dispersions has not been sufficiently studied. In the present work, dispersions of CMs and SPs with total protein weight fractions (ωPR) of 0.021–0.28 and SP to total protein weight ratios (RSP) of 0.066–0.214 and 1 were prepared by dispersing the respective protein isolates in the permeate from skim milk ultrafiltration and then further concentrated via osmotic compression. The partition of SPs between the CMs and the dispersion medium was assessed by measuring the dry matter content and viscosity of the dispersion medium after separating it from the CMs via ultracentrifugation. The rheological properties were studied at 20 °C via shear rheometry, and the sol–gel transition was characterized via oscillatory measurements. No absorption of SPs by CMs was observed in dispersions with ωPR = 0.083–0.126, regardless of the RSP. For dispersions of SPs with ωPR ≤ 0.21, as well as the dispersion medium of mixed dispersions with ωPR = 0.083–0.126, the high shear- rate-limiting viscosity was described using Lee’s equation with an SP voluminosity (vSP) of 2.09 mL·g−1. For the mixed dispersions with a CM volume fraction of φCM ≤ 0.37, the relative high shear-rate-limiting viscosity was described using Lee’s equation with a CM voluminosity (vCM) of 4.15 mL·g−1 and a vSP of 2.09 mL·g−1, regardless of the RSP. For the mixed dispersions with φCM > 0.55, the relative viscosity increased significantly with an increasing RSP (this was explained by an increase in repulsion between CMs). However, the sol–gel transition was independent of the RSP and was observed at φCM ≈ 0.65. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

15 pages, 1645 KiB  
Review
Distribution of Salts in Milk and Cheese: Critical Methodological Aspects
by Gaurav Kr Deshwal, Liesbeth van der Meulen and Thom Huppertz
Encyclopedia 2024, 4(4), 1629-1643; https://doi.org/10.3390/encyclopedia4040107 - 30 Oct 2024
Viewed by 2386
Abstract
The salt fractions of milk consist of cations (e.g., Ca, Mg, and Na) and anions (e.g., phosphate, citrate, and chloride). These salts are present as free ions or in complexes with other ions or proteins, primarily the caseins. Furthermore, significant levels of Ca [...] Read more.
The salt fractions of milk consist of cations (e.g., Ca, Mg, and Na) and anions (e.g., phosphate, citrate, and chloride). These salts are present as free ions or in complexes with other ions or proteins, primarily the caseins. Furthermore, significant levels of Ca and phosphate are also found in insoluble form, inside the casein micelles. The distribution of salts between this micellar phase and the soluble phase is important for the stability and properties of milk and dairy products. Various processes, such as (ultra-)centrifugation, (ultra-)filtration, dialysis, and selective precipitation have been used to separate the micellar and soluble phases in milk and dairy products to allow for studying the salts’ distribution between these phases. These different methods can lead to different levels of soluble salts because the salts in the supernatant from centrifugation, the permeate from ultrafiltration, and the diffusate from dialysis can differ notably. Hence, understanding which components are fractionated with these techniques and how this affects the levels of the soluble salts determined is critical for milk and dairy products. Applying the aforementioned methods to cheese products is further challenging because these methods are primarily developed for fractionating the soluble and micellar phases of milk. Instead, methods that analyze salts in water-soluble extracts, or soluble phases expressed from cheese by pressing or centrifugation are typically used. This review focuses on the significance of salt distribution and variations in salt fractions obtained using different methodologies for both milk and cheese. Full article
(This article belongs to the Section Chemistry)
Show Figures

Figure 1

13 pages, 842 KiB  
Article
Properties of Rennet Gels from Retentate Produced by Cold Microfiltration of Heat-Treated and Microfiltered Skim Milk
by Jarosław Kowalik, Justyna Tarapata, Adriana Lobacz and Justyna Zulewska
Foods 2024, 13(20), 3296; https://doi.org/10.3390/foods13203296 - 17 Oct 2024
Viewed by 907
Abstract
This study investigated the production of rennet gels from β-casein-depleted retentates obtained through cold microfiltration (MF) of skim milk (SM) that was treated beforehand to ensure microbial safety. The treatments included thermization (65 °C, 20 s), pasteurization (72 °C, 15 s), and microfiltration [...] Read more.
This study investigated the production of rennet gels from β-casein-depleted retentates obtained through cold microfiltration (MF) of skim milk (SM) that was treated beforehand to ensure microbial safety. The treatments included thermization (65 °C, 20 s), pasteurization (72 °C, 15 s), and microfiltration (50 °C; 1.4 μm pore size). The reduction in β-casein content was 0.98, 0.51 and 0.90%, respectively. All treatments resulted in the partial aggregation of serum proteins, which were slightly concentrated in the retentates obtained post cold MF process. This aggregation, along with concentration effect, likely inhibited β-casein dissociation from casein micelles and permeation, particularly in pasteurized milk. Renneting and coagulation properties of the retentates were comparable to those of the respective SM samples, with no significant differences in syneresis, water-holding capacity, or protein hydration. Notably, the retentate from thermized SM, which showed the best performance with the highest β-casein reduction (0.98%), demonstrated shorter coagulation time compared to retentate from pasteurized milk or the corresponding unfiltered SM. Textural analysis revealed greater firmness, cohesiveness, and viscosity of retentate-based rennet gels compared to gels made from unfiltered SM, attributed to protein concentration during cold MF. Overall, this study successfully produced rennet gels from cold MF retentates without compromising their physicochemical properties. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

12 pages, 2944 KiB  
Article
Fluctuations in Humidity Influence the Structure Formation and Swelling of Casein Microparticles
by Calvin Hohn and Ronald Gebhardt
Colloids Interfaces 2024, 8(4), 45; https://doi.org/10.3390/colloids8040045 - 14 Aug 2024
Viewed by 1560
Abstract
Caseins are a sustainable alternative to non-biodegradable materials for the production of functional microparticles. These show a characteristic swelling behavior when they are prepared from micellar casein under gentle conditions using depletion flocculation and subsequent film drying. The typical two-step swelling process is [...] Read more.
Caseins are a sustainable alternative to non-biodegradable materials for the production of functional microparticles. These show a characteristic swelling behavior when they are prepared from micellar casein under gentle conditions using depletion flocculation and subsequent film drying. The typical two-step swelling process is a result of the internal particulate network structure, which is surrounded by water channels. The seasonal and daily fluctuations in humidity during the 16 h film drying process influence the structure formation and swelling kinetics, which we analyze using system dynamics analysis. Microparticles with better and more uniform swelling properties can be produced using a drying apparatus with an integrated humidifier and ventilation system. At higher humidity levels, the casein micelles are less compressed during film drying, which facilitates the initial swelling of the microparticles. Furthermore, the more stable drying conditions in the drying apparatus result in a more homogeneous compaction of the film, which causes similar swelling rates for different microparticles. Full article
Show Figures

Graphical abstract

12 pages, 1423 KiB  
Article
Influence of Heating Temperature and pH on Acid Gelation of Micellar Calcium Phosphate-Adjusted Skim Milk
by Elaheh Ahmadi, Todor Vasiljevic and Thom Huppertz
Foods 2024, 13(11), 1724; https://doi.org/10.3390/foods13111724 - 31 May 2024
Cited by 2 | Viewed by 1950
Abstract
Micellar calcium phosphate (MCP) plays an important role in maintaining the structure and stability of the casein micelle and its properties during processing. The objective of this study was to investigate how heating (10 min at 80 or 90 °C) at different pH [...] Read more.
Micellar calcium phosphate (MCP) plays an important role in maintaining the structure and stability of the casein micelle and its properties during processing. The objective of this study was to investigate how heating (10 min at 80 or 90 °C) at different pH levels (6.3, 6.6, 6.9, or 7.2) impacted the acid-induced gelation of MCP-adjusted milk, containing 67 (MCP67), 100 (MCP100), or 113 (MCP113) % of the original MCP content. The unheated sample MCP100 at pH 6.6 was considered the control. pH acidification to pH 4.5 at 30 °C was achieved with glucono delta-lactone while monitoring viscoelastic behaviour by small-amplitude oscillatory rheology. The partitioning of calcium and proteins between colloidal and soluble phases was also examined. In MCP-depleted skim milk samples, the concentrations of non-sedimentable caseins and whey proteins were higher compared to the control and MCP-enriched skim milk samples. The influence of MCP adjustment on gelation was dependent on pH. Acid gels from sample MCP67 exhibited the highest storage modulus (G′). At other pH levels, MCP100 resulted in the greatest G′. The pH of MCP-adjusted skim milk also impacted the gel properties after heating. Overall, this study highlights the substantial impact of MCP content on the acid gelation of milk, with a pronounced dependency of the MCP adjustment effect on pH variations. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

Back to TopTop