Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = cascade refrigeration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3878 KB  
Article
Thermodynamic Evaluation of Low-GWP A1 Refrigerants for Ultra-Low Temperature Refrigeration Applications
by Pau Giménez-Prades, Cosmin-Mihai Udroiu, Joaquín Navarro-Esbrí and Adrián Mota-Babiloni
Energies 2025, 18(16), 4428; https://doi.org/10.3390/en18164428 - 20 Aug 2025
Viewed by 779
Abstract
Slow market development has caused the lack of low-GWP A1 refrigerants for ultra-low temperature (ULT) refrigeration. Consequently, the high-GWP refrigerant R23 (GWP = 14,600) remains widely used within the ULT sector. For this reason, this paper proposes a comprehensive thermodynamic analysis of recently [...] Read more.
Slow market development has caused the lack of low-GWP A1 refrigerants for ultra-low temperature (ULT) refrigeration. Consequently, the high-GWP refrigerant R23 (GWP = 14,600) remains widely used within the ULT sector. For this reason, this paper proposes a comprehensive thermodynamic analysis of recently developed CO2-based mixtures as low-GWP A1 alternatives to R23 for ULT applications, R469A (GWP = 1357), R472B (GWP = 526), R472A (GWP = 353), and R473A (GWP = 1830). In addition, three system configurations are analysed, the basic two-stage cascade system, and configurations incorporating internal heat exchangers (IHXs). Keeping a constant high-temperature stage (HTS) condensation temperature at 35 °C, three low-temperature stage (LTS) evaporation temperatures are considered, −70, −60, and −50 °C. The highest coefficient of performance (COP) is reached by R23 across all operating conditions and configurations. Among the alternative refrigerants, R473A exhibits the highest COP (0.74% to 1.26% lower than R23). The implementation of IHX results in a reduced COP compared to the basic cycle. R472B is the refrigerant least negatively affected by the IHX implementation due to its high glide. Finally, the environmental impact of R23 is notably reduced by all the alternative refrigerants (up to 95%). This paper’s findings highlight the potential of alternative refrigerants as replacements for R23 in ULT applications. Full article
(This article belongs to the Section J2: Thermodynamics)
Show Figures

Figure 1

14 pages, 1415 KB  
Article
Effects of Different Packaging on the Purine Content and Key Enzymes of Refrigerated Yellow Croaker (Larimichthys crocea)
by Tiansheng Xu, Wenxuan Lu, Bohan Chen, Dapeng Li and Jing Xie
Foods 2025, 14(15), 2732; https://doi.org/10.3390/foods14152732 - 5 Aug 2025
Viewed by 690
Abstract
In this study, we investigated the effects of air packaging, vacuum packaging and modified atmosphere packaging (CO2/N2: 80/20) on the purine metabolism and enzyme activities of refrigerated large yellow croakers. The results showed that modified atmosphere packaging significantly inhibited [...] Read more.
In this study, we investigated the effects of air packaging, vacuum packaging and modified atmosphere packaging (CO2/N2: 80/20) on the purine metabolism and enzyme activities of refrigerated large yellow croakers. The results showed that modified atmosphere packaging significantly inhibited microbial growth, delayed adenosine triphosphate degradation and maintained higher IMP content (1.93 μmol/g on day 21) compared to the air packaging group (2.82 μmol/g on day 12). The total purine content increased with storage time, with hypoxanthine content increasing significantly and occupying most of the total content, which was the key factor for the elevation of purine, followed by adenine content showing a significant decreasing trend. Hypoxanthine accumulation was significantly suppressed in the modified atmosphere packaging group (2.31 μmol/g on day 18), which was much lower than that in the air packaging group (5.64 μmol/g), whereas xanthine and guanine did not show significant differences among the groups. The key enzymes xanthine oxidase and purine nucleoside phosphorylase were much less active in modified atmosphere packaging, effectively delaying the cascade reaction of inosine monophosphate → hypoxanthine → xanthine. The study confirmed that modified atmosphere packaging intervenes in purine metabolism through enzyme activity regulation, providing a theoretical basis for the preservation of low purine aquatic products. Full article
Show Figures

Figure 1

24 pages, 2458 KB  
Review
Vapor Compression Refrigeration System for Aircrafts: Current Status, Large-Temperature-Range Challenges and Emerging Auto-Cascade Refrigeration Technologies
by Hainan Zhang, Qinghao Wu, Shuo Feng, Sujun Dong and Zanjun Gao
Aerospace 2025, 12(8), 681; https://doi.org/10.3390/aerospace12080681 - 30 Jul 2025
Viewed by 1199
Abstract
Modern aircraft increasingly utilizes highly integrated electronic equipment, driving continuously increasing heat dissipation demands. Vapor compression refrigeration systems demonstrate stronger alignment with future aircraft thermal management trends, leveraging their superior volumetric cooling capacity, high energy efficiency, and independence from engine bleed air. This [...] Read more.
Modern aircraft increasingly utilizes highly integrated electronic equipment, driving continuously increasing heat dissipation demands. Vapor compression refrigeration systems demonstrate stronger alignment with future aircraft thermal management trends, leveraging their superior volumetric cooling capacity, high energy efficiency, and independence from engine bleed air. This paper reviews global research progress on aircraft vapor compression refrigeration systems, covering performance optimization, dynamic characteristics, control strategies, fault detection, and international development histories and typical applications. Analysis identifies emerging challenges under large-temperature-range cooling requirements, with comparative assessment establishing zeotropic mixture auto-cascade vapor compression refrigeration systems as the optimal forward-looking solution. Finally, recognizing current research gaps, we propose future research directions for onboard auto-cascade vapor compression refrigeration systems: optimizing refrigerant mixtures for flight conditions, achieving efficient gas-liquid separation during variable overloads and attitude conditions, and developing model predictive control with intelligent optimization to ensure reliability. Full article
(This article belongs to the Special Issue Aerospace Human–Machine and Environmental Control Engineering)
Show Figures

Figure 1

17 pages, 3371 KB  
Article
Thermodynamic Analysis of Refrigerant Systems for Ethane Recovery and Helium Extraction in Medium-Pressure Natural Gas Processing
by Hong Jiang, Wentang Huang and Xiang Cheng
Energies 2025, 18(13), 3406; https://doi.org/10.3390/en18133406 - 28 Jun 2025
Viewed by 609
Abstract
Based on the medium-pressure natural gas ethane recovery and helium extraction process, this paper proposes three different refrigerant Schemes. Thermodynamic analysis and adaptability evaluation of the three Schemes were conducted using Aspen HYSYS V12 software. The ethylene–propane cascade refrigeration Scheme demonstrated superior energy [...] Read more.
Based on the medium-pressure natural gas ethane recovery and helium extraction process, this paper proposes three different refrigerant Schemes. Thermodynamic analysis and adaptability evaluation of the three Schemes were conducted using Aspen HYSYS V12 software. The ethylene–propane cascade refrigeration Scheme demonstrated superior energy efficiency in terms of comprehensive energy consumption, heat exchange performance in the cryogenic cold box, and exergy analysis. Adaptability analysis indicated that this Scheme exhibits strong tolerance to variations in feed gas temperature as well as N2 and CO2 content. The ethylene–propane cascade refrigeration process demonstrates significant energy-saving advantages and exhibits robust operational performance. Full article
Show Figures

Figure 1

18 pages, 2921 KB  
Article
Thermodynamics Analysis of Cryogenic Supercritical Hydrogen Storage System Based on Multi-Stage Joule–Brayton Cycle
by Ruiqi Wan, Tenglong Yue, Jingxuan Xu, Wenjie Wu, Xi Chen and Binlin Dou
Cryo 2025, 1(2), 6; https://doi.org/10.3390/cryo1020006 - 25 Apr 2025
Cited by 1 | Viewed by 636
Abstract
The cryogenic supercritical hydrogen storage system offers notable advantages including heightened hydrogen storage density and operation under relatively moderate conditions compared to conventional hydrogen storage methodologies. In this study, a cryogenic supercritical hydrogen storage system based on the multi-stage Joule–Brayton refrigeration cycle is [...] Read more.
The cryogenic supercritical hydrogen storage system offers notable advantages including heightened hydrogen storage density and operation under relatively moderate conditions compared to conventional hydrogen storage methodologies. In this study, a cryogenic supercritical hydrogen storage system based on the multi-stage Joule–Brayton refrigeration cycle is presented, analyzed, and optimized. The proposed system employs a five-stage cascade cycle, each stage utilizes a distinct refrigerant, including propane, ethylene, methane, and hydrogen, facilitated by Joule–Brayton cycles, with expanders employed for mechanical work recovery, which is capable of effectively cooling hydrogen from ambient temperature and atmospheric pressure to a cryogenic supercritical state of −223.15 °C (50 K), 18,000 kPa, exhibiting a density of 73.46 kg/m3 and a hydrogen processing capacity of 2 kgH2/s. The genetic algorithm is applied to optimize 25 key parameters in the system, encompassing temperature, pressure, and flow rate, with the objective function is specific energy consumption. Consequently, the specific energy consumption of the system is 5.71 kWh/kgH2 with an exergy efficiency of 56.2%. Comprehensive energy analysis, heat transfer analysis, and exergy analysis are conducted based on the optimized system parameters, yielding insights crucial for the development of medium- and large-scale supercritical hydrogen storage systems. Full article
(This article belongs to the Special Issue Efficient Production, Storage and Transportation of Liquid Hydrogen)
Show Figures

Figure 1

18 pages, 1903 KB  
Article
Thermal Parameters Optimization of the R744/R134a Cascade Refrigeration Cycle Using Taguchi and ANOVA Methods
by Thanhtrung Dang, Hoangtuan Nguyen and Hung-Son Dang
Processes 2025, 13(4), 1210; https://doi.org/10.3390/pr13041210 - 16 Apr 2025
Viewed by 1105
Abstract
In recent years, the use of R744 natural refrigerant has become increasingly popular in a wide range of applications from air conditioning to low-temperature refrigeration. This study focuses on optimizing the thermodynamic parameters of the R744/R134a cascade cycle operating under evaporative temperature varying [...] Read more.
In recent years, the use of R744 natural refrigerant has become increasingly popular in a wide range of applications from air conditioning to low-temperature refrigeration. This study focuses on optimizing the thermodynamic parameters of the R744/R134a cascade cycle operating under evaporative temperature varying from −23 °C to −29 °C, operating in tropical climates region. The parameters include the evaporating temperature, the condensing temperature, the subcooling temperature, and the superheating temperature in the low temperature cycle, and the evaporating temperature, the subcooling temperature, and the superheating temperature in the high temperature cycle. The study has given a rating of the influence of thermodynamic parameters on the coefficient of performance (COP) of the system. In addition, the study shows that the optimal dataset for all the above thermodynamic parameters is A3B3C2D1E1F3 with a COP of 2.560 in theory and 2.461 in experiment. Moreover, the ANOVA analysis method for the variances also shows the consistency of the above results with the highest error of 3.54% compared to the experiment. Full article
(This article belongs to the Special Issue Circular Economy on Production Processes and Systems Engineering)
Show Figures

Figure 1

87 pages, 11054 KB  
Review
Advancing Hybrid Cryogenic Natural Gas Systems: A Comprehensive Review of Processes and Performance Optimization
by Bahram Ghorbani, Sohrab Zendehboudi and Noori M. Cata Saady
Energies 2025, 18(6), 1443; https://doi.org/10.3390/en18061443 - 14 Mar 2025
Cited by 4 | Viewed by 4229
Abstract
Recent research in the liquefied natural gas (LNG) industry has concentrated on reducing specific power consumption (SPC) during production, which helps to lower operating costs and decrease the carbon footprint. Although reducing the SPC offers benefits, it can complicate the system and increase [...] Read more.
Recent research in the liquefied natural gas (LNG) industry has concentrated on reducing specific power consumption (SPC) during production, which helps to lower operating costs and decrease the carbon footprint. Although reducing the SPC offers benefits, it can complicate the system and increase investment costs. This review investigates the thermodynamic parameters of various natural gas (NG) liquefaction technologies. It examines the cryogenic NG processes, including integrating NG liquid recovery plants, nitrogen rejection cycles, helium recovery units, and LNG facilities. It explores various approaches to improve hybrid NG liquefaction performance, including the application of optimization algorithms, mixed refrigerant units, absorption refrigeration cycles, diffusion–absorption refrigeration systems, auto-cascade absorption refrigeration processes, thermoelectric generator plants, liquid air cold recovery units, ejector refrigeration cycles, and the integration of renewable energy sources and waste heat. The review evaluates the economic aspects of hybrid LNG systems, focusing on specific capital costs, LNG pricing, and capacity. LNG capital cost estimates from academic sources (173.2–1184 USD/TPA) are lower than those in technical reports (486.7–3839 USD/TPA). LNG prices in research studies (0.2–0.45 USD/kg, 2024) are lower than in technical reports (0.3–0.7 USD/kg), based on 2024 data. Also, this review investigates LNG accidents in detail and provides valuable insights into safety protocols, risk management strategies, and the overall resilience of LNG operations in the face of potential hazards. A detailed evaluation of LNG plants built in recent years is provided, focusing on technological advancements, operational efficiency, and safety measures. Moreover, this study investigates LNG ports in the United States, examining their infrastructures, regulatory compliance, and strategic role in the global LNG supply chain. In addition, it outlines LNG’s current status and future outlook, focusing on key industry trends. Finally, it presents a market share analysis that examines LNG distribution by export, import, re-loading, and receiving markets. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

21 pages, 3371 KB  
Article
Modeling of a Novel Cascade Cycle for the Simultaneous Production of Desalinated Water and Cooling Using Various Refrigerants
by Javier Delgado-Gonzaga, Wilfrido Rivera, José Camilo Jiménez-García, Alejandro Pacheco-Reyes and David Juárez-Romero
Processes 2025, 13(1), 166; https://doi.org/10.3390/pr13010166 - 9 Jan 2025
Cited by 2 | Viewed by 936
Abstract
This study proposes a cogeneration system for the simultaneous production of cooling and freshwater. A double-stage cascade compression cooling system consists of two interconnected vapor compression cycles. The proposed system integrates a double-stage cascade compression cooling system with a water desalination unit, which [...] Read more.
This study proposes a cogeneration system for the simultaneous production of cooling and freshwater. A double-stage cascade compression cooling system consists of two interconnected vapor compression cycles. The proposed system integrates a double-stage cascade compression cooling system with a water desalination unit, which takes advantage of the heat released by the cascade system. The system performance was evaluated using various refrigerants selected based on their energy efficiency, environmental impact, and widespread use. Multiple combinations of the fluids were used in the high-temperature cycle (HTC) and low-temperature cycle (LTC) to analyze their impact on system performance. A parametric analysis was conducted by developing a mathematical model in MATLAB. The model’s input parameters were the evaporation temperature and the temperature difference between the inlet and discharge of both compressors (ΔLTC and ΔHTC). System performance was assessed from a first-law point of view through the coefficient of performance (COP), the energy utilization factor (EUF), and the gain output ratio (GOR). The results revealed that the maximum (105 °C) and minimum (−13 °C) temperatures, essential for desalination and cooling, respectively, were achieved using R134a in the LTC and R123 in the HTC, with ΔLTC = 65 °C and ΔHTC = 70 °C. However, the best performance was observed with R123 in both cycles, with ΔLTC = 45 °C and ΔHTC = 70 °C. This configuration achieved a COP of 1.06, a GOR of 1.61, and an EUF of 2.74. Full article
(This article belongs to the Special Issue Application of Refrigeration and Heat Pump Technology)
Show Figures

Figure 1

16 pages, 3984 KB  
Article
Comparative Exergy Analysis of Series and Parallel Dual-Pressure Auto-Cascade Organic Rankine Cycles
by Yongsheng Li, Zhiyu Li, Haigang Zhang, Jieyu Zhang, Xiaohong He, Yanjin Qiao and Zeting Yu
Processes 2024, 12(12), 2872; https://doi.org/10.3390/pr12122872 - 16 Dec 2024
Cited by 1 | Viewed by 1039
Abstract
The organic Rankine cycle (ORC) is a valuable method for harnessing low-temperature waste heat to generate electricity. In this study, two dual-pressure auto-cascade ORC systems driven by low-grade geothermal water are proposed in series and parallel configurations to ensure high thermal efficiency and [...] Read more.
The organic Rankine cycle (ORC) is a valuable method for harnessing low-temperature waste heat to generate electricity. In this study, two dual-pressure auto-cascade ORC systems driven by low-grade geothermal water are proposed in series and parallel configurations to ensure high thermal efficiency and power output. The energy and exergy analysis models for two systems are developed for comparative and parametric analysis, which uses a zeotropic refrigerant mixture of R134a and R245fa. The findings indicate that, with a heat source temperature of 393.15 K, the thermal efficiency and exergy efficiency of the series auto-cascade ORC reach 10.12% and 42.07%, respectively, which are 27% and 21.9% higher than those of the parallel auto-cascade ORC. However, the parallel cycle exhibits a higher net power output, indicating a better heat source utilization. The exergy analysis shows that evaporator 1 and the condenser possess the highest exergy destruction in both cycles. Finally, the parameter analysis reveals that the system performance is affected significantly by the heat source and heat sink temperature, the pinch temperature difference, and the refrigerant mixture concentration. These findings could provide valuable insights for improving the overall performance of ORCs driven by low-grade energy when using zeotropic refrigerant mixtures. Full article
Show Figures

Figure 1

22 pages, 7417 KB  
Article
A Novel Approach of −80 °C Cascade Refrigeration System Using Non-Flammable Quaternary Refrigerants for Semiconductor Process Applications
by Su-Been Lee, Chang-Hyo Son and Joon-Hyuk Lee
Energies 2024, 17(23), 6178; https://doi.org/10.3390/en17236178 - 7 Dec 2024
Cited by 1 | Viewed by 1647
Abstract
Ultra-low temperature chillers have seen increasing demand with the advancement of semiconductor technology. Mixed refrigerant (MR) cascade refrigeration systems (CRSs) are widely utilized for their stability and high cooling performance at low temperatures. Extensive research has been conducted on optimizing MR, which has [...] Read more.
Ultra-low temperature chillers have seen increasing demand with the advancement of semiconductor technology. Mixed refrigerant (MR) cascade refrigeration systems (CRSs) are widely utilized for their stability and high cooling performance at low temperatures. Extensive research has been conducted on optimizing MR, which has a significant impact on CRS performance. However, most previous studies have either fixed the system pressure or used the refrigeration effect as the sole performance indicator. This did not account for the potential of achieving higher performance with an optimal MR composition at the same target temperature. In this study, a detailed parametric analysis was performed to investigate how the mass fractions of high-, mid-, and low boiling point refrigerants affect the coefficient of performance (COP) and exergy in ultra-low temperature CRSs without fixing the suction pressure. The analysis revealed that at the point of maximum COP, the refrigeration effect was relatively low, highlighting the limitations of using the refrigeration effect alone as a performance indicator. Additionally, COP was found to inversely correlate with total exergy destruction. As cascade temperature increases, COP tends to decrease, emphasizing the need for appropriate cascade temperature selection for MR CRS performance. This study introduces a novel approach to optimizing MR composition under various operating conditions, contributing to the advancement of ultra-low temperature CRSs. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

36 pages, 2822 KB  
Review
The Sixth Mass Extinction and Amphibian Species Sustainability Through Reproduction and Advanced Biotechnologies, Biobanking of Germplasm and Somatic Cells, and Conservation Breeding Programs (RBCs)
by Robert K. Browne, Qinghua Luo, Pei Wang, Nabil Mansour, Svetlana A. Kaurova, Edith N. Gakhova, Natalia V. Shishova, Victor K. Uteshev, Ludmila I. Kramarova, Govindappa Venu, Mikhail F. Bagaturov, Somaye Vaissi, Pouria Heshmatzad, Peter Janzen, Aleona Swegen, Julie Strand and Dale McGinnity
Animals 2024, 14(23), 3395; https://doi.org/10.3390/ani14233395 - 25 Nov 2024
Cited by 4 | Viewed by 3189
Abstract
Primary themes in intergenerational justice are a healthy environment, the perpetuation of Earth’s biodiversity, and the sustainable management of the biosphere. However, the current rate of species declines globally, ecosystem collapses driven by accelerating and catastrophic global heating, and a plethora of other [...] Read more.
Primary themes in intergenerational justice are a healthy environment, the perpetuation of Earth’s biodiversity, and the sustainable management of the biosphere. However, the current rate of species declines globally, ecosystem collapses driven by accelerating and catastrophic global heating, and a plethora of other threats preclude the ability of habitat protection alone to prevent a cascade of amphibian and other species mass extinctions. Reproduction and advanced biotechnologies, biobanking of germplasm and somatic cells, and conservation breeding programs (RBCs) offer a transformative change in biodiversity management. This change can economically and reliably perpetuate species irrespective of environmental targets and extend to satisfy humanity’s future needs as the biosphere expands into space. Currently applied RBCs include the hormonal stimulation of reproduction, the collection and refrigerated storage of sperm and oocytes, sperm cryopreservation, in vitro fertilization, and biobanking of germplasm and somatic cells. The benefits of advanced biotechnologies in development, such as assisted evolution and cloning for species adaptation or restoration, have yet to be fully realized. We broaden our discussion to include genetic management, political and cultural engagement, and future applications, including the extension of the biosphere through humanity’s interplanetary and interstellar colonization. The development and application of RBCs raise intriguing ethical, theological, and philosophical issues. We address these themes with amphibian models to introduce the Multidisciplinary Digital Publishing Institute Special Issue, The Sixth Mass Extinction and Species Sustainability through Reproduction Biotechnologies, Biobanking, and Conservation Breeding Programs. Full article
Show Figures

Figure 1

16 pages, 6468 KB  
Article
Enhancing Semiconductor Chiller Performance: Investigating the Performance Characteristics of Ultra-Low-Temperature Chillers Applying a Liquid Receiver
by Joon-Hyuk Lee, Hye-In Jung, Su-Been Lee and Chang-Hyo Son
Energies 2024, 17(20), 5144; https://doi.org/10.3390/en17205144 - 16 Oct 2024
Cited by 2 | Viewed by 1359
Abstract
This study investigates the implementation of a cryogenic chiller utilizing a mixed-refrigerant cascade refrigeration cycle (MRCRC). In this setup, R-404A is employed in the high-temperature circuit (HTC), while a mixture of refrigerants is utilized in the low-temperature circuit (LTC). Unlike a conventional MRCRC [...] Read more.
This study investigates the implementation of a cryogenic chiller utilizing a mixed-refrigerant cascade refrigeration cycle (MRCRC). In this setup, R-404A is employed in the high-temperature circuit (HTC), while a mixture of refrigerants is utilized in the low-temperature circuit (LTC). Unlike a conventional MRCRC that operates without a receiver to maintain the composition ratio, this research explores the impact of receiver installation on system performance. Experiments were conducted with and without a receiver to assess performance improvements and device behavior. With a fixed refrigerant charge of 4 kg, the suction and discharge pressures of the LTC compressor remained low and stable after the receiver’s installation. The addition of a receiver significantly reduced the cooling time, with further reductions observed as the refrigerant charge increased. The system achieved evaporative heat capacities of 0.59, 1.76, and 2 kW for refrigerant charges of 4, 7, and 9 kg, respectively. Notably, at the maximum refrigerant charge of 11 kg, the evaporative heat capacity peaked at 3.3 kW. These findings indicate that incorporating a receiver is crucial for enhancing the cooling performance of cryogenic coolers using mixed refrigerants and stabilizing device operation. This contrasts with previous studies that omitted receivers due to concerns over potential alterations in the composition ratio of the mixed refrigerant. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

25 pages, 5478 KB  
Article
Proposals for Next-Generation Eco-Friendly Non-Flammable Refrigerants for a −100 °C Semiconductor Etching Chiller Based on 4E (Energy, Exergy, Environmental, and Exergoeconomic) Analysis
by Hye-In Jung, Chang-Hyo Son and Joon-Hyuk Lee
Energies 2024, 17(19), 4969; https://doi.org/10.3390/en17194969 - 4 Oct 2024
Viewed by 1385
Abstract
Recent advancements in cryogenic etching, characterized by high aspect ratios and etching rates, address the growing demand for enhanced performance and reduced power consumption in electronics. To precisely maintain the temperature under high loads, the cascade mixed-refrigerant cycle (CMRC) is predominantly used. However, [...] Read more.
Recent advancements in cryogenic etching, characterized by high aspect ratios and etching rates, address the growing demand for enhanced performance and reduced power consumption in electronics. To precisely maintain the temperature under high loads, the cascade mixed-refrigerant cycle (CMRC) is predominantly used. However, most refrigerants currently used in semiconductor cryogenic etching have high global warming potential (GWP). This study introduces a −100 °C chiller using a mixed refrigerant (MR) with a GWP of 150 or less, aiming to comply with stricter environmental standards and contribute to environmental preservation. The optimal configuration for the CMRC was determined based on a previously established methodology for selecting the best MR configuration. Comprehensive analyses—energy, exergy, environmental, and exergoeconomic—were conducted on the data obtained using Matlab simulations to evaluate the feasibility of replacing conventional refrigerants. The results reveal that using eco-friendly MRs increases the coefficient of performance by 52%, enabling a reduction in compressor size due to significantly decreased discharge volumes. The exergy analysis indicated a 16.41% improvement in efficiency and a substantial decrease in exergy destruction. The environmental analysis demonstrated that eco-friendly MRs could reduce carbon emissions by 60%. Economically, the evaporator and condenser accounted for over 70% of the total exergy costs in all cases, with a 52.44% reduction in exergy costs when using eco-friendly MRs. This study highlights the potential for eco-friendly refrigerants to be integrated into semiconductor cryogenic etching processes, responding effectively to environmental regulations in the cryogenic sector. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

28 pages, 3061 KB  
Review
A Review of the Energy-Saving Potential of Phase Change Material-Based Cascaded Refrigeration Systems in Chinese Food Cold Chain Industry
by Xinyu Meng, Yijian He, Lijuan He, Chenlei Zhao, Lifang Wang, Wenxi You and Jingbo Zhu
Energies 2024, 17(19), 4762; https://doi.org/10.3390/en17194762 - 24 Sep 2024
Cited by 2 | Viewed by 2657
Abstract
As the global demand for food increases, the efficiency and environmental sustainability of refrigeration systems have become increasingly critical issues. Cascaded refrigeration systems (CRSs) are widely used in the Chinese food cold chain due to their capacity to meet a wide range of [...] Read more.
As the global demand for food increases, the efficiency and environmental sustainability of refrigeration systems have become increasingly critical issues. Cascaded refrigeration systems (CRSs) are widely used in the Chinese food cold chain due to their capacity to meet a wide range of temperature requirements. However, energy consumption of these systems is always high. If phase change materials (PCMs) are combined with the refrigeration systems, the energy-saving effect is remarkable. The paper reviews the integration of PCMs within CRS, focusing on their potential to reduce energy consumption, thereby improving food safety and reducing reliance on conventional, electricity-intensive refrigeration methods. The study categorizes and explores the low-temperature applications of PCMs in CRS, providing novel insights into enhancing energy efficiency in food cold chain logistics. Despite most PCM research focusing on single-stage systems, this review innovates by introducing PCM integration in multistage cascade systems, which is particularly relevant for low-temperature requirements. The discussion encompasses the structure, working fluids, and applications of CRSs in the cold chain, emphasizing the role of PCMs in sustainable cold chain management. The review concludes by highlighting the need for further research on PCMs in CRS, especially regarding their economic viability and large-scale implementation potential. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

23 pages, 2789 KB  
Article
Thermodynamic Comparative Analysis of Cascade Refrigeration System Pairing R744 with R404A, R448A and R449A with Internal Heat Exchanger: Part 2—Exergy Characteristics
by Min-Ju Jeon and Joon-Hyuk Lee
Energies 2024, 17(18), 4708; https://doi.org/10.3390/en17184708 - 21 Sep 2024
Viewed by 1493
Abstract
The cascade refrigeration systems (CRS) used in hypermarkets and supermarkets, which are used by many people, have been employing R744 for the low-temperature cycle (LTC) and R404A for the high-temperature cycle (HTC) due to environmental and public safety issues. However, the use of [...] Read more.
The cascade refrigeration systems (CRS) used in hypermarkets and supermarkets, which are used by many people, have been employing R744 for the low-temperature cycle (LTC) and R404A for the high-temperature cycle (HTC) due to environmental and public safety issues. However, the use of R404A is limited due to its high GWP, and therefore research on alternative refrigerants is necessary. Nevertheless, there is no detailed study in the literature that compares and analyzes the three refrigerants for practical design by applying R744 for LTC and R404A, R448A, and R449A for HTC in CRS. Therefore, this study aims to provide data for the practical detailed design of an alternative system to R744/R404A CRS. Under standard conditions, we analyzed how the exergy destruction rate (EDR) and exergy efficiency (EE) of the system and the EDR of each component change when the important factors affecting CRS (degree of superheating (DSH), degree of subcooling (DSC), and internal heat exchanger (IHX) efficiency of HTC, DSH of LTC, condensation temperature (CT), evaporation temperature (ET), cascade evaporation temperature (CET), and temperature difference of CHX) are varied over a wide range. The main conclusions are as follows. (1) Under the given constant conditions, the smallest change in system EDR based on R448A is DSH of HTC (decreased by 0.07–0.1 kW), followed by IHX of HTC (decreased by 0.12–0.3 kW), DSH of LTC (increased by 0.19–0.25 kW), DSC of HTC (decreased by 0.59–0.69 kW), temperature difference of CHX (increased by 1.57–1.83 kW), CET (decreased and then increased by 0.67–4.43 kW), CT (increased by 1.49–3.9 kW), ET (decreased by 2.39–4.61 kW). (2) The highest change rate of system EE based on R448A is CET (increased and then decreased by 1.38–8.28%), followed by temperature difference of CHX (decreased by 2.96–3.16%), ET (increased and then decreased by 0.63–2.75%), DSC of HTC (increased by 1.26–1.34%), CT (increased and then decreased by 0.24–1.12%), IHX of HTC (increased by 0.11–1.02%), DSH of LTC (decreased by 0.35–0.49%), and DSH of HTC (increased by 0.14–0.19%). Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

Back to TopTop