Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = carbon-substrate utilization capacity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2580 KB  
Article
Variation in Soil Microbial Carbon Utilization Patterns Along a Forest Successional Series in a Degraded Wetland of the Sanjiang Plain
by Zhaorui Liu, Wenmiao Pu, Kaiquan Zhang, Rongze Luo, Xin Sui and Mai-He Li
Diversity 2026, 18(1), 48; https://doi.org/10.3390/d18010048 - 16 Jan 2026
Abstract
The Sanjiang Plain hosts the largest freshwater wetland in Northeastern China and plays a critical role in regional climate stability. However, climate change and human activities have degraded the wetland, forming a successional gradient from the original flooded wetland to dry shrub and [...] Read more.
The Sanjiang Plain hosts the largest freshwater wetland in Northeastern China and plays a critical role in regional climate stability. However, climate change and human activities have degraded the wetland, forming a successional gradient from the original flooded wetland to dry shrub and forest vegetation with a lower ground water level. This degradation has altered soil microbial structure and functions, reducing ecological and socio-economic benefits. Along this successional gradient, we used Biolog-ECO plates combined with soil enzyme assays (catalase, urease, sucrase, and acid phosphatase) to assess the dynamics of microbial carbon metabolic activity, measured by average well color development (AWCD). The results showed a systematic decline in AWCD values with advancing succession, revealing a pronounced reduction in overall microbial metabolic activity during wetland degradation. This trend correlated with loss of soil moisture, organic carbon, and nitrogen nutrients. Microbial communities in early successional wetland stages (i.e., original natural wetland and wetland edge) preferred labile carbon sources (e.g., carbohydrates, amino acids), while forested stages favored relatively more structural (e.g., polymers, phenolic compounds). These findings indicate that vegetation succession regulates microbial carbon metabolism by modifying soil physicochemical properties, providing insights for wetland restoration. Full article
(This article belongs to the Special Issue Microbial Diversity in Different Environments)
Show Figures

Figure 1

21 pages, 2038 KB  
Article
Improving the Yield and Quality of Morchella spp. Using Agricultural Waste
by Jiawen Wang, Weiming Cai, Qunli Jin, Lijun Fan, Zier Guo and Weilin Feng
J. Fungi 2025, 11(10), 703; https://doi.org/10.3390/jof11100703 - 28 Sep 2025
Viewed by 907
Abstract
Morchella spp. is a type of valuable and rare edible fungi cultivated in soil. Optimization of the cultivation medium for Morchella spp. is key to obtaining high-efficiency production in an ecologically friendly manner. Recently, the sustainable resource utilization of agricultural waste has gathered [...] Read more.
Morchella spp. is a type of valuable and rare edible fungi cultivated in soil. Optimization of the cultivation medium for Morchella spp. is key to obtaining high-efficiency production in an ecologically friendly manner. Recently, the sustainable resource utilization of agricultural waste has gathered attention. Specifically, reusing tomato substrate, mushroom residues, and coconut shells can lower the production costs and reduce environmental pollution, demonstrating remarkable ecological and economic benefits. To determine the soil microbial communities of Morchella spp. using different culture medias and influencing factors, this study analysed the relative abundance of bacterial and fungal communities in natural soil, soil with 5% tomato substrate, soil with 5% mushroom residues, and soil with 5% coconut shells using Illumina NovaSeq high-throughput sequencing. In addition, intergroup differences, soil physiochemical properties, and product quality were also determined. Results demonstrated that agricultural waste consisting of mushroom residues, waste tomato substrate, and coconut shells can improve the efficiency of Morchella spp. cultivation. When considering yield and quality, mushroom residue achieved the highest yield (soil nutrient enrichment), followed by tomato substrate (water holding + grass carbon nutrient). All three types of agricultural waste promoted early fruiting, significantly increased polysaccharide, crude protein, and potassium content, and lowered crude fat and fibre. In regard to soil improvement, the addition of different materials optimized the soil’s physical structure (reducing volume weight and increasing water holding capacity) and chemical properties (enrichment of nitrogen, phosphorus, and potassium, regulating nitrogen and medium trace elements). For microbial regulation, the added materials significantly increased the abundance of beneficial bacteria (e.g., Actinomycetota, Gemmatimonadota and Devosia) and strengthened nitrogen’s fixation/nitration/decomposition functions. In the mushroom residue group, the abundance of Bacillaceae was positively related to yield. Moreover, it inhibited pathogenic fungi like Mortierella and Trichoderma, and lowered fungal diversity to decrease ecological competition. In summary, mushroom residues have nutrient releasing and microbial regulation advantages, while tomato substrate and coconut shells are new high-efficiency resources. These increase yield through the “physiochemical–microorganism” collaborative path. Future applications may include regulating the function of microorganisms and optimizing waste preprocessing technologies to achieve sustainability. Full article
Show Figures

Figure 1

20 pages, 4331 KB  
Article
Physicochemical and Antimicrobial Evaluation of Bacterial Cellulose Derived from Spent Tea Waste
by Cem Gök, Arzum Işıtan, Massimo Bersani, Paolo Bettotti, Laura Pasquardini, Michele Fedrizzi, Davide D'Angelo, Havva Boyacıoğlu and Ahmet Koluman
Polymers 2025, 17(18), 2521; https://doi.org/10.3390/polym17182521 - 18 Sep 2025
Viewed by 1168
Abstract
Bacterial cellulose (BC) is a high-purity biopolymer with excellent physicochemical and mechanical properties, including high crystallinity, water absorption, biocompatibility, and structural tunability. However, its large-scale production is hindered by high substrate costs and limited sustainability. In this study, spent black tea waste was [...] Read more.
Bacterial cellulose (BC) is a high-purity biopolymer with excellent physicochemical and mechanical properties, including high crystallinity, water absorption, biocompatibility, and structural tunability. However, its large-scale production is hindered by high substrate costs and limited sustainability. In this study, spent black tea waste was utilized as a low-cost and eco-friendly carbon source for BC synthesis by Komagataeibacter xylinus ATCC 53524 under varying initial pH conditions (4–9). Six different BC membranes were produced and systematically characterized in terms of mechanical strength, water absorption capacity, electrical conductivity, antimicrobial performance, and polyvinyl alcohol (PVA) attachment efficiency. Morphological and chemical analyses were conducted using SEM and FTIR techniques to investigate pH-induced structural variations. The results revealed that the BC6 sample (pH 6) exhibited the highest tensile strength (2.4 MPa), elongation (13%), PVA incorporation (12%), and electrical conductivity, confirming the positive impact of near-neutral conditions on nanofiber assembly and functional integration. In contrast, the BC4 sample (pH 4) demonstrated strong antimicrobial activity (log reduction = 3.5) against E. coli, suggesting that acidic pH conditions enhance bioactivity. SEM images confirmed the most cohesive and uniform fiber morphology at pH 6, while FTIR spectra indicated the preservation of characteristic cellulose functional groups across all samples. Overall, this study presents a sustainable and efficient strategy for BC production using food waste and demonstrates that synthesis pH is a key parameter in tuning its functional performance. The optimized BC membranes show potential for biomedical, flexible electronic, and antibacterial material applications, particularly in wearable electrode technologies. Full article
(This article belongs to the Special Issue Advances in Sustainable Polymeric Materials, 3rd Edition)
Show Figures

Graphical abstract

19 pages, 5117 KB  
Article
Comparative Genomics and Functional Profiling Reveal Lineage-Specific Metabolic Adaptations in Globally Emerging Fluoroquinolone-Resistant Salmonella Kentucky ST198
by Juned Ahmed, Rachel C. Soltys, Smriti Shringi, Jean Guard, Bradd J. Haley and Devendra H. Shah
Genes 2025, 16(9), 1051; https://doi.org/10.3390/genes16091051 - 8 Sep 2025
Viewed by 901
Abstract
Background: Salmonella Kentucky comprises two major lineages, ST152 and fluoroquinolone-resistant (FluR) ST198, which have diverged genotypically and phenotypically along distinct evolutionary and epidemiological trajectories. ST198 is linked to global human disease, while ST152 is primarily animal-associated in the U.S. We hypothesized [...] Read more.
Background: Salmonella Kentucky comprises two major lineages, ST152 and fluoroquinolone-resistant (FluR) ST198, which have diverged genotypically and phenotypically along distinct evolutionary and epidemiological trajectories. ST198 is linked to global human disease, while ST152 is primarily animal-associated in the U.S. We hypothesized that lineage-specific metabolic adaptations contribute to their differing host associations and pathogenicity. Methods: We performed comparative metabolic profiling of ST198 (n = 3) and ST152 (n = 4) strains across 948 substrates and environmental conditions. Growth assays tested the ability of these lineages and other non-typhoidal Salmonella (NTS) serovars (n = 5) to utilize myo-inositol and lactulose as sole carbon sources. Comparative genomic analyses of 294 ST198, 173 ST152, and 1300 other NTS serovars identified nutrient utilization genes. Results: ST198 exhibited significantly higher respiratory activity and broader metabolic versatility across carbon, nitrogen/sulfur sources, and stress conditions. The canonical iol gene cluster for myo-inositol catabolism was conserved in ST198 but absent in ST152, which nonetheless showed weak growth on myo-inositol, suggesting an alternative metabolic pathway for myo-inositol may exist. We also report for the first time that, despite lineage-specific differences in metabolic efficiency, multiple NTS serovars, including S. Kentucky, can metabolize lactulose, a synthetic disaccharide traditionally associated with beneficial gut microbes. These results suggest the potential existence of a novel lactulose metabolic pathway in NTS. Conclusions: These findings highlight ST198’s metabolic adaptability and reveal novel metabolic capacities in NTS. A mechanistic understanding of nutrient utilization pathways, particularly of myo-inositol and lactulose, will provide novel insights into the mechanisms underlying nutrient metabolism that likely modulate the ecological success and pathogenic potential of NTS in human and animal hosts. Full article
Show Figures

Figure 1

24 pages, 5342 KB  
Article
Esterase and Peroxidase Are Involved in the Transformation of Chitosan Films by the Fungus Fusarium oxysporum Schltdl. IBPPM 543
by Natalia N. Pozdnyakova, Tatiana S. Babicheva, Daria S. Chernova, Irina Yu. Sungurtseva, Andrey M. Zakharevich, Sergei L. Shmakov and Anna B. Shipovskaya
J. Fungi 2025, 11(8), 565; https://doi.org/10.3390/jof11080565 - 29 Jul 2025
Viewed by 1043
Abstract
The majority of studies of fungal utilization of chitosan are associated with the production of a specific enzyme, chitosanase, which catalyzes the hydrolytic cleavage of the macrochain. In our opinion, the development of approaches to obtaining materials with new functional properties based on [...] Read more.
The majority of studies of fungal utilization of chitosan are associated with the production of a specific enzyme, chitosanase, which catalyzes the hydrolytic cleavage of the macrochain. In our opinion, the development of approaches to obtaining materials with new functional properties based on non-destructive chitosan transformation by living organisms and their enzyme systems is promising. This study was conducted using a wide range of classical and modern methods of microbiology, biochemistry, and physical chemistry. The ability of the ascomycete Fusarium oxysporum Schltdl. to modify films of chitosan with average-viscosity molecular weights of 200, 450, and 530 kDa was discovered. F. oxysporum was shown to use chitosan as the sole source of carbon/energy and actively overgrew films without deformations and signs of integrity loss. Scanning electron microscopy (SEM) recorded an increase in the porosity of film substrates. An analysis of the FTIR spectra revealed the occurrence of oxidation processes and crosslinking of macrochains without breaking β-(1,4)-glycosidic bonds. After F. oxysporum growth, the resistance of the films to mechanical dispersion and the degree of ordering of the polymer structure increased, while their solubility in the acetate buffer with pH 4.4 and sorption capacity for Fe2+ and Cu2+ decreased. Elemental analysis revealed a decrease in the nitrogen content in chitosan, which may indicate its inclusion into the fungal metabolism. The film transformation was accompanied by the production of extracellular hydrolase (different from chitosanase) and peroxidase, as well as biosurfactants. The results obtained indicate a specific mechanism of aminopolysaccharide transformation by F. oxysporum. Although the biochemical mechanisms of action remain to be analyzed in detail, the results obtained create new ways of using fungi and show the potential for the use of Fusarium and/or its extracellular enzymes for the formation of chitosan-containing materials with the required range of functional properties and qualities for biotechnological applications. Full article
(This article belongs to the Special Issue Innovative Applications and Biomanufacturing of Fungi)
Show Figures

Graphical abstract

17 pages, 8482 KB  
Article
The Optimization of Culture Conditions for the Cellulase Production of a Thermostable Cellulose-Degrading Bacterial Strain and Its Application in Environmental Sewage Treatment
by Jiong Shen, Konglu Zhang, Yue Ren and Juan Zhang
Water 2025, 17(15), 2225; https://doi.org/10.3390/w17152225 - 25 Jul 2025
Cited by 2 | Viewed by 2276
Abstract
A novel cellulose-degrading bacterial strain, D3-1, capable of degrading cellulose under medium- to high-temperature conditions, was isolated from soil samples and identified as Staphylococcus caprae through 16SrRNA gene sequencing. The strain’s cellulase production was optimized by controlling different factors, such as pH, temperature, [...] Read more.
A novel cellulose-degrading bacterial strain, D3-1, capable of degrading cellulose under medium- to high-temperature conditions, was isolated from soil samples and identified as Staphylococcus caprae through 16SrRNA gene sequencing. The strain’s cellulase production was optimized by controlling different factors, such as pH, temperature, incubation period, substrate concentration, nitrogen and carbon sources, and response surface methods. The results indicated that the optimal conditions for maximum cellulase activity were an incubation time of 91.7 h, a temperature of 41.8 °C, and a pH of 4.9, which resulted in a maximum cellulase activity of 16.67 U/mL, representing a 165% increase compared to pre-optimization levels. The above experiment showed that, when maize straw flour was utilized as a natural carbon source, strain D3-1 exhibited relatively high cellulase production. Furthermore, gas chromatography–mass spectrometry (GC-MS) analysis of products in the degradation liquid revealed the presence of primary sugars. The results indicated that, in the denitrification of simulated sewage, supplying maize straw flour degradation liquid (MSFDL) as the carbon source resulted in a carbon/nitrogen (C/N) ratio of 6:1 after a 24 h reaction with the denitrifying strain WH-01. The total nitrogen (TN) reduction was approximately 70 mg/L, which is equivalent to the removal efficiency observed in the glucose-fed denitrification process. Meanwhile, during a 4 h denitrification reaction in urban sewage without any denitrifying bacteria, but with MSFDL supplied as the carbon source, the TN removal efficiency reached 11 mg/L, which is approximately 70% of the efficiency of the glucose-fed denitrification process. Furthermore, experimental results revealed that strain D3-1 exhibits some capacity for nitrogen removal; when the cellulose-degrading strain D3-1 is combined with the denitrifying strain WH-01, the resulting TN removal rate surpasses that of a single denitrifying bacterium. In conclusion, as a carbon source in municipal sewage treatment, the degraded maize straw flour produced by strain D3-1 holds potential as a substitute for the glucose carbon source, and strain D3-1 has a synergistic effect with the denitrifying strain WH-01 on TN elimination. Thus, this research offers new insights and directions for advancement in environmental sewage treatment. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

17 pages, 2518 KB  
Article
Bacterial Metabolic Activity of High-Mountain Lakes in a Context of Increasing Regional Temperature
by Boyanka Angelova, Ivan Traykov, Silvena Boteva, Martin Tsvetkov and Anelia Kenarova
Microorganisms 2025, 13(6), 1375; https://doi.org/10.3390/microorganisms13061375 - 13 Jun 2025
Cited by 2 | Viewed by 1444
Abstract
Global warming poses a significant threat to lake ecosystems, with high-mountain lakes being among the earliest and most severely impacted. However, the processes affecting water ecology under climate change remain poorly understood. This study investigates, for the first time, the effects of regional [...] Read more.
Global warming poses a significant threat to lake ecosystems, with high-mountain lakes being among the earliest and most severely impacted. However, the processes affecting water ecology under climate change remain poorly understood. This study investigates, for the first time, the effects of regional warming on three high-mountain lakes, Sulzata, Okoto and Bubreka, located in the Rila Mountains, Bulgaria, by examining shifts in bacterial metabolic capacity in relation to the rate and range of utilizable carbon sources using the Biolog EcoPlate™ assay. Over the last decade, ice-free water temperatures in the lakes have risen by an average of 2.6 °C, leading to increased nutrient concentrations and enhanced primary productivity, particularly in the shallowest lake. Bacterial communities responded to these changes by increasing their metabolic rates and shifting substrate preferences from carbohydrates to carboxylic acids. While the utilization rates of some carbon sources remained stable, others showed significant changes—some increased (e.g., D-galactonic acid γ-lactone and itaconic acid), while others decreased (e.g., α-D-lactose and D-xylose). The most pronounced effects of warming were observed in June, coinciding with the onset of the growing season. These findings suggest that rising temperatures may substantially alter bacterial metabolic potential, contributing to a long-term positive feedback loop between lake nutrient cycling and climate change. Full article
(This article belongs to the Special Issue Microorganisms as Indicators of Environmental Changes)
Show Figures

Graphical abstract

16 pages, 5022 KB  
Article
Modification of Glucose Metabolic Pathway to Enhance Polyhydroxyalkanoate Synthesis in Pseudomonas putida
by Yue Dong, Keyao Zhai, Yatao Li, Zhen Lv, Mengyao Zhao, Tian Gan and Yuchao Ma
Curr. Issues Mol. Biol. 2024, 46(11), 12784-12799; https://doi.org/10.3390/cimb46110761 - 10 Nov 2024
Cited by 2 | Viewed by 2439
Abstract
Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) are semi-crystalline elastomers with a low melting point and high elongation at break, allowing for a wide range of applications in domestic, agricultural, industrial, and mainly medical fields. Utilizing low-cost cellulose hydrolyzed sugar as a carbon source and metabolic engineering [...] Read more.
Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) are semi-crystalline elastomers with a low melting point and high elongation at break, allowing for a wide range of applications in domestic, agricultural, industrial, and mainly medical fields. Utilizing low-cost cellulose hydrolyzed sugar as a carbon source and metabolic engineering to enhance synthesis in Pseudomonas putida is a promising strategy for commercializing mcl-PHAs, but little has been attempted to improve the utilization of glucose for synthesizing mcl-PHAs. In this study, a multi-pathway modification was performed to improve the utilization of substrate glucose and the synthesis capacity of PHAs. To enhance glucose metabolism to flow to acetyl-CoA, which is an important precursor of mcl-PHA, multiple genes in glucose metabolism were inactive (branch pathway and negative regulatory) and overexpressed (positive regulatory) in this study. The two genes, gcd (encoding glucose dehydrogenase) and gltA (encoding citrate synthase), involved in glucose peripheral pathways and TCA cycles were separately and jointly knocked out in Pseudomonas putida QSRZ6 (ΔphaZΔhsdR), and the mcl-PHA synthesis was improved in the mutants; particularly, the mcl-PHA titer of QSRZ603 (ΔgcdΔgltA) was increased by 33.7%. Based on the glucose branch pathway truncation, mcl-PHA synthesis was further improved with hexR-inactivation (encoding a negative regulator in glucose metabolism). Compared with QSRZ603 and QSRZ6, the mcl-PHA titer of QSRZ607 (ΔgcdΔgltAΔhexR) was increased by 62.8% and 117.5%, respectively. The mutant QSRZ609 was constructed by replacing the endogenous promoter of gltB encoding a transcriptional activator of the two-component regulatory system GltR/GltS with the ribosome subunit promoter P33. The final mcl-PHA content and titers of QSRZ609 reached 57.3 wt% and 2.5 g/L, an increase of and 20.9% and 27.3% over that of the parent strain QSRZ605 and an increase of 110.4% and 159.9% higher as compared to QSRZ6, respectively. The fermentation was optimized with a feeding medium in shaker flacks; then, the mcl-PHA contents and titer of QSRZ609 were 59.1 wt% and 6.8 g/L, respectively. The results suggest that the regulation from glucose to acetyl-CoA by polygenic modification is an effective strategy for enhancing mcl-PHA synthesis, and the mutants obtained in this study can be used as chassis to further increase mcl-PHA production. Full article
Show Figures

Figure 1

16 pages, 8086 KB  
Article
Ratiometric Electrochemical Sensor Applying SWCNHs/T-PEDOT Nanocomposites for Efficient Quantification of Tert-Butylhydroquinone in Foodstuffs
by Jing Wu, Huilin Li, Zhijuan Wang, Mingfei Pan and Shuo Wang
Foods 2024, 13(18), 2996; https://doi.org/10.3390/foods13182996 - 21 Sep 2024
Cited by 1 | Viewed by 1832
Abstract
Tert-butylhydroquinone (TBHQ) is a phenolic substance that is commonly employed to prevent food oxidation. Excessive or improper utilization of this antioxidant can not only impact food quality but may also pose potential risks to human health. In this study, an ultrasensitive, stable, [...] Read more.
Tert-butylhydroquinone (TBHQ) is a phenolic substance that is commonly employed to prevent food oxidation. Excessive or improper utilization of this antioxidant can not only impact food quality but may also pose potential risks to human health. In this study, an ultrasensitive, stable, and easily operable ratiometric electrochemical sensor was successfully fabricated by combining the tubular (3,4-ethylenedioxythiophene) (T-PEDOT) with single-wall carbon nanohorns (SWCNHs) for the detection of TBHQ antioxidants in food. The SWCNHs/T-PEDOT nanocomposite fabricated through ultrasound-assisted and template approaches was employed as the modified substrate for the electrode interface. The synergistic effect of SWCNHs and T-PEDOT, which possess excellent electrical conductivity and catalytic properties, enabled the modified electrode to showcase remarkable electrocatalytic performance towards TBHQ, with the redox signal of methylene blue serving as an internal reference. Under optimized conditions, the SWCNHs/T-PEDOT-modified electrode demonstrated good linearity within the TBHQ concentration range of 0.01–200.0 μg mL−1, featuring a low limit of detection (LOD) of 0.005 μg mL−1. The proposed ratiometric electrochemical sensor displayed favorable reproducibility, stability, and anti-interference capacity, thereby offering a promising strategy for monitoring the levels of TBHQ in oil-rich food products. Full article
(This article belongs to the Special Issue Sensors for Food Safety and Quality Assessment (2nd Edition))
Show Figures

Figure 1

12 pages, 5023 KB  
Article
Carbon Nanotube–Carbon Nanocoil Hybrid Film Decorated by Amorphous Silicon as Anodes for Lithium-Ion Batteries
by Huan Chen, Chen Wang, Zeng Fan, Chuanhui Cheng, Liang Hao and Lujun Pan
J. Compos. Sci. 2024, 8(9), 350; https://doi.org/10.3390/jcs8090350 - 6 Sep 2024
Cited by 1 | Viewed by 2048
Abstract
Silicon (Si) as the anode material for lithium-ion batteries (LIBs) has attracted much attention due to its high theoretical specific capacity (4200 mAh/g). However, the specific capacity and cycle stability of the LIBs are reduced due to the pulverization caused by the expansion [...] Read more.
Silicon (Si) as the anode material for lithium-ion batteries (LIBs) has attracted much attention due to its high theoretical specific capacity (4200 mAh/g). However, the specific capacity and cycle stability of the LIBs are reduced due to the pulverization caused by the expansion of Si coated on Cu (copper) foil during cycles. In order to solve this problem, researchers have used an ultra-thin Si deposition layer as the electrode, which improves cyclic stability and obtains high initial coulomb efficiency of LIBs. However, suitable substrate selection is crucial to fabricate an ultrathin Si deposition layer electrode with excellent performance, and a substrate with a three-dimensional porous structure is desirable to ensure the deposition of an ultrathin Si layer on the whole surface of the substrate. In this paper, the Si thin layer has been deposited on a binder-free hybrid film of carbon nanotubes (CNTs) and carbon nanocoils (CNCs) by magnetron sputtering. Compared with densely packed CNT film and flat Cu foil, the loose and porous film provides a large surface area and space for Si deposition, and Si can be deposited not only on the surface but also in the interior part of the film. The film provides a large number of channels for the diffusion and transmission of Li+, resulting in the rapid diffusion rate of Li+, which improves the effective lithium storage utilization of Si. Furthermore, the CNC itself is super elastic, and film provides an elastic skeleton for the Si deposition layer, which eases its volume expansion during charge and discharge processes. Electrochemical tests have showed that the Si/CNT–CNC film electrode has excellent performance as anode for LIBs. After 200 cycles, the Si/CNT–CNC film electrode still had possessed a specific capacity of 2500 mAh/g, a capacity retention of 92.8% and a coulomb efficiency of 99%. This paper provides an effective way to fabricate high performance Si-nanocarbon composite electrodes for LIBs. Full article
(This article belongs to the Special Issue Recent Progress in Hybrid Composites)
Show Figures

Figure 1

12 pages, 3717 KB  
Article
Enhanced Supercapacitor and Cycle-Life Performance: Self-Supported Nanohybrid Electrodes of Hydrothermally Grown MnO2 Nanorods on Carbon Nanotubes in Neutral Electrolyte
by Soraya Bouachma, Xiaoying Zheng, Alonso Moreno Zuria, Mohamed Kechouane, Noureddine Gabouze and Mohamed Mohamedi
Materials 2024, 17(16), 4079; https://doi.org/10.3390/ma17164079 - 16 Aug 2024
Cited by 11 | Viewed by 1773
Abstract
Efficient and sustainable energy storage remains a critical challenge in the advancement of energy technologies. This study presents the fabrication and electrochemical evaluation of a self-supporting electrode material composed of MnO2 nanorods grown directly on a carbon paper and carbon nanotube (CNT) [...] Read more.
Efficient and sustainable energy storage remains a critical challenge in the advancement of energy technologies. This study presents the fabrication and electrochemical evaluation of a self-supporting electrode material composed of MnO2 nanorods grown directly on a carbon paper and carbon nanotube (CNT) substrate using a hydrothermal method. The resulting CNT/MnO2 electrodes exhibit a unique structural architecture with a high surface area and a three-dimensional hierarchical arrangement, contributing to a substantial electrochemical surface area. Electrochemical testing reveals remarkable performance characteristics, including a specific capacitance of up to 316.5 F/g, which is 11 times greater than that of conventional CP/MnO2 electrodes. Moreover, the CNT/MnO2 electrodes demonstrate outstanding retention capacity, exhibiting a remarkable 165% increase over 10,000 cycles. Symmetric supercapacitor devices utilizing CNT/MnO2 electrodes maintain a large voltage window of 3 V and a specific capacitance as high as 200 F/g. These results underscore the potential of free-standing CNT/MnO2 electrodes to advance the development of high-performance supercapacitors, which can be crucial for efficient and sustainable energy storage solutions in various industrial and manufacturing applications. Full article
Show Figures

Figure 1

17 pages, 4439 KB  
Communication
Functional Diversity of Soil Microorganisms in Taiga Forests in the Middle and Late Stages of Restoration after Forest Fires
by Zhichao Cheng, Mingliang Gao, Hong Pan, Xiaoyu Fu, Dan Wei, Xinming Lu, Song Wu and Libin Yang
Forests 2024, 15(7), 1220; https://doi.org/10.3390/f15071220 - 14 Jul 2024
Cited by 2 | Viewed by 1609
Abstract
Fire can significantly affect the structure and function of forest soil microorganisms. Therefore, it is important to study the effects of different fire intensities on soil microbial carbon source utilization capacity in cold-temperate larch forests to protect and utilize forest ecosystems. In this [...] Read more.
Fire can significantly affect the structure and function of forest soil microorganisms. Therefore, it is important to study the effects of different fire intensities on soil microbial carbon source utilization capacity in cold-temperate larch forests to protect and utilize forest ecosystems. In this study, we investigated the effects of different burning intensities on the carbon utilization capacity of soil microorganisms in fire sites from 2010 and 2000 using Biolog-Eco technology. Our findings revealed that (1) fire significantly increased soil pH, AN (available nitrogen), and AK (available potassium) (p < 0.05); (2) fire significantly increased the average color change rate (AWCD) of soil microorganisms (p < 0.05); (3) the Shannon index of soil microorganisms increased significantly, whereas the Simpson index and the McIntosh index decreased significantly after the fire—however, the McIntosh index in the 10M site was not altered; (4) the metabolic functions of soil microbial communities differed significantly among different fire intensities—MC (moisture content), TN (total nitrogen), and AK were the most influential soil environmental factors in the soil microbial community; and (5) mid-term fire restoration significantly increased microbial responses to carbohydrates, amino acids, esters, alcohols, amines, and acids, while late-fire burn sites significantly increased the microbial utilization intensity of amino acids, esters, and acids. In conclusion, fire significantly altered the functional diversity of soil microorganisms and microbial activities related to carbon source substrate utilization. Additionally, the ability of microorganisms to utilize a single carbon source substrate was also altered. Full article
Show Figures

Figure 1

48 pages, 10338 KB  
Review
Recent Advances in Graphene-Based Single-Atom Photocatalysts for CO2 Reduction and H2 Production
by Muhammad Yasir Akram, Tuba Ashraf, Muhammad Saqaf Jagirani, Ahsan Nazir, Muhammad Saqib and Muhammad Imran
Catalysts 2024, 14(6), 343; https://doi.org/10.3390/catal14060343 - 24 May 2024
Cited by 13 | Viewed by 4190
Abstract
The extensive use of single-atom catalysts (SACs) has appeared as a significant area of investigation in contemporary study. The single-atom catalyst, characterized by its maximum atomic proficiency and great discernment of the transition-metal center, has a unique combination of benefits from both heterogeneous [...] Read more.
The extensive use of single-atom catalysts (SACs) has appeared as a significant area of investigation in contemporary study. The single-atom catalyst, characterized by its maximum atomic proficiency and great discernment of the transition-metal center, has a unique combination of benefits from both heterogeneous and homogeneous catalysts. Consequently, it effectively bridges the gap between these two types of catalysts, leveraging their distinctive features. The utilization of SACs immobilized on graphene substrates has garnered considerable interest, primarily because of their capacity to facilitate selective and efficient photocatalytic processes. This review aims to comprehensively summarize the progress and potential uses of SACs made from graphene in photocatalytic carbon dioxide (CO2) reduction and hydrogen (H2) generation. The focus is on their contribution to converting solar energy into chemical energy. The present study represents the various preparation methods and characterization approaches of graphene-based single-atom photocatalyst This review investigates the detailed mechanisms underlying these photocatalytic processes and discusses recent studies that have demonstrated remarkable H2 production rates through various graphene-based single-atom photocatalysts. Additionally, the pivotal roleof theoretical simulations, likedensity functional theory (DFT), to understand the structural functional relationships of these SACs are discussed. The potential of graphene-based SACs to revolutionize solar-to-chemical energy conversion through photocatalytic CO2 reduction and H2 production is underscored, along with addressing challenges and outlining future directions for this developing area of study. By shedding light on the progress and potential of these catalysts, this review contributes to the collective pursuit of sustainable and efficient energy conversion strategies to mitigate the global climate crisis. Full article
(This article belongs to the Special Issue Recent Advances in Photo/Electrocatalytic Water Splitting)
Show Figures

Figure 1

19 pages, 3643 KB  
Article
Dielectric Properties of Materials Used for Microwave-Based NOx Gas Dosimeters
by Stefanie Walter, Johanna Baumgärtner, Gunter Hagen, Daniela Schönauer-Kamin, Jaroslaw Kita and Ralf Moos
Sensors 2024, 24(9), 2951; https://doi.org/10.3390/s24092951 - 6 May 2024
Cited by 1 | Viewed by 2223
Abstract
Nitrogen oxides (NOx), primarily generated from combustion processes, pose significant health and environmental risks. To improve the coordination of measures against excessive NOx emissions, it is necessary to effectively monitor ambient NOx concentrations, which requires the development of precise [...] Read more.
Nitrogen oxides (NOx), primarily generated from combustion processes, pose significant health and environmental risks. To improve the coordination of measures against excessive NOx emissions, it is necessary to effectively monitor ambient NOx concentrations, which requires the development of precise and cost-efficient detection methods. This study focuses on developing a microwave- or radio frequency (RF)-based gas dosimeter for NOx detection and addresses the optimization of the dosimeter design by examining the dielectric properties of LTCC-based (Low-Temperature Co-fired Ceramics) sensor substrates and barium-based NOx storage materials. The measurements taken utilizing the Microwave Cavity Perturbation (MCP) method revealed that these materials exhibit more pronounced changes in dielectric losses when storing NOx at elevated temperatures. Consequently, operating such a dosimeter at high temperatures (above 300 °C) is recommended to maximize the sensor signal. To evaluate their high-temperature applicability, LTCC substrates were analyzed by measuring their dielectric losses at temperatures up to 600 °C. In terms of NOx storage materials, coating barium on high-surface-area alumina resolved issues related to limited NOx adsorption in pure barium carbonate powders. Additionally, the adsorption of both NO and NO2 was enabled by the application of a platinum catalyst. The change in dielectric losses, which provides the main signal for an RF-based gas dosimeter, only depends on the stored amount of NOx and not on the specific type of nitrogen oxide. Although the change in dielectric losses increases with the temperature, the maximum storage capacity of the material decreases significantly. In addition, at temperatures above 350 °C, NOx is mostly weakly bound, so it will desorb in the absence of NOx. Therefore, in the future development of a reliable RF-based NOx dosimeter, the trade-off between the sensor signal strength and adsorption behavior must be addressed. Full article
(This article belongs to the Special Issue Sensors for Environmental Threats)
Show Figures

Figure 1

14 pages, 2236 KB  
Article
Polyhydroxyalkanoate Copolymer Production by Recombinant Ralstonia eutropha Strain 1F2 from Fructose or Carbon Dioxide as Sole Carbon Source
by Chih-Ting Wang, Ramamoorthi M Sivashankari, Yuki Miyahara and Takeharu Tsuge
Bioengineering 2024, 11(5), 455; https://doi.org/10.3390/bioengineering11050455 - 2 May 2024
Cited by 4 | Viewed by 4195
Abstract
Ralstonia eutropha strain H16 is a chemoautotrophic bacterium that oxidizes hydrogen and accumulates poly[(R)-3-hydroxybutyrate] [P(3HB)], a prominent polyhydroxyalkanoate (PHA), within its cell. R. eutropha utilizes fructose or CO2 as its sole carbon source for this process. A PHA-negative mutant of [...] Read more.
Ralstonia eutropha strain H16 is a chemoautotrophic bacterium that oxidizes hydrogen and accumulates poly[(R)-3-hydroxybutyrate] [P(3HB)], a prominent polyhydroxyalkanoate (PHA), within its cell. R. eutropha utilizes fructose or CO2 as its sole carbon source for this process. A PHA-negative mutant of strain H16, known as R. eutropha strain PHB4, cannot produce PHA. Strain 1F2, derived from strain PHB4, is a leucine analog-resistant mutant. Remarkably, the recombinant 1F2 strain exhibits the capacity to synthesize 3HB-based PHA copolymers containing 3-hydroxyvalerate (3HV) and 3-hydroxy-4-methyvalerate (3H4MV) comonomer units from fructose or CO2. This ability is conferred by the expression of a broad substrate-specific PHA synthase and tolerance to feedback inhibition of branched amino acids. However, the total amount of comonomer units incorporated into PHA was up to around 5 mol%. In this study, strain 1F2 underwent genetic engineering to augment the comonomer supply incorporated into PHA. This enhancement involved several modifications, including the additional expression of the broad substrate-specific 3-ketothiolase gene (bktB), the heterologous expression of the 2-ketoacid decarboxylase gene (kivd), and the phenylacetaldehyde dehydrogenase gene (padA). Furthermore, the genome of strain 1F2 was altered through the deletion of the 3-hydroxyacyl-CoA dehydrogenase gene (hbdH). The introduction of bktB-kivd-padA resulted in increased 3HV incorporation, reaching 13.9 mol% from fructose and 6.4 mol% from CO2. Additionally, the hbdH deletion resulted in the production of PHA copolymers containing (S)-3-hydroxy-2-methylpropionate (3H2MP). Interestingly, hbdH deletion increased the weight-average molecular weight of the PHA to over 3.0 × 106 on fructose. Thus, it demonstrates the positive effects of hbdH deletion on the copolymer composition and molecular weight of PHA. Full article
(This article belongs to the Special Issue Advances in Polyhydroxyalkanoate (PHA) Production, 4th Edition)
Show Figures

Figure 1

Back to TopTop