Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = carbon nanowall

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
45 pages, 8810 KB  
Review
CVD-Engineered Nano Carbon Architectures: Mechanisms, Challenges, and Outlook
by Maria Hasan, Szymon Abrahamczyk, Muhammad Aashir Awan, Ondřej Sakreida, Alicja Bachmatiuk, Grazyna Simha Martynková, Karla Čech Barabaszová and Mark Hermann Rümmeli
Nanomaterials 2025, 15(23), 1834; https://doi.org/10.3390/nano15231834 - 4 Dec 2025
Viewed by 756
Abstract
Graphitic nanomaterials have emerged as foundational components in nanoscience owing to their exceptional electrical, mechanical, and chemical properties, which can be tuned by controlling dimensionality and structural order. From zero-dimensional (0D) quantum dots, carbon nano-onions, and nanodiamonds to one-dimensional (1D) nanoribbons, two-dimensional (2D) [...] Read more.
Graphitic nanomaterials have emerged as foundational components in nanoscience owing to their exceptional electrical, mechanical, and chemical properties, which can be tuned by controlling dimensionality and structural order. From zero-dimensional (0D) quantum dots, carbon nano-onions, and nanodiamonds to one-dimensional (1D) nanoribbons, two-dimensional (2D) nanowalls, and three-dimensional (3D) graphene foams, these architectures underpin advancements in catalysis, energy storage, sensing, and electronic technologies. Among various synthesis routes, chemical vapor deposition (CVD) provides unmatched versatility, enabling atomic-level control over carbon supply, substrate interactions, and plasma activation to produce well defined graphitic structures directly on functional supports. This review presents a comprehensive, dimension-resolved overview of CVD-derived graphitic nanomaterials, examining how process parameters such as precursor chemistry, temperature, hydrogen etching, and template design govern nucleation, crystallinity, and morphological evolution across 0D to 3D hierarchies. Comparative analyses of Raman, XPS, and XRD data are integrated to relate structural features with growth mechanisms and functional performance. By connecting mechanistic principles across dimensional scales, this review establishes a unified framework for understanding and optimizing CVD synthesis of graphitic nanostructures. It concludes by outlining a path forward for improving how CVD-grown carbon nanomaterials are made, monitored, and integrated into real devices so these can move from lab-scale experiments to practical, scalable technologies. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

12 pages, 2047 KB  
Article
The Effect of Electrical Stimulation on the Cellular Response of Human Mesenchymal Stem Cells Grown on Silicon Carbide-Coated Carbon Nanowall Scaffolds
by Koki Ono, Ayako Tanaka, Kenji Ishikawa, Wakana Takeuchi, Kenichi Uehara, Shigeo Yasuhara, Masaru Hori and Hiromasa Tanaka
Bioengineering 2025, 12(10), 1073; https://doi.org/10.3390/bioengineering12101073 - 2 Oct 2025
Viewed by 3425
Abstract
Silicon carbide (SiC)-coated carbon nanowalls (CNWs) have been proposed for use as implantable scaffold electrodes. Therefore, we investigated the effects of the SiC coating on CNWs and assessed the effects of the application of electrical stimulation (ES) on human mesenchymal stem cells cultured [...] Read more.
Silicon carbide (SiC)-coated carbon nanowalls (CNWs) have been proposed for use as implantable scaffold electrodes. Therefore, we investigated the effects of the SiC coating on CNWs and assessed the effects of the application of electrical stimulation (ES) on human mesenchymal stem cells cultured on SiC-coated CNWs. Measurements were conducted using immunofluorescence staining, proliferation assays, and quantitative reverse transcription polymerase chain reaction. Our results showed that the SiC coating increased the cell adhesion area, and the combination of the SiC coating and ES promoted cell proliferation. Furthermore, ES enhanced osteogenic differentiation on CNWs, both with and without the SiC coating. In SiC-coated samples, the increase in wall thickness of CNWs by the SiC coating promoted neural differentiation. These findings indicate that scaffold electrodes composed of SiC-coated CNWs enhance cell adhesion and proliferation; the application of ES to such electrodes promotes osteogenic differentiation, while the SiC coating itself promotes neural differentiation. Full article
Show Figures

Graphical abstract

21 pages, 3552 KB  
Review
Advances in Carbon Coatings for Current Collectors in Lithium-Ion Battery Applications: Focus on Three-Dimensional Carbon Nanowalls
by Cheol-Min Han
Coatings 2025, 15(1), 86; https://doi.org/10.3390/coatings15010086 - 15 Jan 2025
Cited by 3 | Viewed by 4900
Abstract
Current collectors are key components of lithium-ion batteries, providing conductive pathways and maintaining interfacial stability with the electrode materials. Conventional metal-based current collectors, such as aluminum and copper, exhibit excellent conductivity and mechanical strength. However, they have considerable limitations, including electrochemical corrosion, interfacial [...] Read more.
Current collectors are key components of lithium-ion batteries, providing conductive pathways and maintaining interfacial stability with the electrode materials. Conventional metal-based current collectors, such as aluminum and copper, exhibit excellent conductivity and mechanical strength. However, they have considerable limitations, including electrochemical corrosion, interfacial resistance caused by the formation of passive layers, and mechanical degradation due to repeated cycling. To overcome these challenges, various carbon-based coatings, including amorphous carbon, graphene, and carbon nanotubes, have been developed. These coatings enhance the current collector performance by improving the collector conductivity, chemical stability, and interfacial adhesion. Vertically aligned graphene-like structures known as carbon nanowalls (CNWs) have garnered attention owing to their unique architecture, resulting in high surface area, exceptional conductivity, and excellent thermal and mechanical properties. In this mini-review, the recent advancements in carbon-based coating technologies and their role in enhancing the performance of current collectors were summarized, focusing on the innovative applications of CNWs in next-generation energy storage systems. Full article
Show Figures

Figure 1

15 pages, 3368 KB  
Article
Vertically Aligned Nanocrystalline Graphite Nanowalls for Flexible Electrodes as Electrochemical Sensors for Anthracene Detection
by Marius C. Stoian, Octavian G. Simionescu, Cosmin Romanitan, Gabriel Craciun, Cristina Pachiu and Antonio Radoi
Sensors 2024, 24(22), 7194; https://doi.org/10.3390/s24227194 - 10 Nov 2024
Cited by 3 | Viewed by 1413
Abstract
Plasma-enhanced chemical vapor deposition (PECVD) was used to obtain several graphite nanowall (GNW)-type films at different deposition times on silicon and copper to achieve various thicknesses of carbonic films for the development of electrochemical sensors for the detection of anthracene. The PECVD growth [...] Read more.
Plasma-enhanced chemical vapor deposition (PECVD) was used to obtain several graphite nanowall (GNW)-type films at different deposition times on silicon and copper to achieve various thicknesses of carbonic films for the development of electrochemical sensors for the detection of anthracene. The PECVD growth time varied from 15 min to 30 min to 45 min, while scanning electron microscopy (SEM) confirmed the changes in the thickness of the GNW films, revealing a continuous increase in the series. X-ray diffraction (XRD) analysis revealed that the crystallinity of the GNW film samples increased with increasing crystallite size and decreasing dislocation density as the deposition time increased. Electrochemical characterization of the GNW-based electrodes indicated that the electroactive area and heterogeneous electron transfer rate constant were greater for the GNW 45 min film in the carbonic material series. We present the transfer of GNW films on flexible polyethylene substrates for achieving flexible electrochemical sensors for further use in anthracene determination. The flexible GNW-based electrodes were investigated using differential pulse voltammetry (DPV) in the presence of anthracene. The results showed that the highest sensitivity in anthracene detection was provided by the sensor with the GNW film obtained after 45 min of PECVD growth. The optimization of the GNW film thickness for the development of flexible electrochemical sensors on polyethylene substrates represents a successful approach for enhancing the electrochemical performance of carbonic materials. Full article
(This article belongs to the Collection Electrochemical Sensors and Platforms: Design and Application)
Show Figures

Figure 1

14 pages, 8785 KB  
Article
Thermophysical Investigation of Multiform NiO Nanowalls@carbon Foam/1-Octadecanol Composite Phase Change Materials for Thermal Management
by Xiuli Wang, Qingmeng Wang, Xiaomin Cheng, Wen Xiong, Xiaolan Chen and Qianju Cheng
Molecules 2024, 29(18), 4453; https://doi.org/10.3390/molecules29184453 - 19 Sep 2024
Cited by 2 | Viewed by 1428
Abstract
Multiform NiO nanowalls with a high specific surface area were constructed in situ on carbon foam (CF) to construct NiO@CF/OD composite phase change materials (CPCMs). The synthesis mechanism, microstructures, thermal management capability, and photothermal conversion of NiO@CF/OD CPCMs were systematically studied. Additionally, the [...] Read more.
Multiform NiO nanowalls with a high specific surface area were constructed in situ on carbon foam (CF) to construct NiO@CF/OD composite phase change materials (CPCMs). The synthesis mechanism, microstructures, thermal management capability, and photothermal conversion of NiO@CF/OD CPCMs were systematically studied. Additionally, the collaborative enhancement effects of CF and multiform NiO nanowalls on the thermal properties of OD PCMs were also investigated. NiO@CF not only maintains the porous 3D network structure of CF, but also effectively prevents the aggregation of NiO nanosheets. The chemical structures of NiO@CF/OD CPCMs were analyzed using XRD and FTIR spectroscopy. When combined with CF and NiO nanosheets, OD has high compatibility with NiO@CF. The thermal conductivity of NiO@CF/OD-L CPCMs was 1.12 W/m·K, which is 366.7% higher than that of OD. The improvement in thermal conductivity of CPCMs was theoretically analyzed according to the Debye model. NiO@CF/OD-L CPCMs have a photothermal conversion efficiency up to 77.6%. This article provided a theoretical basis for the optimal design and performance prediction of thermal storage materials and systems. Full article
(This article belongs to the Special Issue Energy Storage Materials: Synthesis and Application)
Show Figures

Figure 1

13 pages, 13772 KB  
Article
Evolution of the Surface Wettability of Vertically Oriented Multilayer Graphene Sheets Deposited by Plasma Technology
by Domen Paul, Rok Zaplotnik, Gregor Primc, Alenka Vesel and Miran Mozetič
Nanomaterials 2024, 14(12), 1023; https://doi.org/10.3390/nano14121023 - 13 Jun 2024
Cited by 4 | Viewed by 1402
Abstract
Carbon deposits consisting of vertically oriented multilayer graphene sheets on metallic foils represent an interesting alternative to activated carbon in electrical and electrochemical devices such as super-capacitors because of the superior electrical conductivity of graphene and huge surface–mass ratio. The graphene sheets were [...] Read more.
Carbon deposits consisting of vertically oriented multilayer graphene sheets on metallic foils represent an interesting alternative to activated carbon in electrical and electrochemical devices such as super-capacitors because of the superior electrical conductivity of graphene and huge surface–mass ratio. The graphene sheets were deposited on cobalt foils by plasma-enhanced chemical vapor deposition using propane as the carbon precursor. Plasma was sustained by an inductively coupled radiofrequency discharge in the H mode at a power of 500 W and a propane pressure of 17 Pa. The precursor effectively dissociated in plasma conditions and enabled the growth of porous films consisting of multilayer graphene sheets. The deposition rate varied with time and peaked at 100 nm/s. The evolution of surface wettability was determined by the sessile drop method. The untreated substrates were moderately hydrophobic at a water contact angle of about 110°. The contact angle dropped to about 50° after plasma treatment for less than a second and increased monotonously thereafter. The maximal contact angle of 130° appeared at a treatment time of about 30 s. Thereafter, it slowly decreased, with a prolonged deposition time. The evolution of the wettability was explained by surface composition and morphology. A brief treatment with oxygen plasma enabled a super-hydrophilic surface finish of the films consisting of multilayer graphene sheets. Full article
(This article belongs to the Special Issue 2D Structured Materials: Synthesis, Properties and Applications)
Show Figures

Figure 1

15 pages, 3207 KB  
Article
A Highly Active Porous Mo2C-Mo2N Heterostructure on Carbon Nanowalls/Diamond for a High-Current Hydrogen Evolution Reaction
by Zhaofeng Zhai, Chuyan Zhang, Bin Chen, Lusheng Liu, Haozhe Song, Bing Yang, Ziwen Zheng, Junyao Li, Xin Jiang and Nan Huang
Nanomaterials 2024, 14(3), 243; https://doi.org/10.3390/nano14030243 - 23 Jan 2024
Cited by 5 | Viewed by 4803
Abstract
Developing non-precious metal-based electrocatalysts operating in high-current densities is highly demanded for the industry-level electrochemical hydrogen evolution reaction (HER). Here, we report the facile preparation of binder-free Mo2C-Mo2N heterostructures on carbon nanowalls/diamond (CNWs/D) via ultrasonic soaking followed by an [...] Read more.
Developing non-precious metal-based electrocatalysts operating in high-current densities is highly demanded for the industry-level electrochemical hydrogen evolution reaction (HER). Here, we report the facile preparation of binder-free Mo2C-Mo2N heterostructures on carbon nanowalls/diamond (CNWs/D) via ultrasonic soaking followed by an annealing treatment. The experimental investigations and density functional theory calculations reveal the downshift of the d-band center caused by the heterojunction between Mo2C/Mo2N triggering highly active interfacial sites with a nearly zero ∆GH* value. Furthermore, the 3D-networked CNWs/D, as the current collector, features high electrical conductivity and large surface area, greatly boosting the electron transfer rate of HER occurring on the interfacial sites of Mo2C-Mo2N. Consequently, the self-supporting Mo2C-Mo2N@CNWs/D exhibits significantly low overpotentials of 137.8 and 194.4 mV at high current densities of 500 and 1000 mA/cm2, respectively, in an alkaline solution, which far surpass the benchmark Pt/C (228.5 and 359.3 mV) and are superior to most transition-metal-based materials. This work presents a cost-effective and high-efficiency non-precious metal-based electrocatalyst candidate for the electrochemical hydrogen production industry. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

13 pages, 5508 KB  
Article
High-Sensitivity H2 and CH4 SAW Sensors with Carbon Nanowalls and Improvement in Their Performance after Plasma Treatment
by Sorin Vizireanu, Izabela Constantinoiu, Veronica Satulu, Silviu Daniel Stoica and Cristian Viespe
Chemosensors 2023, 11(11), 566; https://doi.org/10.3390/chemosensors11110566 - 16 Nov 2023
Cited by 9 | Viewed by 2631
Abstract
We have developed surface acoustic wave (SAW) sensors with high sensitivity and a reversible response at room temperature (RT). The sensitive area of the sensor was prepared from vertically aligned graphene sheets, like carbon nanowalls (CNWs), which were deposited onto the quartz SAW [...] Read more.
We have developed surface acoustic wave (SAW) sensors with high sensitivity and a reversible response at room temperature (RT). The sensitive area of the sensor was prepared from vertically aligned graphene sheets, like carbon nanowalls (CNWs), which were deposited onto the quartz SAW sensor substrate. The CNWs were obtained by RF plasma-enhanced chemical vapor deposition (PECVD) at 600 °C, and their sensitivity was subsequently enhanced through hydrogen plasma treatment. The SAW sensors were tested at H2 and CH4 at RT, and they exhibited a reversible response for both gases at concentrations between 0.02% and 0.1%, with a detection limit of a few ppm. The additional hydrogen plasma treatment preserved the lamellar structure, with slight modifications to the morphology of CNW edges, as observed by scanning electron microscopy (SEM). X-ray photoelectron spectroscopy (XPS) investigations revealed the presence of new functional groups, a significant number of defects and electron transitions after the treatment. Changes in the chemical state on the CNW surface are most probably responsible for the improved gas adsorption after plasma treatment. These results identify CNWs as a promising material for designing new SAW sensors, with the possibility of using plasma treatments to enhance the detection limit below the ppm level. Full article
(This article belongs to the Special Issue Gas Sensors: Current Status and Future Perspectives)
Show Figures

Figure 1

10 pages, 5199 KB  
Article
Carbon Nanowalls as Anode Materials with Improved Performance Using Carbon Nanofibers
by Kangmin Kim, Chris Yeajoon Bon, Junghyun Kim, Jang Myoun Ko and Wonseok Choi
Nanomaterials 2023, 13(19), 2622; https://doi.org/10.3390/nano13192622 - 22 Sep 2023
Cited by 9 | Viewed by 2003
Abstract
In this paper, a new synthesis of carbon nanofibers (CNFs)/carbon nanowalls (CNWs) was performed to improve the characteristics of anode materials of lithium-ion batteries by using the advantages offered by CNWs and CNFs. Among the carbon-based nanomaterials, CNWs provide low resistance and high [...] Read more.
In this paper, a new synthesis of carbon nanofibers (CNFs)/carbon nanowalls (CNWs) was performed to improve the characteristics of anode materials of lithium-ion batteries by using the advantages offered by CNWs and CNFs. Among the carbon-based nanomaterials, CNWs provide low resistance and high specific surface area. CNFs have the advantage of being stretchable and durable. The CNWs were grown using a microwave plasma-enhanced chemical vapor deposition (PECVD) system with a mixture of methane (CH4) and hydrogen (H2) gases. Polyacrylonitrile (PAN) and N,N-Dimethyl Formamide (DMF) were stirred to prepare a solution and then nanofibers were fabricated using an electrospinning method. Heat treatment in air was then performed using a hot plate for stabilization. In addition, heat treatment was performed at 800 °C for 2 h using rapid thermal annealing (RTA) to produce CNFs. A field emission scanning electron microscope (FE-SEM) was used to confirm surface and cross-sectional images of the CNFs/CNWs anode materials. Raman spectroscopy was used to examine structural characteristics and defects. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and constant current charge/discharge tests were performed to analyze the electrical characteristics. The synthesized CNFs/CNWs anode material had a CV value in which oxidation and reduction reactions were easily performed, and a low Rct value of 93 Ω was confirmed. Full article
Show Figures

Figure 1

10 pages, 3683 KB  
Article
Surface-Enhanced Raman Spectroscopy (SERS) Investigation of a 3D Plasmonic Architecture Utilizing Ag Nanoparticles-Embedded Functionalized Carbon Nanowall
by Chulsoo Kim, Byungyou Hong and Wonseok Choi
Nanomaterials 2023, 13(19), 2617; https://doi.org/10.3390/nano13192617 - 22 Sep 2023
Cited by 5 | Viewed by 2719
Abstract
Surface-enhanced Raman scattering (SERS) is a highly sensitive technique for detecting DNA, proteins, and single molecules. The design of SERS substrates plays a crucial role, with the density of hotspots being a key factor in enhancing Raman spectra. In this study, we employed [...] Read more.
Surface-enhanced Raman scattering (SERS) is a highly sensitive technique for detecting DNA, proteins, and single molecules. The design of SERS substrates plays a crucial role, with the density of hotspots being a key factor in enhancing Raman spectra. In this study, we employed carbon nanowall (CNW) as the nanostructure and embedded plasmonic nanoparticles (PNPs) to increase hotspot density, resulting in robust Raman signals. To enhance the CNW’s performance, we functionalized it via oxygen plasma and embedded silver nanoparticles (Ag NPs). The authors evaluated the substrate using rhodamine 6G (R6G) as a model target molecule, ranging in concentration from 10−6 M to 10−10 M for a 4 min exposure. Our analysis confirmed a proportional increase in Raman signal intensity with an increase in concentration. The CNW’s large specific surface area and graphene domains provide dense hotspots and high charge mobility, respectively, contributing to both the electromagnetic mechanism (EM) and the chemical mechanism (CM) of SERS. Full article
Show Figures

Graphical abstract

25 pages, 3694 KB  
Review
Advancements in Plasma-Enhanced Chemical Vapor Deposition for Producing Vertical Graphene Nanowalls
by Enric Bertran-Serra, Shahadev Rodriguez-Miguel, Zhuo Li, Yang Ma, Ghulam Farid, Stefanos Chaitoglou, Roger Amade, Rogelio Ospina and José-Luis Andújar
Nanomaterials 2023, 13(18), 2533; https://doi.org/10.3390/nano13182533 - 11 Sep 2023
Cited by 28 | Viewed by 5511
Abstract
In recent years, vertical graphene nanowalls (VGNWs) have gained significant attention due to their exceptional properties, including their high specific surface area, excellent electrical conductivity, scalability, and compatibility with transition metal compounds. These attributes position VGNWs as a compelling choice for various applications, [...] Read more.
In recent years, vertical graphene nanowalls (VGNWs) have gained significant attention due to their exceptional properties, including their high specific surface area, excellent electrical conductivity, scalability, and compatibility with transition metal compounds. These attributes position VGNWs as a compelling choice for various applications, such as energy storage, catalysis, and sensing, driving interest in their integration into next-generation commercial graphene-based devices. Among the diverse graphene synthesis methods, plasma-enhanced chemical vapor deposition (PECVD) stands out for its ability to create large-scale graphene films and VGNWs on diverse substrates. However, despite progress in optimizing the growth conditions to achieve micrometer-sized graphene nanowalls, a comprehensive understanding of the underlying physicochemical mechanisms that govern nanostructure formation remains elusive. Specifically, a deeper exploration of nanometric-level phenomena like nucleation, carbon precursor adsorption, and adatom surface diffusion is crucial for gaining precise control over the growth process. Hydrogen’s dual role as a co-catalyst and etchant in VGNW growth requires further investigation. This review aims to fill the knowledge gaps by investigating VGNW nucleation and growth using PECVD, with a focus on the impact of the temperature on the growth ratio and nucleation density across a broad temperature range. By providing insights into the PECVD process, this review aims to optimize the growth conditions for tailoring VGNW properties, facilitating applications in the fields of energy storage, catalysis, and sensing. Full article
Show Figures

Figure 1

13 pages, 5150 KB  
Article
Highly Sensitive and Selective Dopamine Determination in Real Samples Using Au Nanoparticles Decorated Marimo-like Graphene Microbead-Based Electrochemical Sensors
by Qichen Tian, Yuanbin She, Yangguang Zhu, Dan Dai, Mingjiao Shi, Wubo Chu, Tao Cai, Hsu-Sheng Tsai, He Li, Nan Jiang, Li Fu, Hongyan Xia, Cheng-Te Lin and Chen Ye
Sensors 2023, 23(5), 2870; https://doi.org/10.3390/s23052870 - 6 Mar 2023
Cited by 11 | Viewed by 4222
Abstract
A sensitive and selective electrochemical dopamine (DA) sensor has been developed using gold nanoparticles decorated marimo-like graphene (Au NP/MG) as a modifier of the glassy carbon electrode (GCE). Marimo-like graphene (MG) was prepared by partial exfoliation on the mesocarbon microbeads (MCMB) through molten [...] Read more.
A sensitive and selective electrochemical dopamine (DA) sensor has been developed using gold nanoparticles decorated marimo-like graphene (Au NP/MG) as a modifier of the glassy carbon electrode (GCE). Marimo-like graphene (MG) was prepared by partial exfoliation on the mesocarbon microbeads (MCMB) through molten KOH intercalation. Characterization via transmission electron microscopy confirmed that the surface of MG is composed of multi-layer graphene nanowalls. The graphene nanowalls structure of MG provided abundant surface area and electroactive sites. Electrochemical properties of Au NP/MG/GCE electrode were investigated by cyclic voltammetry and differential pulse voltammetry techniques. The electrode exhibited high electrochemical activity towards DA oxidation. The oxidation peak current increased linearly in proportion to the DA concentration in a range from 0.02 to 10 μM with a detection limit of 0.016 μM. The detection selectivity was carried out with the presence of 20 μM uric acid in goat serum real samples. This study demonstrated a promising method to fabricate DA sensor-based on MCMB derivatives as electrochemical modifiers. Full article
(This article belongs to the Special Issue State-of-the-Art Electrochemical Biosensors)
Show Figures

Figure 1

14 pages, 3516 KB  
Article
Investigation of the Properties of Anode Electrodes for Lithium–Ion Batteries Manufactured Using Cu, and Si-Coated Carbon Nanowall Materials
by May Tran Thi, Chulsoo Kim, Seokhun Kwon, Hyunil Kang, Jang Myoun Ko, Junghyun Kim and Wonseok Choi
Energies 2023, 16(4), 1935; https://doi.org/10.3390/en16041935 - 15 Feb 2023
Cited by 8 | Viewed by 3127
Abstract
The fabrication of high-capacity, binder-free Li–ion battery anodes using a simple and efficient manufacturing process was reported in this research. The anode material for lithium–ion batteries utilized is a combination of two-dimensional (2D) carbon nanowalls (CNWs) and Cu nanoparticles (improved rate performance and [...] Read more.
The fabrication of high-capacity, binder-free Li–ion battery anodes using a simple and efficient manufacturing process was reported in this research. The anode material for lithium–ion batteries utilized is a combination of two-dimensional (2D) carbon nanowalls (CNWs) and Cu nanoparticles (improved rate performance and capacity retention) or Si (high capacity) nanoparticles. A methane (CH4) and hydrogen (H2) gas mixture was employed to synthesize CNWs on copper foil through microwave plasma-enhanced chemical vapor deposition (PECVD). The Cu or Si nanoparticles were then deposited on the CNW surface using an RF magnetron sputtering equipment with four-inch targets. To analyze the electrochemical performance of the LIBs, CR2032 coin-type cells were fabricated using anode materials based on CNWs and other components. It was confirmed that the Cu−CNW demonstrates improved rate performance, increased specific capacity, and capacity retention compared with traditional anodes. Additionally, CNW combined with Si nanoparticles has enhanced the capacity of LIB and minimized volume changes during LIB operation. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

13 pages, 14611 KB  
Article
Correlating Disorder Microstructure and Magnetotransport of Carbon Nanowalls
by Mijaela Acosta Gentoiu, Rafael García Gutiérrez, José Joaquín Alvarado Pulido, Javier Montaño Peraza, Marius Volmer, Sorin Vizireanu, Stefan Antohe, Gheorghe Dinescu and Ricardo Alberto Rodriguez-Carvajal
Appl. Sci. 2023, 13(4), 2476; https://doi.org/10.3390/app13042476 - 14 Feb 2023
Cited by 4 | Viewed by 2086
Abstract
The carbon nanowalls (CNWs) grown by Plasma-Enhanced CVD reveal differences in the magnetotransport properties depending on the synthesis parameters. In this paper, we report the influence of the deposition temperature, which produces variations of the disorder microstructure of the CNWs. Relative low disorder [...] Read more.
The carbon nanowalls (CNWs) grown by Plasma-Enhanced CVD reveal differences in the magnetotransport properties depending on the synthesis parameters. In this paper, we report the influence of the deposition temperature, which produces variations of the disorder microstructure of the CNWs. Relative low disorder leads to the weak localization with the transition to weak antilocalization. Higher disorder generates positive Hopping mechanism in low field with a crossover to a diffusion transport by graphene nanocrystallites. The samples reveal a similitude of the isoline density of the MR at a low temperature (<50 K), explained in the context of the magnetization. This effect is independent of the number of defects. We can achieve a desirable amount of control over the MT properties changing the CNWs’ microstructure. Full article
Show Figures

Figure 1

14 pages, 4812 KB  
Article
Effects of High-Quality Carbon Nanowalls Ionization-Assisting Substrates on Surface-Assisted Laser Desorption/Ionization Mass Spectrometry Performance
by Ryusei Sakai, Hiroki Kondo, Kenji Ishikawa, Takayuki Ohta, Mineo Hiramatsu, Hiromasa Tanaka and Masaru Hori
Nanomaterials 2023, 13(1), 63; https://doi.org/10.3390/nano13010063 - 23 Dec 2022
Cited by 6 | Viewed by 2525
Abstract
Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is performed using carbon nanowalls (CNWs) for ionization-assisting substrates. The CNWs (referred to as high-quality CNWs) in the present study were grown using a radical-injection plasma-enhanced chemical vapor deposition (RI-PECVD) system with the addition of oxygen in [...] Read more.
Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is performed using carbon nanowalls (CNWs) for ionization-assisting substrates. The CNWs (referred to as high-quality CNWs) in the present study were grown using a radical-injection plasma-enhanced chemical vapor deposition (RI-PECVD) system with the addition of oxygen in a mixture of CH4 and H2 gases. High-quality CNWs were different with respect to crystallinity and C–OH groups, while showing similar wall-to-wall distances and a wettability comparable to CNWs (referred to as normal CNWs) grown without O2. The efficiency of SALDI was tested with both parameters of ion intensity and fragmental efficiency (survival yield (SY)) using N-benzylpyridinuim chloride (N-BP-CI). At a laser fluence of 4 mJ/cm2, normal CNWs had an SY of 0.97 and an ion intensity of 0.13, while 5-sccm-O2– high-quality CNWs had an SY of 0.89 and an ion intensity of 2.55. As a result, the sensitivity for the detection of low-molecular-weight analytes was improved with the high-quality CNWs compared to the normal CNWs, while an SY of 0.89 was maintained at a low laser fluence of 4 mJ/cm2. SALDI-MS measurements available with the high-quality CNWs ionization-assisting substrate provided high ionization and SY values. Full article
Show Figures

Figure 1

Back to TopTop