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Abstract: A sensitive and selective electrochemical dopamine (DA) sensor has been developed using
gold nanoparticles decorated marimo-like graphene (Au NP/MG) as a modifier of the glassy carbon
electrode (GCE). Marimo-like graphene (MG) was prepared by partial exfoliation on the mesocarbon
microbeads (MCMB) through molten KOH intercalation. Characterization via transmission electron
microscopy confirmed that the surface of MG is composed of multi-layer graphene nanowalls.
The graphene nanowalls structure of MG provided abundant surface area and electroactive sites.
Electrochemical properties of Au NP/MG/GCE electrode were investigated by cyclic voltammetry
and differential pulse voltammetry techniques. The electrode exhibited high electrochemical activity
towards DA oxidation. The oxidation peak current increased linearly in proportion to the DA
concentration in a range from 0.02 to 10 µM with a detection limit of 0.016 µM. The detection
selectivity was carried out with the presence of 20 µM uric acid in goat serum real samples. This
study demonstrated a promising method to fabricate DA sensor-based on MCMB derivatives as
electrochemical modifiers.

Keywords: dopamine determination; mesocarbon microbeads; gold nanoparticles; graphene nanowalls;
electrochemical sensors

1. Introduction

Dopamine (DA) is distributed extensively in the central nervous system and peripheral
tissues acting as a catecholamine neurotransmitter for message transfer, and itis involved
in various important physiological functions including human metabolism, vasodilation,
central nervous, motion control, as well as renal and hormonal systems [1–3]. DA is also
a clinically important molecule in health care medicine, used in hypertension, bronchial
asthma, cardiac surgery, and myocardial infarction [4]. The abnormal levels of DA in
biological liquids and tissues are commonly related to several diseases and neurological
disorders, like hypertension, schizophrenia, attention-deficit/hyperactivity, Parkinson’s
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disease, Alzheimer’s disease, and Huntington’s disease [5,6]. Due to the low concentra-
tion levels of DA in biological samples, usually in the range of several 10 s of nM, the
development of reliable, accurate, and cost-effective sensing technology for the deter-
mination of DA with very high sensitivity and selectivity is essential in analytical and
diagnostic applications [7,8]. Nowadays, in the field of DA detection, several analytical
methods such as high-performance liquid chromatography, chemiluminescence, and capil-
lary electrophoresis have been reported [9–11]. As the development of point of care testing
(POCT) which is defined as medical diagnostic testing at/near the time and place of patient
care [12,13], more requirements are raised for detection methods, including high sensitivity,
low cost, ease-of-operation, and time efficiency, etc. Therefore, due to these competitive
advantages, electrochemical analysis techniques have been regarded as a promising ap-
proach compatible with portable devices for the detection of electrochemically active DA
molecules [14–16].

The most common electrode used for the recognition of electrochemically active
compounds is the glassy carbon electrode (GCE) [7,17,18], which has a variety of ad-
vantages including inertness in a wide electrochemical window, chemical stability, and
good electrical conductivity [19]. In order to further improve the sensing performance,
several methods have been developed such as electrochemical activation [20], ultrasoni-
cation pretreatment [21], and surface modification with conductive nanomaterials [22–24].
Among them, the surface modification route has attracted a great deal of attention from
academia and has become a rapidly growing research field, especially for biosensing
applications [25–28]. In recent years, a variety of nanomaterials, such as nanoparticles
(noble metals, transition metals, oxides, etc.) [29–31], nanotubes or nanofilaments (carbon
nanotubes, noble metals, oxides, etc.) [32–34], and 2D materials (graphene, MXene, MoS2
nanosheets, etc.) [35–37], have been reported as nanomodifiers to boost the sensitivity of
GCE towards DA detection. One of the most well-known 2D materials, graphene, which
is composed of sp2-hybridized carbon atoms packed into a honeycomb lattice [38], has a
strong interaction with adsorbed biomolecules and thus shows superior performance to
improve the properties of DA sensors compared to other nanomaterials [7,39,40] because
of its high specific surface area (up to 800 m2 g–1) [41], excellent electrical conductivity
(≈2200 S cm−1) [42], and diverse defects/functional groups with enhanced electrocatalytic
activity [43].

In general, graphene sheets and their derivatives including graphene oxide (GO)
and reduced graphene oxide (rGO) used for electrochemical modifiers, can be massively
and economically produced by exfoliation of graphite using the Hummers method, ball
milling, and liquid phase sonication [44–46]. Yang et al. fabricated rGO-modified electrodes
through drop-casting of GO dispersion on the GCE surface followed by electrochemical
reduction, showing the sensing performance of DA with a linear range of 0.5–60 µM and a
low detection limit of 0.5 µM [47]. Ping et al. developed a screen-printed graphene electrode
using rGO ink chemically reduced by a mixture of hydrazine and ammonia solution for
selective detection of DA, achieving a linear range of 0.5–2000 µM and a detection limit of
0.12 µM [48]. Noticeably, the sensitivity of graphene-modified electrodes reported above
still need improvement for real sample analysis, since the basal level of DA concentration in
human serum or plasma can be very low (in the range of 1 nM–1 µM) [18]. This limitation is
because of the unavoidable formation of graphene agglomerates on the modified electrodes
during the drying step when prepared by conventional drop casting, based on the strong
π–π interactions between graphene sheets [49,50], thus leading to a significant reduction of
the effective area between graphene and biomolecules, as well as the degradation of the
sensitivity of DA sensors [51].

In this work, we synthesized a unique marimo-like structure consisting of graphene
layers on the surface of commercial mesocarbon microbeads (MCMB) for the highly sensi-
tive determination of DA molecules, through the proposed self-exfoliation process. MCMB
is the spherical graphite particle synthesized from petroleum pitch with an average di-
ameter of 10 s micrometers and high electrical conductivity, having been a commonly
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used material for lithium-ion batteries [52]. However, so far there is no report on the
use of MCMB for applications in electrochemical sensors owing to the very low specific
surface area (1.0–1.5 m2 g–1) [53]. Instead, in our study, graphene layers were partially
exfoliated from the MCMB surface to form a marimo-like structure at 1000 ◦C with KOH
for increasing the electroactive area, meanwhile eliminating the agglomeration behavior of
drop-casted graphene electrodes. In addition, the decoration of the graphene surface with
noble metal nanoparticles (NP) has been proven to be an efficient approach to improve
the electrochemical sensitivity of DA sensors based on their excellent electroactivity and
biocompatibility [54,55]. As a result, the GCE modified with marimo-like graphene (MG)
microbeads for DA determination exhibits a wide dynamic range of 0.2–100 µM and a
limit of detection (LOD) of 0.15 µM, and can be further enhanced to have a linear range of
0.02–10 µM and a LOD of 0.016 µM (16 nM) with the decoration of Au nanoparticles (Au
NP). Moreover, the fabricated sensors exhibit good repeatability and specificity toward real
sample analysis. To the best of our knowledge, this study is the first to report on sensing
applications using MCMB derivatives as electrochemical modifiers.

2. Materials and Methods
2.1. Chemicals

Phosphate buffer solution (10× PBS, containing 137 mM NaCl, 102.7 mM KCl, 8.1 mM
Na2HPO4, and 1.8 mM KH2PO4), H2SO4, KOH, NaCl, KCl, ascorbic acid (C6H8O6), uric
acid (UA, C5H4N4O3), and glucose (C6H12O6) were purchased from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China). Dopamine (DA, 4-(2-aminoethyl)-pyrocatecho hy-
drochloride, C8H12ClNO2) was purchased from Shanghai Aladdin Biochemical Technology
Co., Ltd. (Shanghai, China). HAuCl4·3H2O was purchased from SigmaAldrich Trading
Co., Ltd. (Shanghai, China). All chemical reagents were analytical grade without further
purification. Mesocarbon microbeads (MCMB) were purchased from Tianjin BTR New
Energy Technology Co., Ltd. (Tianjin, China). Goat serum was purchased from Sangon
Biotech Co., Ltd. (Shanghai, China). Milli-Q deionized water (DI water, ≈18.2 MΩ cm) was
extensively utilized in our experiments.

2.2. Fabrication of Au NP/Marimo-like Graphene Electrodes

Marimo-like graphene (MG) was made from MCMB powder mixed with KOH flakes
(mass ratio 1:5) for 1 hat 1000 ◦C muffle furnace [56]. After treatment and removal of KOH,
60 mg MG was dispersed into 10 mL of DI water and then ultrasonically dispersed for
30 min. HAuCl4 and the ascorbic acid solution were prepared by adding 6 mg of HAuCl4
into 5 mL of DI water and 30 mg of ascorbic acid into 5 mL of DI water, respectively. 10 mL
MG water dispersion was mixed with the HAuCl4 and ascorbic acid solution, followed
by stirring for 30 min using a magnetic stirrer. After that, the solid product was filtered
from dispersion and rinsed withDI water three times. The solid product is Au NP/MG [57].
The Au NP/MG was redispersed in DI water to obtain3 mgmL−1 dispersion for the next
modification step.

GCE electrodes with a diameter of 3 mm (geometric area: 7.07 mm2) were applied as
the substrate electrodes. Before modification, GCE electrodes were polished using 0.05 µm
alumina slurry and cleaned in deionized water and ethanol by ultrasonication. Following
that, GCE was activated via 100 times cyclic voltammetric scanning in 0.5 M H2SO4 with
a potential range from −1.0 to 1.0 V vs. SCE and a scan rate of 100 mV s−1. 6 µL of Au
NP/MG aqueous dispersion was drop-casted to the center of the GCE. After drying at
60 ◦C for 10 min, Au NP/MG/GCE was finally fabricated. MCMB/GCE, MG/GCE, and
Au NP/MCMB/GCE electrodes were prepared as similar method.

2.3. Samples Preparation

We diluted 10× PBS 10 times using DI water to obtain1× PBS, which was adopted
as a buffer solution. The 20 µM DA solution was prepared by adding0.038 g of DA into
100 mL of 1× PBS, and the DA solutions with lower concentrations were all obtained by
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diluting 20 µM DA solution using 1× PBS in the proper proportion. Gradually adding 1 M
KOH solution or 0.5 M H2SO4 solution (1× PBS used as solvent) into 20 µM DA solution to
adjust the pH and adding 1× PBS to adjust DA concentration as well; finally, the solutions
with 10 µM DA with different pH from 3 to 11 were obtained for pH study. Real samples
were prepared by spiking DA solution with different concentrations into 20 mL of goat
serum. The pH of real samples is 7.

2.4. Dopamine Electrochemical Determination

The bare GCE, MCMB/GCE, MG/GCE, Au NP/MCMB/GCE, and Au NP/MG/GCE
were applied as working electrodes. A saturated calomel electrode (SCE) and a Pt electrode
were applied as reference and counter electrodes, respectively. CV and DPV tests were
conducted to analyze the electrochemical behavior of different concentrations of DA on the
modified GCE. CV curves (five cycles) were recorded from −0.2 to 0.4 V with a scan rate of
100 mV s−1, whereas DPV tests were conducted from −0.2 to 0.4 V with an increment step
of 4 mV, amplitude of 50 mV, pulse period of 0.5 s, and pulse duration time is 0.05 s.

2.5. Characterizations

Field emission scanning electron microscope (FEI, Hillsboro, OR, USA) and high-
resolution transmission electron microscope (JEOL, Tokyo, Japan)were applied to observe
the modified material. Raman spectroscopy (Renishaw PLC, Wotton-under-Edge, UK)
with a laser wavelength of 532 nm and X-ray photoelectron spectroscopy (XPS, Kratos
Analytical, Manchester, UK) were used to characterize the chemical compositions and
element chemical states. All the electrochemical experiments were carried out by a CHI660e
electrochemical workstation (Shanghai Chenhua, Shanghai, China).

3. Results and Discussion
3.1. Characterization of MG and Au NP/MG

Figure 1a,b show a schematic of the fabrication of marimo-like graphene (MG) and
Au nanoparticles-decorated marimo-like graphene (Au NP/MG). The MCMB was mixed
with five times the mass of the KOH solid. After raising the temperature to 1000 ◦C, the
molten K+ ion intercalated into the graphite layer structure of MCMB, forming the partially
exfoliated structure. Since the partially exfoliated MCMB is in a spherical shape with a
fluffy graphene nanowalls shell, it was named marimo-like graphene (MG) in this work. Au
nanoparticles-decorated marimo-like graphene (Au NP/MG) was acquired by decorating
gold nanoparticles onto MG in a simple solution method through reducing chloraureate.

SEM images of MCMB and MG were shown in Figure 1c,d. The MCMB shows a
relatively smooth spherical structure, whereas the MG is distinguishably rough. Under
high resolution, the rough surface of MG is composed of graphene nanowalls, which
were partially exfoliated by molten alkali intercalation [56]. The average diameter of MG
is ≈15 µm, which is smaller than that of MCMB (≈20 µm). The volume decrease can be
attributed to the carbon etching by molten alkali at high temperatures. The Raman spectra of
MCMB and MG are shown in Figure 1e. The Raman peaks correspond to the characteristic
D-band (≈1349 cm–1), G-band (≈1578 cm–1), and 2D-band (≈2698 cm–1) [58]. Moreover, the
ID/IG ratio is 0.27–0.32 and I2D/IG ratio is 0.55–0.65, confirming that their main component
is graphite. The high-resolution C1s XPS spectra of MCMB and MG are shown in Figure 1f.
The curve results can be fitted into four deconvoluted components: sp2-hybridized bonds
(C=C, at ≈284.4 eV), hydroxyl (C–O, at ≈286.1 eV), carbonyl (C=O, at ≈287.1 eV), and
carboxylate group (COOH, at ≈288.7 eV) [27]. The ratio of oxygen-containing groups is
18–23%, and scarcely sp3-hybridized bond (C–C) was found, suggesting that the chemical
composition of MCMB and MG is close to pristine graphite [59].
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Figure 1. (a) Real photo of Marimo. (b) Schematic illustration of the fabrication of Marimo-like
graphene (MG) and Au NP-decorated Marimo-like graphene (Au NP/MG). SEM images of (c) MCMB
and (d) MG. (e) Raman spectra and (f) C1s XPS spectra of MCMB and MG.

However, compared to the particle size of MG, the thickness of the graphene nanowalls
shell is limited. It should be noticed that the results of Raman and XPS spectra in Figure 1e,f
reflect the information of the whole MG rather than the graphene nanowalls on the surface.
Therefore, the graphene nanowalls shell was stripped from MG by tipsonication and
collected for characterization (Figure 2a). As shown in the Raman spectrum of Figure 2b, a
remarkable D-band can be observed, and the ID/IG ratio is ≈ 0.96, indicating that a large
number of defects exist in the graphene nanowalls shell [60]. These defects are mainly
attributed to the exposed edge of graphene nanowalls. The C1s XPS spectrum in Figure 2c
can be fitted as the same components as Figure 1f, and the ratio of oxygen-containing groups
rose to ≈33%. The increase of oxygen-containing groups is the result of the inevitable
oxidation reaction between MCMB and oxygenated compounds (e.g., OH−, O2, and H2O)
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during molten alkali intercalation. These oxygen-containing groups partially contribute to
the defects in the graphene nanowalls shell as well.
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Figure 2. (a) Scheme of stripping and collecting graphene nanowalls shell from MG. (b) Raman
spectrum and (c) C1s XPS spectrum of graphene nanowalls. (d) TEM image and (e) HRTEM image of
MG (inset: SAED pattern; scale bar: 5 nm–1). (f) TEM image of Au NP/MG (inset: SAED pattern;
scale bar: 5 nm–1).

Figure 2d displays the TEM bright field image of the top end of the graphene nanowalls
shell. It can be observed that graphene nanowalls consist of a stacked laminated graphene
structure. In the HRTEM image (Figure 2e), there are 10 lines of contrast at the edge of the
graphene nanowalls shell, indicating that the layer number of multilayered graphene is
10 in this region. The interplanar spacing is approximately 0.34 nm, which corresponds
to that of the graphite (002) facet [61]. The corresponding SAED pattern of graphene
nanowalls is shown in Figure 2e. The presence of multiple plots revealed that graphene
nanowalls are polycrystalline with various rotational stacking angles. In the TEM image of
Au NP/MG (Figure 2f), several Au NPs decorate the graphene nanowalls, with a diameter
range of 10–40 nm. Meanwhile, the corresponding SAED pattern shows that the Au NPs
exist in polycrystalline form.

3.2. Au NP/MG/GCE Electrode Performance Optimization of DA Detection

To explore the electrochemical performance of Au NP/MG/GCE towards DA, the
DPV technique was conducted on the Au NP/MG/GCE electrodes in PBS with 10 µM
DA. Compared to the curve from blank PBS, an oxidation peak at potential position
0.10 V appeared in the experimental group and specified as the characteristic peak for
electrochemical analysis of DA, as shown in Figure 3a. As shown in Figure 3b, DPV
curves of electrochemical behaviors at a potential interval of −0.1–0.3 V were performed in
the presence of 10 µM DA on bare GCE, MCMB/GCE, Au NP/MCMB/GCE, MG/GCE,
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and Au NP/MG/GCE electrodes, respectively. The current intensities of MCMB/GCE
and Au NP/MCMB/GCE electrodes were both lower than bare GCE, demonstrating
the poor electrochemical activity and absorbability of MCMB towards DA. It is noticed
that the current density is calculated from the geometric area of GCE. Compared to the
MCMB/GCE electrodes, the current intensity of MG/GCE electrodes improved by ≈20%,
indicating the much better electrochemical activity of MG than MCMB towards DA. It can
be speculated that the specific surface area was greatly enhanced, and lots of edge defects
as electrochemical active sites were exposed during the transition of MCMB to MG via
molten alkali intercalation [56,62]. After hybridization with Au NPs, the electrochemical
performance of Au NP/MG/GCE electrodes improved to the maximum, indicating that
the electrodes with better electrical conductivity promoted the electron transfer of the DA
oxidation reaction.
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Figure 3. (a) DPV of Au NP/MG/GCE electrodes with and without 10 µM DA in PBS. (b) DPV curves
of various modified electrodes with 10 µM DA in PBS. (c) DPV of Au NP/MG/GCE electrodes with
various concentrations of MG to the same of AuNP with 10 µM DA in PBS. (d) Au NP/MG/GCE
electrodes in 10 mM [Fe(CN)6]3−/4− and 0.1 M KCl electrolyte solution at scan rates from 20 to
250 mV s−1. (e) Linear plots of Iox/Ired versus scan rates (f) DPV of 10 µM DA on Au NP/MG/GCE
electrodes with pH.

To further improve the electrochemical performance of the proposed sensor, experi-
mental parameters including the preparation of modified electrodes, scan rate, and elec-
trolyte pH were optimized. To confirm the suitable mass of MG in the fabrication of Au
NP/MG/GCE electrodes, various concentrations of MG varying from 0.5–5 mg mL–1 at
0.5 µL volume were drop-casted on GCE and dried to perform DPV response in PBS
with 10 µM DA. As shown in Figure 3c, the MG concentration was selected as 3 mg
mL–1. The electrochemical behavior of various electrodes was performed by CV in 10 mM
[Fe(CN)6]3−/4− containing 0.1 M KCl electrolyte solution at scan rates ranging from 20 to
200 mVs–1 (Figure 3d). The peak currents density of Iox and Ired both increased linearly
with the square root of scan rates (Figure 3e), demonstrating that the redox reaction on the
Au NP/MG/GCE electrodes was controlled by diffusion. The effect of pH on the electro-
chemical response of Au NP/MG/GCE electrodes was performed in the range from 3 to
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11 with an increase factor of 2, as shown in Figure 3f. The peak potential position shifted
negatively with the increased electrolyte pH, due to an improvement in the deprotonation
reaction of DA [63]. The maximum value of peak current is at pH 7 and was chosen as the
optimal pH. A possible mechanism of the maximum peak at pH 7 is the combination of the
ion concentration effect and electrode surface adsorption process. When pH < 7, excess
protons (H+) in the solution will inhibit the deprotonation reaction of DA. When pH > 7,
DA molecules are negatively charged, and the electrode surface is also negatively charged
due to the oxygen-containing group of MG. Therefore, although the deprotonation reaction
of DA is promoted, the repelling effect of charge interaction makes it difficult for DA
adsorption on the electrode, resulting in the decrease of electrochemical response current.

3.3. Electrochemical Determination of DA with Different Concentrations

The quantitative electrochemical determination of DA on the MG/GCE and Au
NP/MG/GCE electrodes was performed by DPV measurements, respectively, as presented
in Figure 4a,b. The peak current value on the MG/GCE and Au NP/MG/GCE electrodes
both enhanced with the increasing concentration of DA. As indicated in Figure 4c, the
calibration curve of DA on the MG/GCE and Au NP/MG/GCE electrodes was concluded
from the average of peak current value, and the linear range of DA determination was
in a range of 0.2–10 µM and 0.02–10 µM. The linear regression equation on the MG/GCE
electrodes was Iox(µA) = 1.02c (µM) + 2.30 (R2 = 0.992), and the linear regression equation
on the Au NP/MG/GCE electrodes was Iox(µA) = 1.51c (µM) + 4.47 (R2 = 0.997). The
limit of detection (LOD) of DA on the MG/GCE and Au NP/MG/GCE electrodes was
determined as 0.15 µM and 0.016 µM, respectively. Specifically, the DA determination
experiments were performed by the DPV technique on six individual electrodes. Compared
with other DA electrochemical sensors focusing on graphene-based modified electrodes, as
listed in Table 1, our Au NP/MG/GCE electrodes achieved a relatively low detection LOD
of DA with efficiency.
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Table 1. Comparison of linear range and detection limit with other graphene-based DA electrochemi-
cal sensors.

Modifiers Decoration Substrate Measurements Linear Range (µM) LOD (µM) Ref

Graphene
sheets GCE Amperometry 5.0–710 2.0 [35]

rGO GCE DPV 0.5–60 0.50 [47]
rGO screen-printed electrode DPV 0.5–2000 0.12 [48]
rGO

nanoribbons screen-printed electrode DPV 0.5–300 0.15 [64]

rGO Au NPs GCE DPV 6.8–41 1.4 [65]
rGO Ag NPs GCE DPV 10–70 1.0 [29]
rGO Pt NPs GCE DPV 0.03–8.13 0.03 [66]
rGO Pd–Pt NPs GCE DPV 4–200 0.04 [67]

rGO Au–Pt
nanoclusters GCE DPV 0.07–49,800 0.02 [68]

Marimo-like
graphene - GCE DPV 0.2–100 0.15 This work

Marimo-like
graphene Au NPs GCE DPV 0.02–10 0.016 This work

3.4. Repeatability, Anti-Interference, Recovery, and Real Sample Analysis

To evaluate the repeatability of Au NP/MG/GCE electrodes for DA determination
(10 µM), DPV curves at a potential interval of −0.1–0.3 V were repeatedly measured
10 times on the same electrodes. As presented in Figure 4d, the oxidation peak potential
of DPV curves was consistent at 0.10 V, and the curves overlapped well. The relative
standard deviation (RSD) of peak currents was ≈2.6%, indicating good repeatability of
Au NP/MG/GCE electrodes. The anti-interference of Au/MG/GCE electrodes in the
presence of 20 µM UA as interfering substances was experimented with by DPV curves
in goat serum real samples with spiked DA in the range from 0.1 to 10 µM, as indicated
in Figure 4e. Compared to the values of the calibration curve in Figure 4c, the anti-
interference results indicated that the presence of UA did not intervene in DA determination.
Furthermore, the anti-interference of Au NP/MG/GCE electrodes in the presence of other
potential interfering substances such as 1 µM ascorbic acid (AA), 1 µM glucose (Glu),
1 µM UA, 1 µM K+, and 1 µM Na+ in 1× PBS containing 0.1 µM DA was conducted by
chronoamperometry measurements, as presented in Figure 4f. The results demonstrated
that our constructed sensors have good anti-interference against other molecules during
electrochemical determination. The standard addition method was applied to verify the
recovery property of Au NP/MG/GCE electrodes.DPV curves of spiked serum samples
with different DA concentrations (0.12–7.6 µM) were recorded under optimal conditions.
As shown in Table 2, the prepared DA sensor exhibited good recoveries (99.7–106.5%) and
low RSD values (0.82–1.54%), showing great potential for practical applications.

Table 2. Recovery results of DA in real samples by using Au NP/MG/GCE electrodes.

Samples Added (µM) Founded (µM) RSD (%) Recovery (%)

Goat serum

0.120 0.123 1.06 102.5
0.740 0.784 1.18 106.0
1.30 1.38 1.54 106.2
3.70 3.94 1.40 106.5
7.60 7.58 0.82 99.7

4. Conclusions

In this work, a DA sensor based on an Au NP/MG/GCE electrode was proposed. MG
was prepared through partial exfoliation commercial MCMB via molten alkali intercalation.
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The exfoliated graphene nanowalls structure on MG microbeads not only increases specific
surface area but also provides numerous electrochemical active sites. Compared to MCMB-
based electrodes, MG-based electrodes display high sensitivity toward the oxidation of
DA molecules. With the assistance of Au NP, the Au NP/MG/GCE electrode exhibited
optimized properties for DA determination with a wide linear range from 0.02 to 10 µM and
an ultralow detection limit of 0.016 µM. The good recovery (99.7–106.5%) and practicability
of Au NP/MG/GCE electrode for DA detection in a real sample have been validated
in goat serum samples. Moreover, the anti-interference of Au NP/MG/GCE electrode
was further investigated by spiking other biological molecules and ions. We believe this
study can provide a promising pathway to construct an electrochemical sensor based on
MCMB derivatives.
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