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Abstract: The carbon nanowalls (CNWs) grown by Plasma-Enhanced CVD reveal differences in the
magnetotransport properties depending on the synthesis parameters. In this paper, we report the
influence of the deposition temperature, which produces variations of the disorder microstructure
of the CNWs. Relative low disorder leads to the weak localization with the transition to weak
antilocalization. Higher disorder generates positive Hopping mechanism in low field with a crossover
to a diffusion transport by graphene nanocrystallites. The samples reveal a similitude of the isoline
density of the MR at a low temperature (<50 K), explained in the context of the magnetization. This
effect is independent of the number of defects. We can achieve a desirable amount of control over the
MT properties changing the CNWs’ microstructure.
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1. Introduction

The special magnetotransport (MT) properties of graphene-based nanostructures have
received considerable attention in the last years. The uncommon Dirac point [1], chiral
nature [2] and Berry’s phase [3] lead to different MT properties compared to the conven-
tional two-dimensional (2D) systems. The graphene presents an unconventional weak
antilocalization (WAL) due to the Berry’s phase π in a valley, which adds a quantum phase
when two electron waves circulate in a reverse closed path, producing a suppression of
backscattering [4]. The magnetotransport properties in graphene materials can be modified
by the arrangement of sheets, particle size [5], disorder such as curvature, topological de-
fects [6], geometry of the graphene edges, localized magnetic moment [7] and boundaries
and interfaces [8].

Large 3D graphene networks, in contrast to 1D and 2D graphene-based nanostructures,
easily allow us to modify the trajectories of carriers in a magnetic field to obtain a specific
desirable MT behavior. There are not many studies related to the MT properties of 3D
carbon nanowalls (CNWs), although these structures have other remarkable applications,
such as catalyst supports, high sensitivity gas detection [9], biosensors [10] and super-
capacitors [11,12]. Thus, completing the range of applications with those related to MT is
a new direction for the exploration of the applicative potential of CNW materials. In MT
research, we can mention Yue et al. [13], who obtained control over the magnetoresistance
(MR) changing the morphology of the CNWs; and Huang et al. [14] in aligned walls.
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The CNWs consist of stacks of a few vertical graphene layers in a self-supported
network [15]. As a consequence, the sheets behave like freestanding ones [16], with a
weak influence of the substrate. This advantage allows rigorously identify the intrinsic MT
mechanism at difference of the graphene attached over a supporting substrate. Specifically,
the quantum interference correction to the magnetotransport and the influences of the
nature of disorder are currently lacking.

The deposition of CNWs is not straightforward and only a few methods are available.
Zhang’s group [17] obtained the CNWs via RF sputtering, with the disadvantage of a long
deposition time (3 h). Shang’s group [18], using the hot filament chemical vapor deposition
(HFCVD) technique, needed catalysts or surface pretreatment. However, the Plasma-
Enhanced Chemical Vapor Deposition (PECVD) is a typical and promising technique that
does not require a catalyst [19] to grow with huge surface-to-mass ratio the CNWs [20]
in a relatively low temperature (600–700 ◦C) and short time (~1 h). Davami et al. [21]
stated that the deposition temperature is small compared to other synthesis methods, and
numerous substrates (Ni, Ti, Pt, Cu, Ge, W, Ta, SiO2, Al2O3, Cu, Si, SiO2, stainless steel,
carbon paper and others) can be used. Vizireanu et al. [22] showed that the morphology of
CNWs does not change significantly when they are synthetized on substrates with different
characteristics. In addition, the surface morphology and internal structure of the sample
are effectively controlled.

The PECVD technique can generate CNWs with different morphologies (including
petal-like, cauliflower-like and maze-like) depending on the deposition parameters, such
as: temperatures and gaseous plasma (containing hydrogenated carbon precursors) [23].
The growth rate of CNWs (around tens of nanometers per minute) creates a difficulty
for practical applications; however, Zhang et al. [23] improved it by increasing the RF
power and CH4 flow rate. In this sense, the morphology and microstructure of the CNWs
can be easily tunable through the PECVD method. In addition, CNWs could offer a new
perspective for the reproducibility of MR devices, in contrast to the few-layer graphene
grown by CVD, where the thickness is not controllable yet.

In this paper, it is presented a comparative study of the MT properties between two
CNW samples differentiated by the disorder and grown by the PECVD technique. The
selection of these two samples, named Sample I and Sample II, was made while considering
the results of a structural and morphological comparative study between CNWs’ growth
according to different synthesis parameters (time, Argon flux and deposition temperature
(TD)). The selected samples have structural and morphological qualities such as few
graphene layers in the walls, large dimensions and a reduced contamination by hydrogen
or oxygen atoms.

The disorder introduces mobility fluctuations in the magnetoresistance with the mag-
netic field applied. We find different magnetotransport effects as the disorder increases:
weak localization and antilocalization caused by inherent defects or impurities (Sample I)
and diffuse scattering from extrinsic electron scattering sites with Hopping magnetoresis-
tance (Sample II). At a low temperature, the samples present a similar MR isoline density.
The overall results could play significant roles in our understanding of the MT in graphene
materials, as well as how to control the MT properties through tunable microstructure of
the CNWs via the PECVD method. It leads new perspectives for magneto-electronic de-
vices, including biosensors and magnetic field sensor [24], magnetoresistive random-access
memories (MRAM), hard drives [25] and magneto-resistors for measuring electric current.

2. Experimental Section

Previous studies [26–28] have found the key to control different characteristics on
the carbon nanowalls (such as length, shape and composition) through the synthesis
parameters by the PECVD. We apply the following constant parameters: pressure of 120 Pa
and RF power of 300 W, hydrogen/acetylene H2:C2H2 = 25:1 sccm and Si/SiO2 substrate
placed at 5 cm from expansion nozzle. Table 1 shows the parameters that were varied:
the ratio Argon flux at 1050 and 1400 sccm, the deposition time at 30 and 60 min, and
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the deposition temperature TD = 600 ◦C and TD = 700 ◦C. In the following, we named
the samples formed at 1400 sccm-600 ◦C-1 h and 1400 sccm-700 ◦C-1 h Sample I and
Sample II, respectively, due to the relevant structural and morphological characteristics to
the magnetotransport studies.

Table 1. Values obtained from SEM, TEM, ERDA and Raman spectra of the CNWs formed at different
synthesis parameters: time, deposition temperature and Ar flux.

Synthesis Parameters

Time (min) 30 60

Temperature (◦C) 700 600 700

Ar Flux (sccm) 1400 1050 Sample I 1400 1050 Sample II 1400

Morphology and
Microstructure

Length (µm) ±0.3 0.23 1.05 1.5 - 1.3

Thickness (µm) 0.50 1.50 3.05 - 1.52

I(D)/I(G) 2.40 1.81 1.80 2.21 2.20

I(D)/I(D′) 4.8 5.5 3.2 4.4 5.5

La (nm) 20.4 21.0 21.1 17.2 17.3

LD (nm) 11.5 11.7 11.8 10.6 10.6

2D Position (cm−1) 2646 2651 2646 2649 2639

Carbon Concentration
(%) by XPS - 64.64 86.44 55.50 74.93

Oxygen Concentration
(%) by XPS - 35.36 13.56 44.50 25.07

Hydrogen Content
by ERDA 1.4 16.7 9.1 10.1 7.8

The shape and the space between the walls of CNWs were observed by Scanning
Electron Microscope (SEM), using an SEM 630 FEI Nova Nano at 10−4 mbar and Trans-
mission Electron Microscope (TEM) with a JEOL 2010-F Field Emission of high resolution,
operating at 200 kV. The Raman spectrum was obtained with a λlaser = 632.8 nm, using
a Horiba-Jobin-Yvon HR LabRAM. The Elastic Recoil Detection Analysis (ERDA) shows
the hydrogen in-depth profile and concentration using 3MeV 4He2+ ions from a 3 MV
Tandetron accelerator.

Figure 1 shows the configuration of the MR measurement, where the CNWs’ samples
were synthetized on four consecutive chrome-gold electrodes. The metallic strips had a
gap of around 1 mm. The spacing and length of the electrodes were chosen to study the
MT across a large number of CNWs junctions. The MR measurements were performed by
injecting a constant electric current of 5 mA (the high value was selected due to the elevated
number of walls between the electrodes). The MR behavior was not clear with values that
were too small (below 1 mA). An externally relatively high magnetic field B ranging from
0 to 7 T, perpendicular to the sample’s surface (parallel to the graphene layers), was applied.
The temperature for measurements varied between 15 and 250 K. The MR was calculated
as follows:

MR =
R(B)− R(0)

R(0)
·100% (1)

where R(B) is the resistance with the magnetic field applied, while R(0) is the resistance in
the absence of magnetic field.
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rated around 1.5 µm. This suggests that, in contrast to the Ar flux, the temperature 
re-evaporates the nucleation sites, as is necessary for the growing of the walls. The sam-
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The interlayer space of the walls varies between 0.33 and 0.35 nm, as observed in the 
TEM images (Figure 3a). The increase of the defect amount and temperature may break 
the single wall structure into many graphene nanocrystallites (GNs) (see Figure 3b,c), 
since each wall is composed of small graphite regions or nanographite domains [29]. The 
in-plane lattice constant of the GNs (observed as fringes in Figure 3c) is comparable to 
that of the graphite (2.53 ± 0.10 Å and 2.46 Å [30], respectively). Additionally, it was 
found that there were nanoparticles with curved layers (see Figure 3d), similar to those 
obtained by Gomez-Hernandez from carbon black [31]. 

Figure 1. CNWs deposited onto electrode configurations for MR measurements.

3. Results and Discussion
3.1. Morphological and Microstructural Characteristics

Figure 2a–d present the SEM image of the CNWs formed with different parameters
of synthesis: Ar flux, time and deposition temperature. In the samples synthetized at
60 min, the thickness of the walls (the longitude in the transverse direction to the substrate
obtained by a cross-sectional SEM image) decrease from 3.1 to 1.5 µm, reducing the Ar
flux or increasing the temperature, while the lengths of the walls became almost saturated
around 1.5 µm. This suggests that, in contrast to the Ar flux, the temperature re-evaporates
the nucleation sites, as is necessary for the growing of the walls. The sample formed in less
time deposition, 30 min, only grows to around 0.23 µm and 0.5 µm in length and thickness,
respectively. Table 1 shows a summary of the values obtained.
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Figure 2. The SEM images for the CNWs grown at (a) 1400 sccm-700 ◦C-30 min, (b) 1050 sccm-600 ◦C-
60 min, (c) 1400 sccm-600 ◦C-60 min and (d) 1400 sccm-700 ◦C-60 min.

The interlayer space of the walls varies between 0.33 and 0.35 nm, as observed in
the TEM images (Figure 3a). The increase of the defect amount and temperature may
break the single wall structure into many graphene nanocrystallites (GNs) (see Figure 3b,c),
since each wall is composed of small graphite regions or nanographite domains [29]. The
in-plane lattice constant of the GNs (observed as fringes in Figure 3c) is comparable to that
of the graphite (2.53 ± 0.10 Å and 2.46 Å [30], respectively). Additionally, it was found that
there were nanoparticles with curved layers (see Figure 3d), similar to those obtained by
Gomez-Hernandez from carbon black [31].

The Raman spectra (see Figure 4a,b) reveal a strong G-peak around 1580 cm−1, which
confirms the apparition of the graphene sheets and assigned to E2g phonons from the
Brillouin zone [32]. The D-band around 1354 cm−1 is activated with induced disorder.
Another peak appears around 1614, named D′, identified on the edges. The relation between
the intensities of the peaks I(D)/I(G), associated with disorder, is presented in Table 1. An
increase of the values is caused by the deposition temperature due to the size reduction
of the clusters by re-evaporation that consequently would create defects. Similarly, the
application of short time (30 min) leads to high defects (I(D)/I(G) = 2.4) because the radical
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formations and nucleation sites are not formed enough. Here, the influence of the Ar flux
is weak.
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Different types of defects can be defined, such as edges, grain boundaries, vacancies,
substitutional and implanted atoms, and a change of carbon hybridization (for example,
from sp2 into sp3) [33]. The average defect distance between the point defects (LD) can be
related to the invers I(D)/I(G), using the following equation [34]:

L2
D(nm2) =

CD

E4
L

I(G)

I(D)
(2)

where Cd = 3600 and EL is the excitation laser energy used in the Raman experiment
(1.96 eV). Table 1 reveals the values obtained. The nature of the defects can be identified
by the I(D)/I(D′) relation. According to Eckmann et al. [35], the I(D)/I(D′) around 3.5 is
attributed to boundary-like defects in graphite-related materials. As a consequence, the
values presented in Table 1 show that the disorder-induced bands would occurs principally
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from aggregates of crystallite border (one-dimensional defects) [36], which are the most
common case of disorder [37]. The crystallite sizes (La) can be related to the invers I(D)/I(G),
using the following equation [38]:

La(nm) =
Ca

E4
L

I(G)

I(D)
(3)

where Ca = 560. Therefore, the increase of the I(D)/I(G) with temperature causes the
disassembly of the graphene layers into nanocrystals (Sample I, La = 21.1 nm and Sample II,
La = 17.3 nm) with an increase of their population. These values are approximated since
many papers have modified the respective equations. For example, Mallet et al. [39]
regarded Ca = 4.4 × (2.41)4 and Ribeiro-Soaresa et al. [40] CA = (490 ± 100) × 103. In
this sense, the La calculated here approximates to the GNs size observed in TEM images
(~9 nm).

Interesting, the 2D band (see Figure 4b) shows a single Lorentzian deconvolution—
which is a hallmark of few layers [41], but with a low intensity comparable to graphite [42].
The shift of this band to low frequencies corresponds to a reduction of the graphene-layer
numbers [43]. Increasing both the temperature and the Ar flux, the lower value of the 2D
position (see Figure 4b and Table 1) appears on Sample II at 2639 cm−1 (blue line). Thus, it
behaves more like graphene structure with a few layers [43].

The X-ray photoelectron spectra (Figure 5a,b) and the ERDA measurements (Figure 5c)
reveal the relative atomic concentrations of the carbon and oxygen atoms, and the hydrogen
content in the CNWs, respectively. The oxygen is binding from moderate vacuum, substrate
or atmospheric ambient, which creates more irreversible doping. The relative concentration
of oxygen (percent) is reduced as the Ar flux increases or temperature decreases, in associa-
tion with the defect decline. In addition, this occurs at the expense of the increment of the
carbon atoms. Thus, the graphitization is observed on Samples I (green line) and Sample
II (blue line). The high carbon concentration around 86.44% on Sample I (see Table 1) is
confirmed with the position of the C1s band at 284.3 eV related to the Sp2 C=C binding (see
the green line in Figure 5b). Additionally, the ERDA measurements show that the Sample
I and Sample II do not incorporate large amounts of hydrogen either. The nanostructure
growth for 30 min (purple line) presents a lower amount of hydrogen because of the incipi-
ent formation of the graphene layers; however, a posterior study should be performed to
evaluate the oxygen content.
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Figure 5. (a,b) The XPS spectra and (c) the ERDA measurements for the CNWs grown at 1050 sccm-
600 ◦C-60 min (red line), 1050 sccm-700 ◦C-60 min (black line), 1400 sccm-600 ◦C-60 min (green line)
and 1400 sccm-700 ◦C-60 min (blue line). The figure includes in (a) the C1s and O1s bands, (b) the
amplification of the C1s band and (c) the hydrogen content along the transversal section (depth) of
the samples, including 1400 sccm-700 ◦C-30 min (purple line).
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3.2. Magnetoresistance

The Sample I and Sample II were selected for the magnetotransport studies because
they present different grades of disorder and, at the same time, have attractive structural
and morphological qualities, such as few graphene layers in the walls, large dimensions,
high graphitization and a reduced contamination by hydrogen or oxygen atoms. The
oxygen bonded in the graphene lattice or on the basal plane produces a charge transfer [44]
and the carrier concentration of the CNWs becomes slightly higher [45].

3.2.1. Sample I, Low Disorder

The interference effect between the charges’ carriers is most pronounced in low-
dimensional systems (such as graphene) because there are higher probabilities to intersect
their own path, leading to the weak localization (WL). The McCann’s model [46] is used to
confirm the presence of weak localization and antilocalization. It points out that the phase
of interference correction to the magnetoresistance in graphene can be expressed as follows:

∆R = −R2 e2

πh

[
F
(

2τϕ

τB

)
− F

(
2

τB(τϕ
−1+2τi

−1)

)
−2F

(
2

τB(τϕ
−1+τi

−1+τ∗−1)

)] (4)

where ∆R = R(B) − R(0), F(z) = lnZ + ψ
(

1
2 + 1

Z

)
and ψ is the Digamma Function.

Moreover, τB = h
2eDB , τ−1

∗ = τ−1
s + τ−1

w , D is the diffusion coefficient and e de charge of
electron. The τw

−1 and τs
−1 are the trigonal warping and elastic scattering rate, respectively.

The intervalley scattering τi
−1 is an elastic process wherein a charge is scattered from the

edges or defects with the size of the order of the lattice space (adatoms and vacancies) [47],
while the phase coherence τϕ

−1 is originated via electron-phonon scattering. The quantum
correction to the conductivity occurs when τϕ

−1 < τi
−1. The first term in Equation (4)

corresponds to WL, while both the second and third terms correspond to WAL.
Figure 6a shows the ∆R as a function of the magnetic field for Sample I. The good fit

with the McCann’s model (represented in black lines) confirms the apparition of the WL
and WAL effect. The transition from WL to WAL occurs around 0.7 T, at low temperature
(below 100 K), with a displacement along the x-axis for higher temperatures (above 100 K).
This last one corresponds to the reduction of the τϕ

−1/τi
−1 relation (3.5 to 2.7 for T = 100 K

and T = 250 K, respectively); see Figure 6b, the green line. Above 100 K, the τi
−1 increases

with more rate than τϕ
−1, probably by an addition of electron-like carriers from interfaces

and impurities (interstitials, excess atoms or ions). In Figure 6b (red line), the temperature
causes an increment of the number of phonons, which could be released from the substrate,
thus improving the phase coherence τϕ

−1.
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A general view of the WL-to-WAL transition can be seen in Figure 7a, which represents
the 3D magnetoresistance as a function of the magnetic field and temperature. It denotes
an evident crossover around 100 K, where, above this temperature, the negative values of
MR (blue region) achieve a higher magnetic field.
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3.2.2. Sample II, High Disorder

Sample II shows a linear positive MR only below 2 T on approximately all ranges of
temperature (40–75 K and 120–250 K) and a negative MR for the higher magnetic field (see
Figures 8 and 9a). The MR varies fundamentally with the magnetic field and slightly with
the temperature.
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The transition from WL to WAL is suppressed for Sample II. The linear positive MR at
low field (below 2 T) could be associated with in-plane graphene transport via a hopping
mechanism due to the large number of defects. This is in agreement with the results
obtained by Kovelevich and coworkers [48] in graphite with disorder and Shlimak and
collaborators [49] in irradiated monolayer. The process is based on the spin polarization
and the electron–electron interaction [50]. At a low magnetic field, the spin polarization
of localized electrons into a single graphene layer dominates rather than magneto-orbital
effects. As the magnetic field increases, more localized sites present a spin aligned to the
field, and the hops are suppressed through Pauli blockade, leading to a positive MR [51].
This positive MR has no limitation for the observation at high temperatures, which is
consistent with our result. Above 2 T, the hops are canceled due to the Pauli blockade,
and the transport is dominated by diffusion of electrons associated with the negative
and quadratic magnetic field dependence of the MR. The electronic charges could be
scattered among graphene nanocrystallites that reduce the carrier mean free path. Zhou
and collaborators [52] also reported the effect on the graphene monolayer. The negative
diffusion magnetoresistance, MRDs, is given by the following:

MRDs = −
∆l
l0

= −KB2 (5)

where ∆l is the increment of the mean free path of the charge carriers caused by the
magnetic field, l0 is the mean free path of the carrier without magnetic field and K is a
constant [5]. The lengthening of the mean free path with greater magnetic field leads to a
negative MRDs.

3.2.3. MR Isoline Maps

The MR isoline maps for both samples (Figures 7b and 9b) show below 50 K an increase
of the isoline density related to an increase of the MR variation. This effect is character-
istic of the network structure and independent of the number of defects. For making a
clear interpretation, we carried out measurements of the magnetic moment depending
on the temperature, m(T) (see Figure 10). A maxim value of the magnetization curve is
observed around 65K, indicating the presence of magnetic entities. Davami and collabora-
tors [21] also reported such behavior at T = 50 K as a result of magnetic phase transitions.
Fernandez-Rossier and collaborators [53] reported a coexistence between antiferromagnetic
and ferromagnetic order for graphene. Different origins may cause the magnetic entities,
such as the presence of carbon nanoparticles [54], the ion bombardment [55] over the
sample during the deposition, defects such as domains and interfaces, and chemisorption
of hydrogen and oxygen [56,57].
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The maximum of the magnetization occurs approximately in the time with the varia-
tion the MR isoline density at 50 K. During the sweeping of the magnetic field to 7 T in the
MT measurements, the electrons are spin-polarized with the field, and the scattering effect
would be spin dependent, which should cause the variation of the MR isoline density.

4. Conclusions

The variation of the deposition temperature strongly modified the disorder and graphi-
tization of the CNWs, and this, in turn, modified the magnetotransport properties. Sample
I revealed a negative MR caused by weak localization in the presence of defects and a
transition to the WAL effect, as is characteristic to the in-plane graphene transport. How-
ever, the highly disordered structure, Sample II, led to the Hopping mechanism and a
diffusion transport from extrinsic electron scattering on graphene nanocrystallites. At a
low temperature (15 K), Sample I enhanced a maxim |MR| at 0.2%, while Sample II at 0.8%.
The MR isoline maps for both samples show, below 50 K, an increase of the isoline density
associated with the presence of magnetic entities. The microstructural tunability of the
CNWs obtained introduces new perspectives for magneto-electronic devices.
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