Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,750)

Search Parameters:
Keywords = carbohydrate foods

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 555 KB  
Article
Formulation and Nutritional Evaluation of Instant Vegan Mushroom (Pleurotus ostreatus) Soup Powder Enriched with Moringa (Moringa oleifera), Mung Bean (Vigna radiata), and Pumpkin (Cucurbita maxima)
by Chamodi Pamalka, Melani Raymond, Nadeera Gayan, Iain A. Brownlee and Geethika Savindhi Gammeddegoda Liyanage
Foods 2026, 15(3), 445; https://doi.org/10.3390/foods15030445 - 26 Jan 2026
Abstract
Although plant-based convenience foods have gained significant market share, many are high in fat, salt, and sugar while low in nutrients. The current study aimed to develop a vegan oyster mushroom soup powder enriched with moringa, mung bean, and pumpkin. These ingredients were [...] Read more.
Although plant-based convenience foods have gained significant market share, many are high in fat, salt, and sugar while low in nutrients. The current study aimed to develop a vegan oyster mushroom soup powder enriched with moringa, mung bean, and pumpkin. These ingredients were chosen for their high nutritional value and availability. Four soup formulas, each containing varying amounts of moringa (0%, 1%, 2%, and 3%), were prepared, and a sensory evaluation, proximate analysis, and total aerobic plate count were carried out. The 1% moringa formulation showed the highest consumer acceptance. In this formula, moisture, ash, protein, fat, fiber, carbohydrate, and energy content were reported as 13.6%, 7.6%, 16.3%, 2.2%, 9.8%, 50.5%, and 287 kcal/100 g, respectively. The novel powdered soup product had higher amounts of phenolic compounds, total antioxidants, and iron compared to local, commercially available equivalents. Total aerobic plate counts remained below 105 CFU/g; a common acceptability limit for dried soups, throughout the 4-month storage study under ambient conditions. Overall, the developed soup powder demonstrated superior nutritional quality and could support consumers in meeting their daily nutrient requirements. With further refinement, particularly by optimizing the drying process to better retain heat-sensitive nutrients, this product shows potential as an affordable and nutritious option to address inadequate protein intake and iron deficiency in Sri Lanka. Full article
(This article belongs to the Special Issue Edible Mushroom: Nutritional Properties and Its Utilization in Foods)
Show Figures

Figure 1

14 pages, 1284 KB  
Article
Edible Coatings Based on Bacterial Nanocellulose and Its Functionalization Extend Postharvest Strawberry Conservation
by María Julieta Moreno, Verónica Eugenia Ruiz, Exequiel Elías González, Marcos Gabriel Derita and María Eugenia Sesto Cabral
Agronomy 2026, 16(3), 310; https://doi.org/10.3390/agronomy16030310 - 26 Jan 2026
Abstract
Strawberry is a non-climacteric fruit with a short postharvest shelf life. Recently, edible coatings have attracted the attention of the food industry. Cellulose is the most abundant carbohydrate polymer on Earth, and is also a renewable natural material, biocompatible with food. This work [...] Read more.
Strawberry is a non-climacteric fruit with a short postharvest shelf life. Recently, edible coatings have attracted the attention of the food industry. Cellulose is the most abundant carbohydrate polymer on Earth, and is also a renewable natural material, biocompatible with food. This work aimed to evaluate the postharvest quality of strawberries coated with edible coatings based on hydroxypropylmethylcellulose (HPMC) and bacterial nanocellulose (BNC) and its functionalization, using vegetal extracts with reported antifungal activity. Five treatments were applied on postharvest strawberries: C (control, with no coating); Cel (HPMC:BNC in a 95:5 ratio); EPAC (cellulose + Persicaria acuminata extract); EO (cellulose + Pelargonium graveolens essential oil) and CBZ (cellulose + carbendazim). Weight, firmness, total soluble solids, titratable acidity, ripe index, respiration rate, ethylene production rate, and natural fungal incidence were measured. Furthermore, the C and Cel fruit surface was observed by SEM. Cel and EPAC treatments proved to be beneficial in maintaining the quality of the treated fruit during storage. Both coatings contributed to a lower weight loss and firmness. They also decreased the respiratory rate and the natural fungal incidence, delaying the senescence of the treated strawberries. These treatments can be alternatives to extend strawberry life postharvest. Full article
Show Figures

Figure 1

23 pages, 926 KB  
Review
Acrylamide in Food: From Maillard Reaction to Public Health Concern
by Gréta Törős, Walaa Alibrahem, Nihad Kharrat Helu, Szintia Jevcsák, Aya Ferroudj and József Prokisch
Toxics 2026, 14(2), 110; https://doi.org/10.3390/toxics14020110 - 23 Jan 2026
Viewed by 138
Abstract
Acrylamide is a heat-induced food contaminant that can be formed through the Maillard reaction between reducing sugars and asparagine in carbohydrate-rich foods. It is recognized as having carcinogenic, neurotoxic, and reproductive risks, prompting global regulatory and research attention. This review synthesizes recent advances [...] Read more.
Acrylamide is a heat-induced food contaminant that can be formed through the Maillard reaction between reducing sugars and asparagine in carbohydrate-rich foods. It is recognized as having carcinogenic, neurotoxic, and reproductive risks, prompting global regulatory and research attention. This review synthesizes recent advances (2013–2025) in understanding acrylamide’s formation mechanisms, detection methods, mitigation strategies, and health implications. Analytical innovations such as LC–MS/MS have enabled detection at trace levels (≤10 µg/kg), supporting process optimization and compliance monitoring. Effective mitigation strategies combine cooking adjustments, ingredient reformulation, and novel technologies, including vacuum frying, ohmic heating, and predictive modeling, which can achieve up to a 70% reduction in certain food categories. Dietary polyphenols and fibers also hold promise, lowering acrylamide formation and bioavailability through carbonyl trapping and enhanced detoxification. However, significant gaps remain in bioavailability assessment, analysis of metabolic fate (glycidamide conversion), and standardized global monitoring. This review emphasizes that a sustainable reduction in dietary acrylamide requires a multidisciplinary framework integrating mechanistic modeling, green processing, regulatory oversight, and consumer education. Bridging science, industry, and policy is essential to ensure safer food systems and minimize long-term public health risks. Full article
Show Figures

Graphical abstract

13 pages, 1056 KB  
Article
A Methodological Framework for Aggregating Branded Food Composition Data in mHealth Nutrition Databases: A Case Presentation
by Antonis Vlassopoulos, Stefania Xanthopoulou, Sofia Eleftheriou, Ioannis Koutsias, Maria C. Giannakourou, Anastasia Kanellou and Maria Kapsokefalou
Nutrients 2026, 18(2), 359; https://doi.org/10.3390/nu18020359 - 22 Jan 2026
Viewed by 71
Abstract
Background/Objectives: Up-to-date, relevant and detailed food composition databases (FCDs) are a central component of mHealth apps. Thus, the expansion and/or update of such FCDs though the aggregation of branded food data (BFCDs) could prove as a cost-efficient methodology. However, a framework for [...] Read more.
Background/Objectives: Up-to-date, relevant and detailed food composition databases (FCDs) are a central component of mHealth apps. Thus, the expansion and/or update of such FCDs though the aggregation of branded food data (BFCDs) could prove as a cost-efficient methodology. However, a framework for data aggregation from BFCDs has yet to be documented. Methods: Products (n = 3988) available in the HelTH BFCD were grouped following a three-step process. Firstly, foods were grouped based on their name, and then the aggregated nutritional composition was tested for heterogeneity using a coefficient of variation cut-off of 20% followed by a search of the ingredient list and other product characteristics to identify descriptors that reduced heterogeneity. Results: Following a three-step process, n = 347 new generic food names were proposed, each derived from at least three branded products, of which n = 235 were populated with aggregated nutritional content values. We found that 95.3%, 88.6%, 86% and 82.6% of aggregated energy, protein, carbohydrate and sodium values, respectively, had a coefficient of variation <40%. Aggregated saturated fatty acid and total sugar values were less likely to fall in the homogeneity level (76.3% and 65.3%, respectively). The heterogeneity was concentrated in specific subcategories like baked goods, milk products and milk imitation products, primarily. Conclusions: BFCDs can be used as a resource to expand existing databases with relatively homogeneous and up-to-date nutritional composition data. The application of this framework on larger datasets could improve the generic food name yield and homogeneity and support mHealth apps and other uses. Full article
(This article belongs to the Section Nutrition Methodology & Assessment)
Show Figures

Figure 1

15 pages, 1807 KB  
Article
Inverse Associations of Acetic Acid Intake with Carbohydrate, Sugar, and Saturated Fat Intakes Among Japanese Adults Aged 20 to 69 Years
by Risako Yamamoto-Wada, Joto Yoshimoto, Yoshino Kodaira, Kanako Deguchi, Yuto Aoki, Mikiya Kishi and Katsumi Iizuka
Nutrients 2026, 18(2), 318; https://doi.org/10.3390/nu18020318 - 19 Jan 2026
Viewed by 283
Abstract
Background: Acetic acid has been suggested to have health benefits. Our previous exploratory study linked acetic acid intake to higher protein and vitamin consumption, but relationships with age and sex remained unclear. Objective: This study examined associations between acetic acid intake, age, and [...] Read more.
Background: Acetic acid has been suggested to have health benefits. Our previous exploratory study linked acetic acid intake to higher protein and vitamin consumption, but relationships with age and sex remained unclear. Objective: This study examined associations between acetic acid intake, age, and sex, and explored nutrient correlates after adjusting for age, sex, and energy intake. Methods: Dietary data from 12,074 Japanese adults aged 20–69 years, collected via the Asken food-tracking app, were analyzed. Two-way ANOVA assessed effects of age, sex, and their interaction on acetic acid intake. Multiple linear regressions examined associations between acetic acid intake and nutrient intakes. Model 1 adjusted for age and sex; Model 2 additionally adjusted for total energy intake. Results: Participants included 3038 men (47.8 ± 11.9 y) and 9036 women (42.4 ± 11.8 y). Acetic acid intake was higher among men and older participants (sex: F = 11.0, p < 0.001; age: F = 9.1, p < 0.001). In Model 1, acetic acid intake correlated positively with most nutrients. After adjusting for energy (Model 2), negative associations were found with carbohydrates, sugars, starches, saturated fat, and butyric acid (all p < 0.05). Conclusions: Individuals with higher acetic acid intake tended to consume fewer carbohydrates and saturated fats, even at equivalent energy intake. These findings suggest that acetic acid-containing diets may reduce the intake of starches and saturated fatty acids, potentially contributing to obesity prevention. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

27 pages, 2278 KB  
Article
Germination as a Sustainable Green Pre-Treatment for the Recovery and Enhancement of High-Value Compounds in Broccoli and Kale
by Christine (Neagu) Dragomir, Corina Dana Misca, Sylvestre Dossa, Daniela Stoin, Ariana Velciov, Călin Jianu, Isidora Radulov, Mariana Suba, Catalin Ianasi and Ersilia Alexa
Molecules 2026, 31(2), 350; https://doi.org/10.3390/molecules31020350 - 19 Jan 2026
Viewed by 122
Abstract
Germination is widely recognized as an effective strategy to enhance the nutritional quality and reduce anti-nutritional factors in plant foods. This study evaluated the impact of germination on Cruciferous vegetables (family Cruciferae or Brassicaceae) broccoli and kale by assessing changes in proximate [...] Read more.
Germination is widely recognized as an effective strategy to enhance the nutritional quality and reduce anti-nutritional factors in plant foods. This study evaluated the impact of germination on Cruciferous vegetables (family Cruciferae or Brassicaceae) broccoli and kale by assessing changes in proximate composition, macro- and microelement profiles, total and individual polyphenols, phytic acid content, antimicrobial activity, and structural characteristics using Fourier Transform Infrared Spectroscopy (FTIR) and Small- and Wide-Angle X-ray Scattering (SAXS/WAXS) analyses. Germination significantly increased protein content (30.33% in broccoli sprouts and 30.21% in kale sprouts), total phenolic content (424.40 mg/100 g in broccoli sprouts and 497.94 mg/100 g in kale sprouts), and essential minerals, while reducing phytic acid levels in both species (up to 82.20%). Antimicrobial effects were matrix-dependent, being detected in broccoli and kale seed powders, while no inhibitory activity was observed for the corresponding sprout powders under the tested conditions. FTIR spectra indicated notable modifications in functional groups related to carbohydrates, proteins, and phenolic compounds, while SAXS analysis revealed structural reorganizations at the nanoscale. Overall, germination improved the nutritional and phytochemical quality of broccoli and kale while decreasing anti-nutritional compounds, highlighting its potential to enhance the health-promoting value of Brassica sprouts. Full article
Show Figures

Graphical abstract

23 pages, 359 KB  
Article
Effect of Freeze Drying, Hot Air Drying, and Hot Air Drying Preceded by Freezing on Phytochemical Composition, Antioxidant Capacity, and Technological Properties of Mango Peels
by Sara Marçal, Ana A. Vilas-Boas, Débora A. Campos and Manuela Pintado
Foods 2026, 15(2), 333; https://doi.org/10.3390/foods15020333 - 16 Jan 2026
Viewed by 198
Abstract
Mango peels have great potential for upcycling in the food industry. This study addressed important knowledge gaps regarding mango peel drying, namely, the effect of drying on mango peels’ bound phenolics, and the impact of prior freezing on the composition of hot air-dried [...] Read more.
Mango peels have great potential for upcycling in the food industry. This study addressed important knowledge gaps regarding mango peel drying, namely, the effect of drying on mango peels’ bound phenolics, and the impact of prior freezing on the composition of hot air-dried mango peels. Hence, the effect of freeze drying (FD) (0.10 mbar; −63 °C (condenser temperature); 25 °C (shelf temperature); 96 h), hot air drying (HAD) (65 °C; 48 h), and HAD preceded by freezing (FZ + HAD) (−20 °C; 30 days) on mango peels’ composition, antioxidant capacity, and technological properties was evaluated. Drying did not affect fiber content; however, it caused slight modifications in carbohydrate composition of fiber. Regarding antioxidant compounds, FD, HAD, and FZ + HAD reduced vitamin C by 9%, 53%, and 71%, respectively. FD preserved all free phenolics, while HAD and FZ + HAD decreased most of them, with reductions ranging from 20 to 42% and 17 to 71%, respectively. However, FD, HAD, and FZ + HAD reduced 9, 2, and 6 of the 10 bound phenolics identified, respectively, and decreased their antioxidant capacity. Finally, all identified carotenoids were reduced by FZ + HAD, whereas FD and HAD decreased only violaxanthin. Regarding technological properties, FD showed the highest and lowest oil and water absorption capacities. In conclusion, these findings demonstrated that prior freezing exacerbated the loss of antioxidants during HAD. Full article
Show Figures

Graphical abstract

32 pages, 2245 KB  
Review
Brown Algae-Derived Polysaccharides: From Sustainable Bioprocessing to Industrial Applications
by Houssem Khammassi, Taheni Bouaziz, Mariam Dammak, Pascal Dubesay, Guillaume Pierre, Philippe Michaud and Slim Abdelkafi
Polysaccharides 2026, 7(1), 10; https://doi.org/10.3390/polysaccharides7010010 - 16 Jan 2026
Viewed by 361
Abstract
Brown seaweeds are marine bioresources rich in bioactive compounds such as carbohydrates, proteins, pigments, fatty acids, polyphenols, vitamins, and minerals. Among these substances, brown algae-derived polysaccharides (alginate, fucoidan, and laminarin) have promising industrial prospects owing to their distinctive structural features and diverse biological [...] Read more.
Brown seaweeds are marine bioresources rich in bioactive compounds such as carbohydrates, proteins, pigments, fatty acids, polyphenols, vitamins, and minerals. Among these substances, brown algae-derived polysaccharides (alginate, fucoidan, and laminarin) have promising industrial prospects owing to their distinctive structural features and diverse biological activities. Consequently, processing technologies have advanced substantially to address industrial requirements for biopolymer quality, cost-effectiveness, and sustainability. Over the years, significant progress has been made in developing various advanced methods for the sake of extracting, purifying, and structurally characterizing polysaccharides. Aside from that, numerous studies reported their broad spectrum of biological activities, such as antioxidant, anti-inflammatory, anticoagulant, and antimicrobial properties. Furthermore, these substances have various industrial, pharmaceutical, bioenergy, food, and other biotechnology applications. The present review systematically outlines the brown algae-derived polysaccharides treatment process, covering the entire value chain from seaweed harvesting to advanced extraction methods, while highlighting their biological activities and industrial potential as well. Full article
Show Figures

Graphical abstract

40 pages, 2989 KB  
Systematic Review
The Genus Leccinum: Global Advances in Taxonomy, Ecology, Nutritional Value, and Environmental Significance
by Ruben Budau, Simona Ioana Vicas, Mariana Florica Bei, Danut Aurel Dejeu, Lucian Dinca and Danut Chira
J. Fungi 2026, 12(1), 70; https://doi.org/10.3390/jof12010070 - 16 Jan 2026
Viewed by 527
Abstract
Leccinum is an ecologically significant and taxonomically complex genus of ectomycorrhizal fungi widely distributed across boreal, temperate, Mediterranean, and selected tropical regions. Despite its ecological, nutritional, and applied importance, no comprehensive review has previously synthesized global knowledge on this genus. This work provides [...] Read more.
Leccinum is an ecologically significant and taxonomically complex genus of ectomycorrhizal fungi widely distributed across boreal, temperate, Mediterranean, and selected tropical regions. Despite its ecological, nutritional, and applied importance, no comprehensive review has previously synthesized global knowledge on this genus. This work provides the first integrative assessment of Leccinum research, combining a bibliometric analysis of 293 peer-reviewed publications with an in-depth qualitative synthesis of ecological, biochemical, and environmental findings. Bibliometric results show increasing scientific attention since the mid-20th century, with major contributions from Europe, Asia, and North America, and dominant research themes spanning taxonomy, ecology, chemistry, and environmental sciences. The literature review highlights substantial advances in phylogenetic understanding, species diversity, and host specificity. Leccinum forms ectomycorrhizal associations with over 60 woody host genera, underscoring its functional importance in forest ecosystems. Nutritionally, Leccinum species are rich in proteins, carbohydrates, minerals, bioactive polysaccharides, phenolic compounds, and umami-related peptides, with demonstrated antioxidant, immunomodulatory, and antitumor activities. At the same time, the genus exhibits notable bioaccumulation capacity for heavy metals (particularly Hg, Cd, and Pb) and radionuclides, making it both a valuable food source and a sensitive environmental bioindicator. Applications in biotechnology, environmental remediation, forest restoration, and functional food development are emerging but remain insufficiently explored. Identified research gaps include the need for global-scale phylogenomic frameworks, expanded geographic sampling, standardized biochemical analyses, and deeper investigation into physiological mechanisms and applied uses. This review provides the first holistic synthesis of Leccinum, offering an integrated perspective on its taxonomy, ecology, nutritional composition, environmental significance, and practical applications. The findings serve as a foundation for future mycological, ecological, and biotechnological research on this diverse and understudied fungal genus. Full article
(This article belongs to the Special Issue Research Progress on Edible Fungi)
Show Figures

Figure 1

16 pages, 1055 KB  
Article
Associations Between Consumption of Ultra-Processed Foods and Diet Quality Among Children and Adolescents
by Evgenia Petridi, Emmanuella Magriplis, Sotiria Kotopoulou, Niki Myrintzou, Evelina Charidemou, Elena Philippou and Antonis Zampelas
Nutrients 2026, 18(2), 272; https://doi.org/10.3390/nu18020272 - 14 Jan 2026
Viewed by 323
Abstract
Background: Ultra-processed foods (UPFs) have emerged as a critical component of diet quality, yet data on the associations between UPF and nutrient intakes remain limited. This study aimed to evaluate nutrient consumption in relation to UPF intake and adherence to international dietary [...] Read more.
Background: Ultra-processed foods (UPFs) have emerged as a critical component of diet quality, yet data on the associations between UPF and nutrient intakes remain limited. This study aimed to evaluate nutrient consumption in relation to UPF intake and adherence to international dietary guidelines for non-communicable disease (NCD) prevention. Methods: Data from 469 individuals aged 2–18 years enrolled in the Hellenic National Nutrition and Health Survey (HNNHS) were analyzed. Intakes were assessed using two 24 h recalls, and foods were classified according to the NOVA system. Participants were categorized by UPF energy intake tertiles. Nutrient adequacy was assessed using Nordic Nutrition Recommendations, European Society of Cardiology guidelines for macronutrients, and the Institute of Medicine’s Estimated Average Requirements and Adequate Intake values for micronutrients. Results: Children in the highest UPF tertile had significantly higher intakes of energy, carbohydrates, added sugars, saturated fats, polyunsaturated fats, and cholesterol, but lower intakes of protein compared to those in the lowest tertile. Fiber intake remained inadequate across all tertiles, with no significant differences. Regarding adherence to NCD prevention guidelines, children in the 3rd UPF tertile had a 2.3 times higher prevalence ratio for exceeding added sugar recommendations, while their protein intake prevalence ratio was 0.8 times lower. For micronutrients, the highest UPF tertile showed significantly elevated intakes of vitamins E, B1, folate, calcium, iron, copper, and sodium, but lower potassium intake compared to the lowest tertile. Conclusions: Our results underscore the need for effective public health strategies to improve diet quality in children and adolescents and prevent diet-related NCDs. Full article
(This article belongs to the Special Issue Ultra-Processed Foods and Chronic Diseases Nutrients)
Show Figures

Figure 1

17 pages, 1870 KB  
Article
Non-Invasive Blood Glucose Monitoring via Multimodal Features Fusion with Interpretable Machine Learning
by Ying Shan and Junsheng Yu
Appl. Sci. 2026, 16(2), 790; https://doi.org/10.3390/app16020790 - 13 Jan 2026
Viewed by 258
Abstract
This study aimed to develop a non-invasive blood glucose estimation method by integrating wearable multimodal signals, including photoplethysmography (PPG), electrodermal activity (EDA), and skin temperature (ST), with food log–derived nutritional features, and to validate its clinical reliability. We analyzed data from 16 adults [...] Read more.
This study aimed to develop a non-invasive blood glucose estimation method by integrating wearable multimodal signals, including photoplethysmography (PPG), electrodermal activity (EDA), and skin temperature (ST), with food log–derived nutritional features, and to validate its clinical reliability. We analyzed data from 16 adults who underwent continuous glucose monitoring (CGM) while multimodal physiological signals were collected over 8–10 consecutive days, yielding more over 20,000 paired samples. Features from food logs and physiological signals were extracted, followed by feature selection using Boruta and minimum Redundancy Maximum Relevance (mRMR). Five machine learning models were trained and evaluated using five-fold cross-validation. Food log features alone demonstrated stronger predictive power than unimodal physiological signals. The fusion of nutritional, physiological, and temporal features achieved the best accuracy using LightGBM, reducing the RMSE to 12.9 mg/dL, with a MARD of 7.9%, a MAE of 8.82 mg/dL, and R2 of 0.69. SHapley Additive exPlanations (SHAP) analysis revealed that 24-h carbohydrate and sugar intake, time since last meal, and short-term EDA features were the most influential predictors. By integrating multimodal wearable and dietary information, the proposed framework significantly enhances non-invasive glucose estimation. The interpretable LightGBM model demonstrates promising clinical utility for continuous monitoring and early dysglycemia management. Full article
(This article belongs to the Special Issue AI-Based Biomedical Signal Processing—2nd Edition)
Show Figures

Figure 1

19 pages, 418 KB  
Article
Dietary Assessment and Trends Among Preschoolers in South Korea: Data from KNHANES 2012–2021
by Yong-Seok Kwon, Ye-Jun Kim, Eun-Kyung Kim, Jin-Young Lee, Yangsuk Kim and Sohye Kim
Nutrients 2026, 18(2), 240; https://doi.org/10.3390/nu18020240 - 12 Jan 2026
Viewed by 202
Abstract
Objective: This study aims to investigate the dietary assessment and trends of preschoolers aged 3 to 5 years in Korea from 2012 to 2021 and to provide basic data for early childhood dietary education and policy development. Methods: Data from the Korea National [...] Read more.
Objective: This study aims to investigate the dietary assessment and trends of preschoolers aged 3 to 5 years in Korea from 2012 to 2021 and to provide basic data for early childhood dietary education and policy development. Methods: Data from the Korea National Health and Nutrition Examination Survey (KNHANES) from 2012 to 2021 were analyzed for 2510 children in the 3–5 age group. Dietary intake was assessed using a 24 h recall. Intakes of food groups, dishes, and nutrients were calculated, and trends across years were tested using generalized linear models adjusted for gender, age, household income, energy intake, mother’s age, and mother’s education. Results: Over the tenyear period, intakes of carbohydrates, phosphorus, iron, sodium, potassium, carotene, thiamine, niacin, and vitamin C, as well as the carbohydrate energy ratio, showed significant declines. Meanwhile, protein, fat, retinol, and riboflavin increased, as did the protein and fat energy ratios. Fruit intake decreased by approximately 42 g among food group intakes. Analysis of foods contributing to total food intake revealed that milk, white rice, apples, and eggs consistently accounted for a high proportion of total intake in all survey years. Average calcium intake was approximately 100 mg below the estimated average requirement. Conclusions: The results of this study showed that preschoolers exhibit insufficient intake of certain nutrients, such as calcium, and a decrease in fruit intake. Interventions are needed to establish regular meal patterns, promote plant food intake such as fruit, and improve calcium intake. These results provide valuable evidence for designing dietary education programs and dietary guidelines tailored to early childhood. Full article
Show Figures

Figure 1

17 pages, 1810 KB  
Article
Nutrients and Bioactive Compounds in Peruvian Pacay (Inga feuilleei D.C.)
by Mario Cotacallapa-Sucapuca, Rosa M. Cámara, María Ciudad-Mulero, Genciana Serruto-Medina, Romualdo Vilca-Curo, Claudia Arribas, Mercedes M. Pedrosa, Patricia Morales and Montaña Cámara
Foods 2026, 15(2), 278; https://doi.org/10.3390/foods15020278 - 12 Jan 2026
Viewed by 251
Abstract
Pacay (Inga feuilleei D.C.) is a species native to Peru. To the author’s knowledge, the only information found in the literature reference of the chemical composition of the pacay’s edible part (fruit) corresponds to the Peruvian table of food composition of the [...] Read more.
Pacay (Inga feuilleei D.C.) is a species native to Peru. To the author’s knowledge, the only information found in the literature reference of the chemical composition of the pacay’s edible part (fruit) corresponds to the Peruvian table of food composition of the Ministry of Health. Considering the lack of information on this important plant, this study aims to (1) compare the nutritional profiles of the Limeña and Corriente varieties, (2) evaluate the distribution of bioactive compounds across the fruit’s principal fractions (pulp, seed, and peel/mesocarp), and (3) determine the antioxidant capacity and bioactives associated with each fraction. Results showed clear differences both between plant tissues and between genotypes. The edible part showed high amounts of carbohydrates (84–87%), seeds are rich in protein (18–21%), and peels are rich in fiber (around 34%). Amylopectin was the majority starch fraction (86%) found in pacay seeds. All pacay fractions stand out for their high content of total polyphenols, being higher in the case of the peel (1843 mg GAE/100 g). Hydroxycinnamic acids content (40–136 mg FAE/100 g) was higher than the flavonols (18–50 mg GAE/100 g), and both were present in higher amounts in the case of the seed fraction. These findings could be important to enhance the knowledge about this species and its revalorization as functional ingredients to be used in food formulation. Full article
(This article belongs to the Special Issue Health Benefits of Bioactive Compounds from Vegetable Sources)
Show Figures

Figure 1

26 pages, 2373 KB  
Review
Sargassum: Turning Coastal Challenge into a Valuable Resource
by Adrián Fagundo-Mollineda, Yolanda Freile-Pelegrín, Román M. Vásquez-Elizondo, Erika Vázquez-Delfín and Daniel Robledo
Biomass 2026, 6(1), 9; https://doi.org/10.3390/biomass6010009 - 12 Jan 2026
Viewed by 493
Abstract
The massive influx of pelagic Sargassum in the Caribbean poses a serious environmental, social, and economic problem, as the stranded biomass is often treated as waste and deposited in landfills. This literature review synthesizes recent research highlighting its potential for valorization in various [...] Read more.
The massive influx of pelagic Sargassum in the Caribbean poses a serious environmental, social, and economic problem, as the stranded biomass is often treated as waste and deposited in landfills. This literature review synthesizes recent research highlighting its potential for valorization in various industries, turning this challenge into an opportunity. Sargassum has low levels of protein and lipids. Still, it is particularly rich in carbohydrates, such as alginates, fucoidans, mannitol, and cellulose, as well as secondary metabolites, including phenolic compounds, flavonoids, pigments, and phytosterols with antioxidant and bioactive properties. These biochemical characteristics allow for its application in renewable energy (bioethanol, biogas, biodiesel, and combustion), agriculture (fertilizers and biostimulants), construction (composite materials, cement additives, and insulation), bioremediation (adsorption of heavy metals and dyes), and in the health sector (antioxidants, anti-inflammatories, and pharmacological uses). A major limitation is its high bioaccumulation capacity for heavy metals, particularly arsenic, which increases environmental and health risks and limits its direct use in food and feed. Therefore, innovative pretreatment and bioprocessing are essential to mitigate these risks. The most promising approach for its utilization is a biorefinery model, which allows for the sequential extraction of multiple high-value compounds and energy products to maximize benefits, reduce costs, and sustainably transform Sargassum from a coastal pest into a valuable industrial resource. Full article
(This article belongs to the Topic Biomass for Energy, Chemicals and Materials)
Show Figures

Figure 1

16 pages, 2073 KB  
Article
The Seasonal Diet Selection and Nutritional Niche of Mule Deer in a Chihuahuan Semi-Desert
by John F. Aristizabal, Nadiel Y. Almanza-Ortiz, Cuauhcihuatl Vital-García, Nicoletta Righini and Martha P. Olivas-Sánchez
Wild 2026, 3(1), 3; https://doi.org/10.3390/wild3010003 - 12 Jan 2026
Viewed by 174
Abstract
Ruminant herbivores interact dynamically with their food resources, especially in deserts, where plant availability fluctuates sharply across seasons. We evaluated how seasonal food availability and the nutritional traits of preferred plants shape the diet and macronutrient niche of a desert mule deer ( [...] Read more.
Ruminant herbivores interact dynamically with their food resources, especially in deserts, where plant availability fluctuates sharply across seasons. We evaluated how seasonal food availability and the nutritional traits of preferred plants shape the diet and macronutrient niche of a desert mule deer (Odocoileus hemionus) population in the buffer zone of the Médanos de Samalayuca protected area, northern Mexico. From 2021 to 2022 we quantified seasonal food plant availability and characterized mule deer diet using microhistological fecal analysis and the nutrient content by right-angled mixture triangles. Mule deer diets were consistently low in diversity and dominated by grass, but preferred species shifted seasonally among shrubs, succulents, and grasses. Deer strongly selected some plant species that were scarce in the landscape, particularly during the cold-dry season. Preferred plants generally had high carbohydrate and variable protein contents, with the highest protein proportions in the temperate-dry season. Mixture triangles showed a narrow, carbohydrate-biased macronutrient niche, with the broadest range of nutrient mixtures in the temperate-dry season. Overall, our results support an opportunistic foraging strategy in which mule deer consume what is seasonally available while selectively using key plant species to maintain a relatively constant nutritional balance under limited and variable food resources. Full article
Show Figures

Figure 1

Back to TopTop