Nutrients and Bioactive Compounds in Peruvian Pacay (Inga feuilleei D.C.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Proximate Analysis
2.2. Soluble Sugars and α-Galactosides
2.3. Starch, Amylose, and Amylopectin
2.4. Micronutrients: Vitamin C and Minerals
2.5. Total Phenolic Compounds and Phenolic Families
2.5.1. Analysis of Total Phenolic Compounds by QUENCHER Methodology
2.5.2. Analysis of Total Hydroxycinnamic Acids by QUENCHER Methodology
2.5.3. Analysis of Total Flavonols by QUENCHER Methodology
2.6. Antioxidant Capacity
2.7. Statistical Analysis
3. Results and Discussion
3.1. Proximate Analysis Results
3.2. Carbohydrate Fraction: Sugars and Oligosaccharides, Starch, Amylose and Amylopectin
3.3. Micronutrients: Vitamin C and Minerals
3.4. Bioactives: Total Phenolic Compounds, Phenolic Families, and Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bravo, K.; Alzate, F.; Osorio, E. Fruits of selected wild and cultivated Andean plants as sources of potential compounds with antioxidant and anti-aging activity Original. Crops Prod. 2016, 85, 341–352. [Google Scholar] [CrossRef]
- Harris, J.; van Zonneveld, M.; Achigan-Dako, E.G.; Bajwa, B.; Brouwer, I.D.; Choudhury, D.; de Jager, I.; de Steenhuijsen Piters, B.; Dulloo, M.E.; Guarino, L.; et al. Fruit and vegetable biodiversity for nutritionally diverse diets: Challenges, opportunities, and knowledge gaps. Glob. Food Secur. 2022, 33, 100618. [Google Scholar] [CrossRef]
- FAO. Seed Biodiversity: The Life Insurance of Our Food Production. Protecting and Preserving Food Biodiversity for Resilient Agrifood Systems. 2022. Available online: https://www.fao.org/newsroom/story/Seed-biodiversity-The-life-insurance-of-our-food-production/en (accessed on 1 January 2026).
- González-Zamorano, L.; Cámara, R.M.; Morales, P.; Cámara, M. Harnessing Edible Wild Fruits: Sustainability and Health Aspects. Nutrients 2025, 17, 412. [Google Scholar] [CrossRef]
- Aparicio-Chavez, C.A. Temporal Changes in the Diversity and Composition of Tropical Andean Forest Communitie. Master’s Thesis, University of Missouri–St. Louis, St. Louis, MO, USA, 2018. Available online: https://irl.umsl.edu/thesis/342 (accessed on 1 January 2026).
- Jamanca-Gonzales, N.C.; Ocrospoma-Dueñas, R.W.; Eguilas-Caushi, Y.M.; Padilla-Fabian, R.A.; Silva-Paz, R.J. Food grain quality: Analysis of physical, biometric, and colorimetric properties to promote consumption. Heliyon 2024, 10, e29234. [Google Scholar] [CrossRef]
- Piperno, D.R.; Dillehay, T.D. Starch grains on human teeth reveal early broad crop diet in northern Peru. Proc. Natl. Acad. Sci. USA 2008, 105, 19622–19627. [Google Scholar] [CrossRef] [PubMed]
- Lim, T.K. Edible Medicinal and Non-Medicinal Plants: Fruits; Springer: London, UK; New York, NY, USA, 2012; Volume 2. [Google Scholar]
- Benjamim, J.K.F.; Dias da Costa, K.A.; Silva Santos, A. Chemical, botanical and pharmacological aspects of the leguminosae. Pharmacogn. Rev. 2020, 14, 106–120. [Google Scholar] [CrossRef]
- Pennington, T.D. The Genus Inga: Botany; Royal Botanic Gardens: Kew, UK, 1997; p. 844. [Google Scholar] [CrossRef]
- Romero, C.; Alba-López, A. Taxonomía del género Inga Mill. In Estudios en Leguminosas Colombianas; Forero, E., Romero, C., Eds.; Editora Guadalupe, L.T.D.A.: Bogotá, Colombia, 2005; p. 111130. Available online: http://accefyn-repositorio.metabiblioteca.org/handle/001/26 (accessed on 1 January 2026).
- Mostacero, J.; Mejía, F.; Gastañadui, D.; De La Cruz, J. Taxonomic, phytogeographic, and ethnobotanical inventory of native fruit trees of northern Peru. Sci. Agropecu. 2017, 8, 215–224. [Google Scholar] [CrossRef]
- Cavalcante, P.B. The Ingas of the Brazilian Amazon; Archives of the Rare Fruit Council of Australia, Tropical Fruit News: Cairns, QLD, Australia, 1994. [Google Scholar]
- Pinto Mda, S.; Ranilla, L.G.; Apostolidis, E.; Lajolo, F.M.; Genovese, M.I.; Shetty, K. Evaluation of antihyperglycemia and antihypertension potential of native Peruvian fruits using in vitro models. J. Med. Food 2009, 12, 278–291. [Google Scholar] [CrossRef]
- Rodrigues, J.K.; Cavalcanti, J.H.F.; Silva, P.O.; de Lima e Borges, E.E.; Junior, A.D.R.N.; de Carvalho Gonçalves, J.F. Unraveling relationships of prompt germination among four species of Inga Mill detected by morpho-anatomical and histochemical traits. Flora 2021, 285, 151941. [Google Scholar] [CrossRef]
- Brako, L.; Zarucchi, J.L. Catalogue of the Flowering Plants and Gymnosperms of Perú; Missouri Botanical Garden: St. Louis, MO, USA, 1996; Volume 45. [Google Scholar] [CrossRef]
- Brennan, E.B.; Mudge, K.W. Vegetative propagation of Inga feuillei from shoot cuttings and air layering. New For. 1998, 15, 37–51. [Google Scholar] [CrossRef]
- Figueiredo, M.F.; Bruno, R.L.; Barros e Silva, A.E.; Nascimento, S.; Oliveira, I.G.; Felix, L.P. Intraspecific and interspecific polyploidy of Brazilian species of the genus Inga (Leguminosae: Mimosoideae). Genet. Mol. Res. 2014, 13, 3395–3403. [Google Scholar] [CrossRef]
- Asturizaga, A.S.; Øllgaard, B.; Balslev, H. Frutos comestibles. In Botánica Económica de los Andes Centrales; Moraes, Ø.B., Mónica, R., Kvist, P., Borchsenius, F., Balslev, H., Eds.; Universidad Mayor de San Andres: La Paz, Bolivia, 2006; pp. 329–346. [Google Scholar]
- MIDAGRI. Perfil Productivo Regional Moquegua; Ministerio de Desarrollo Agrario y Riego: Moquegua, Perú, 2024.
- Caccere, R.; Teixeira, S.P.; Centeno, D.C.; Figueiredo-Ribeiro, R.D.C.L.; Braga, M.R. Metabolic and structural changes during early maturation of Inga vera seeds are consistent with the lack of a desiccation phase. J. Plant Physiol. 2013, 170, 791–800. [Google Scholar] [CrossRef]
- Silva, E.M.; Rogez, H.; da Silva, I.Q.; Larondelle, Y. Improving the desorption of Inga edulis flavonoids from macroporous resin: Towards a new model to concentrate bioactive compounds. Food Bioprod. Process. 2013, 91, 558–564. [Google Scholar] [CrossRef]
- Lojka, B.; Dumas, L.; Preininger, D.; Polesny, Z.; Banout, J. The use and integration of Inga edulis in agroforestry systems in the Amazon–review article. Agric. Trop. Subtrop. 2010, 43, 352–359. [Google Scholar]
- Cannavo, P.; Sansoulet, J.; Harmand, J.M.; Siles, P.; Dreyer, E.; Vaast, P. Agroforestry associating coffee and Inga densiflora results in complementarity for water uptake and decreases deep drainage in Costa Rica. Agric. Ecosyst. Environ. 2011, 140, 1–13. [Google Scholar] [CrossRef]
- Hergoualc’h, K.; Blanchart, E.; Skiba, U.; Hénault, C.; Harmand, J.-M. Changes in carbon stock and greenhouse gas balance in a coffee (Coffea arabica) monoculture versus an agroforestry system with Inga densiflora, in Costa Rica. Agric. Ecosyst. Environ. 2012, 148, 102–110. [Google Scholar] [CrossRef]
- de Godoi, A.M.; Faccin-Galhardi, L.C.; Rechenchoski, D.Z.; Arruda, T.B.M.G.; Cunha, A.P.; de Almeida, R.R.; Rodrigues, F.E.A.; Ricardo, N.M.P.S.; Nozawa, C.; Linhares, R.E.C. Structural characterization and antiviral activity of pectin isolated from Inga spp. Int. J. Biol. Macromol. 2019, 139, 925–931. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.M.; da Silva, J.S.; Pena, R.S.; Rogez, H. A combined approach to optimize the drying process of flavonoid-rich leaves (Inga edulis) using experimental design and mathematical modelling. Food Bioprod. Process. 2011, 89, 39–46. [Google Scholar] [CrossRef]
- Falcoski, T.O.R.; Lima, N.M.; Navegante, G.; Serafim, R.B.; Sorbo, J.M.; Valente, V.; Santos, V.N.C.; Santos, R.A.; Silva, D.H.S.; Soares, C.P. Genotoxicity, cytotoxicity and chemical profile from Inga laurina (Fabaceae). Nat. Prod. Res. 2019, 35, 676–680. [Google Scholar] [CrossRef]
- Macedo, M.L.R.; Freire, M.D.G.M.; Franco, O.L.; Migliolo, L.; de Oliveira, C.F.R. Practical and theoretical characterization of Inga laurina Kunitz inhibitor on the control of Homalinotus coriaceus. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2011, 158, 164–172. [Google Scholar] [CrossRef]
- da Silva Bezerra, C.; de Oliveira, C.F.R.; Machado, O.L.T.; de Mello, G.S.V.; da Rocha Pitta, M.G.; de Melo Rêgo, M.J.B.; Napoleao, T.H.; Paiva, P.M.G.; Ribeiro, S.D.F.F.; Gomes, V.M.; et al. Exploiting the biological roles of the trypsin inhibitor from Inga vera seeds: A multifunctional Kunitz inhibitor. Process Biochem. 2016, 51, 792–803. [Google Scholar] [CrossRef]
- Machado, S.W.; de Oliveira, C.F.R.; Zério, N.G.; Parra, J.R.P.; Macedo, M.L.R. Inga laurina trypsin inhibitor (ILTI) obstructs Spodoptera frugiperda trypsins expressed during adaptive mechanisms against plant protease inhibitors. Arch. Insect. Biochem. Physiol. 2017, 95, e21393. [Google Scholar] [CrossRef]
- Martins, A.M.; Malafaia, C.R.A.; Nunes, R.M.; Mecenas, A.S.; De Moura, P.H.B.; Muzitano, M.F.; de Barros Machado, T.; da Silva Carneiro, C.; Leal, I.C.R. Nutritional, chemical and functional potential of Inga laurina (Fabaceae): A barely used edible species. Food Res. Int. 2024, 178, 113751. [Google Scholar] [CrossRef] [PubMed]
- Tauchen, J.; Bortl, L.; Huml, L.; Miksatkova, P.; Doskocil, I.; Marsik, P.; Villegas, P.P.P.; Flores, Y.B.; Damme, P.V.; Lojka, B.; et al. Phenolic composition, antioxidant and anti-proliferative activities of edible and medicinal plants from the Peruvian Amazon. Rev. Bras. Farmacogn. 2016, 26, 728–737. [Google Scholar] [CrossRef]
- Silva, E.M.; Souza, J.N.S.; Rogez, H.; Rees, J.F.; Larondelle, Y. Antioxidant activities and polyphenolic contents of fifteen selected plant species from the Amazonian region. Food Chem. 2007, 101, 1012–1018. [Google Scholar] [CrossRef]
- Sánchez Mendoza, N.A.; Jiménez Martínez, C.; Cardador Martínez, A.; Martín del Campo Barba, S.; Dávila Ortiz, G. Caracterización física, nutricional y no nutricional de las semillas de Inga paterno. Rev. Chil. Nutr. 2026, 43, 400–407. [Google Scholar] [CrossRef]
- Reyes García, M.; Gómez-Sánchez, I.; Espinoza Barrientos, C. Tablas Peruanas de Composición de Alimentos, 10th ed.; Instituto Nacional de Salud: Lima, Peru, 2017; p. 141. [Google Scholar]
- Horwitz, W. Official Methods of Analysis of the Association of Official Analytical Chemists, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2011. [Google Scholar]
- FAO. Food and Agriculture Organization of the United Nations. Food Energy—Methods of Analysis and Conversion Factors; Fao Food and Nutrition Paper 77; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003; Available online: https://www.fao.org/4/y5022e/y5022e00.htm#Contents (accessed on 1 January 2026).
- Pedrosa, M.M.; Cuadrado, C.; Burbano, C.; Allaf, K.; Haddad, J.; Gelencsér, E.; Takács, K.; Guillamón, E.; Muzquiz, M. Effect of instant controlled pressure drop on the oligosaccharides, inositol phosphates, trypsin inhibitors and lectins contents of different legumes. Food Chem. 2012, 131, 862–868. [Google Scholar] [CrossRef]
- Arribas, C.; Cabellos, B.; Cuadrado, C.; Guillamón, E.; Pedrosa, M.M. Extrusion effect on proximate composition, starch and dietary fibre of ready-to-eat products based on rice fortified with carob fruit and bean. LWT 2019, 111, 387–393. [Google Scholar] [CrossRef]
- Guzmán, C.; Caballero, L.; Alvarez, J.B.; Yamamoric, M. Amylose content and starch properties in emmer and durum wheat lines with different waxy proteins composition. J. Sci. Food Agric. 2011, 91, 1625–1629. [Google Scholar] [CrossRef]
- Sánchez-Mata, M.C.; Cabrera Loera, R.D.; Morales, P.; Fernández-Ruiz, V.; Cámara, M.; Díez Marqués, C.; Pardo-de-Santayana, M.; Tardío, J. Wild vegetables of the Mediterranean area as valuable sources of bioactive compounds. Genet. Resour. Crop Evol. 2012, 59, 431–443. [Google Scholar] [CrossRef]
- del Pino-García, R.; García-Lomillo, J.; Rivero-Pérez, M.D.; González-San José, M.L.; Muñizz, P. Adaptation and Validation of QUick, Easy, New, CHEap, and Reproducible (QUENCHER) Antioxidant Capacity Assays in Model Products Obtained from Residual Wine Pomace. J. Agric. Food Chem. 2015, 63, 6922–6931. [Google Scholar] [CrossRef]
- Vega, E.N.; García-Herrera, P.; Ciudad-Mulero, M.; Dias, M.I.; Matallana-González, M.C.; Cámara, M.; Tardío, J.; Molina, M.; Pinela, J.; Pires, T.C.S.P.; et al. Wild sweet cherry, strawberry and bilberry as underestimated sources of natural colorants and bioactive compounds with functional properties. Food Chem. 2023, 414, 135669. [Google Scholar] [CrossRef]
- Bonoli, M.; Verardo, V.; Marconi, E.; Caboni, M.F. Antioxidant Phenols in Barley (Hordeum vulgare L.) Flour: Comparative Spectrophotometric Study among Extraction Methods of Free and Bound Phenolic Compounds. J. Agric. Food Chem. 2004, 52, 5195–5200. [Google Scholar] [CrossRef] [PubMed]
- Ciudad-Mulero, M.; Matallana-González, M.C.; Cámara, M.; Fernández-Ruiz, V.; Morales, P. Antioxidant phytochemicals in pulses and it relation to human health: A Review. Curr. Pharm. Des. 2020, 26, 1880–1897. [Google Scholar] [CrossRef]
- Cámara, M.; Fernandez-Ruiz, V.; Morales, P.; Sanchez-Mata, M.C. Fiber Compounds and Human Health. Curr. Pharm. Des. 2017, 23, 2835–2849. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Dietary Reference Values for nutrients Summary report. Eur. Food Saf. Auth. 2017, 14, e15121E. [Google Scholar] [CrossRef]
- Berto, A.; da Silva, A.F.; Visentainer, J.V.; Matsushita, M.; de Souza, N.E. Proximate compositions, mineral contents and fatty acid compositions of native Amazonian fruits. Food Res. Int. 2015, 77, 441–449. [Google Scholar] [CrossRef]
- Schulz, D.G.; Oro, P.; Volkweis, C.; de Matos Malavasi, M.; Malavasi, U.C. Maturidade Fisiológica e Morfometria de Sementes de Inga laurina (Sw.) Willd. Floresta Ambiente 2014, 21, 45–51. [Google Scholar] [CrossRef]
- Rollo, A.; Ribeiro, M.M.; Costa, R.L.; Santos, C.; Clavo, P.Z.M.; Mandák, B.; Kalousová, M.; Vebrová, H.; Chuqulin, E.; Torres, S.G.; et al. Genetic Structure and Pod Morphology of Inga edulis Cultivated vs. Wild Populations from the Peruvian Amazon. Forests 2020, 11, 655. [Google Scholar] [CrossRef]
- Gong, L.; Liu, F.; Liu, J.; Wang, J. Dietary fiber (oligosaccharide and non-starch polysaccharide) in preventing and treating functional gastrointestinal disorders—Challenges and controversies: A review. Int. J. Biol. Macromol. 2024, 258, 128835. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Mata, M.C.; Peñuela-Teruel, M.J.; Cámara-Hurtado, M.; Díez-Marqués, C.; Torija-Isasa, M.E. Determination of Mono, Di and Oligosaccharides in legumes by HPLC using an amino bonded silica column. J. Agric. Food. Chem. 1998, 46, 3648–3652. [Google Scholar] [CrossRef]
- Simões, C.D.; Maganinho, M.; Sousa, A.S. FODMAPs, inflammatory bowel disease and gut microbiota: Updated overview on the current evidence. Eur. J. Nutr. 2022, 61, 1187–1198. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Guo, X. The effect of light in vitamin C metabolism regulation and accumulation in mung bean (Vigna radiata) germination. Plant Foods Hum. Nutr. 2020, 75, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Balladares, D.; Castañeda-Terán, M.; Granda-Albuja, M.G.; Tejera, E.; Iturralde, G.; Granda-Albuja, S.; Jaramillo-Vivanco, T.; Giampieri, F.; Battino, M.; Alvarez-Suarez, J.M. Chemical composition and antioxidant activity of the main fruits, tubers and legumes traditionally consumed in the Andean regions of Ecuador as a source of health-promoting compounds. Plant Foods Hum. Nutr. 2019, 74, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Lima, N.; Flcoski, T.; Silveira, R.; Ramos, R.; Andrade, T.; Costa, P.; La Porta, F.; Almeida, M. Inga edulis fruits: A new source of bioactive anthocyanins. Nat. Prod. Res. 2019, 34, 2832–2836. [Google Scholar] [CrossRef]
- Cálamo Benza, C. Efecto Antioxidante de la Concentración de Cáscara, Pulpa y Semilla de Inga Feuillei (Pacae) Sobre los Radicales Libres. Theses, Universidad Científica del Sur, Lima, Peru, 2014. Available online: https://alicia.concytec.gob.pe/vufind/Record/USUR_8e8cf5b110339c93b6e1b6f0577a22ed (accessed on 1 January 2026).





| Sample Inga feuilleei D.C. | Sample Fraction | Sample Code |
|---|---|---|
| Limeña variety | Fruit edible fraction | PL#F |
| Seed fraction | PL#S | |
| Peel fraction (mesocarp) | PL#P | |
| Corriente variety | Fruit edible fraction | PC#F |
| Seed fraction | PC#S | |
| Peel fraction (mesocarp) | PC#P |
| Sample | ||||||
|---|---|---|---|---|---|---|
| Fruit Edible Fraction | Seed | Peel (Mesocarp) | ||||
| Variety: | Limeña | Corriente | Limeña | Corriente | Limeña | Corriente |
| Code: | PL#F | PC#F | PL#S | PC#S | PL#P | PC#P |
| Moisture | 7.66 ± 0.41 a | 9.61 ± 0.11 b | 5.24 ± 0.11 a | 7.29 ± 0.13 b | 6.37 ± 0.05 b | 5.90 ± 0.04 a |
| Carbohydrates | 86.45 ± 0.51 b | 83.97 ± 0.08 a | 71.21 ± 0.05 a | 71.54 ± 0.22 b | 74.55 ± 0.18 b | 72.37 ± 0.11 a |
| Fiber | 3.30 ± 0.08 a | 3.99 ± 0.11 b | 2.18 ± 0.19 a | 2.30 ± 0.09 a | 34.85 ± 0.02 a | 34.23 ± 0.02 a |
| Fat | 0.18 ± 0.01 b | 0.14 ± 0.01 a | 0.55 ± 0.03 b | 0.46 ± 0.04 a | 0.34 ± 0.01 a | 0.33 ± 0.02 a |
| Protein | 3.97 ± 0.07 a | 4.29 ± 0.15 b | 20.52 ± 0.11 b | 18.15 ± 0.25 a | 12.91 ± 0.13 a | 11.73 ± 0.09 a |
| Ash | 1.74 ± 0.03 a | 1.98 ± 0.00 b | 2.48 ± 0.01 a | 2.56 ± 0.04 b | 5.83 ± 0.01 a | 6.60 ± 0.03 b |
| Sample | Sucrose | Galactinol | Raffinose | Ciceritol | Unknown * | Estaquiose | Galactopinitol | Verbascose |
|---|---|---|---|---|---|---|---|---|
| Fruit edible fraction | ||||||||
| PL#F | 41.63 ± 1.31 | 0.96 ± 0.05 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
| PC#F | 36.92 ± 2.47 | 0.97 ± 0.17 | 0.42 ± 0.00 | 0.50 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
| Seed | ||||||||
| PL#S | 2.54 ± 0.01 | 0.00 ± 0.00 | 0.11 ± 0.02 | 1.48 ± 0.01 | 2.65 ± 0.07 | 0.34 ± 0.02 | 0.49 ± 0.00 | 0.92 ± 0.06 |
| PC#S | 2.72 ± 0.01 | 0.00 ± 0.00 | 0.11 ± 0.01 | 0.91 ± 0.04 | 2.96 ± 0.25 | 0.00 ± 0.00 | 0.04 ± 0.00 | 0.19 ± 0.01 |
| Peel, mesocarp | ||||||||
| PL#P | 0.58 ± 0.12 | 0.96 ±0.09 | 0.22 ± 0.01 | 4.60 ± 0.11 | 4.64 ± 0.24 | 0.95 ± 0.07 | 0.13 ± 0.01 | 0.64 ± 0.04 |
| PC#P | 4.11 ± 0.15 | 0.88 ± 0.02 | 0.00 ± 0.00 | 2.00 ± 0.05 | 1.26 ± 0.03 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.39 ± 0.02 |
| Sample | Starch (g/100 g) | Resistant Starch (g/100 g) | Amylose (%) | Amylopectin (%) | |
|---|---|---|---|---|---|
| Fruit edible fraction | PL#F | 1.86 ± 1.03 b | NQ | ND | ND |
| PC#F | 0.57 ± 0.60 a | NQ | ND | ND | |
| Seed | PL#S | 40.29 ± 1.59 a | 2.33 ± 0.24 a | 13.48 ± 0.17 a | 86.52 ± 0.17 a |
| PC#S | 47.20 ± 0.81 b | 2.31 ± 0.24 a | 13.93 ± 0.31 a | 86.07 ± 0.31 a | |
| Peel, mesocarp | PL#P | 0.34 ± 0.12 b | NQ | ND | ND |
| PC#P | 0.00 ± 0.00 a | NQ | ND | ND |
| Sample | Vitamin C (mg/100 g) | |
|---|---|---|
| Fruit edible fraction | PL#F | 3.59 ± 0.04 |
| PC#F | ND | |
| Seed | PL#S | 3.89 ± 0.16 a |
| PC#S | 3.77 ± 0.12 a | |
| Peel, mesocarp | PL#P | ND |
| PC#P | ND |
| Phenolic Compounds | Antioxidant Activity | |||
|---|---|---|---|---|
| Sample | Hydroxycinnamic Acids (mg FAE/100 g) | Flavonols (mg QE/100 g) | Total Phenolics (mg GAE/100 g) | DPPH (mg TE/g) |
| Fruit edible fraction | ||||
| PL#F | 43.55 ± 4.33 a | 18.69 ± 1.69 a | 332.55 ± 10.90 b | 16.73 ± 0.29 b |
| PC#F | 38.48 ± 3.76 a | 21.50 ± 1.93 a | 558.81 ± 22.10 c | 13.60 ± 0.63 b |
| Seed | ||||
| PL#S | 371.48 ± 25.28 e | 31.61 ± 2.95 b | 204.31 ± 7.51 a | 3.28 ± 0.25 a |
| PC#S | 328.81 ± 26.20 d | 47.54 ± 3.52 c | 234.53 ± 6.91 a | 4.72 ± 0.28 a |
| Peel, mesocarp | ||||
| PL#P | 125.86 ± 9.43 c | 31.59 ± 2.96 b | 1843.39 ± 82.59 e | 27.58 ± 2.57 c |
| PC#P | 101.97 ± 10.00 b | 32.75 ± 3.11 b | 1394.82 ± 111.65 d | 41.58 ± 1.72 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Cotacallapa-Sucapuca, M.; Cámara, R.M.; Ciudad-Mulero, M.; Serruto-Medina, G.; Vilca-Curo, R.; Arribas, C.; Pedrosa, M.M.; Morales, P.; Cámara, M. Nutrients and Bioactive Compounds in Peruvian Pacay (Inga feuilleei D.C.). Foods 2026, 15, 278. https://doi.org/10.3390/foods15020278
Cotacallapa-Sucapuca M, Cámara RM, Ciudad-Mulero M, Serruto-Medina G, Vilca-Curo R, Arribas C, Pedrosa MM, Morales P, Cámara M. Nutrients and Bioactive Compounds in Peruvian Pacay (Inga feuilleei D.C.). Foods. 2026; 15(2):278. https://doi.org/10.3390/foods15020278
Chicago/Turabian StyleCotacallapa-Sucapuca, Mario, Rosa M. Cámara, María Ciudad-Mulero, Genciana Serruto-Medina, Romualdo Vilca-Curo, Claudia Arribas, Mercedes M. Pedrosa, Patricia Morales, and Montaña Cámara. 2026. "Nutrients and Bioactive Compounds in Peruvian Pacay (Inga feuilleei D.C.)" Foods 15, no. 2: 278. https://doi.org/10.3390/foods15020278
APA StyleCotacallapa-Sucapuca, M., Cámara, R. M., Ciudad-Mulero, M., Serruto-Medina, G., Vilca-Curo, R., Arribas, C., Pedrosa, M. M., Morales, P., & Cámara, M. (2026). Nutrients and Bioactive Compounds in Peruvian Pacay (Inga feuilleei D.C.). Foods, 15(2), 278. https://doi.org/10.3390/foods15020278

