Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = car tire production process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 8867 KiB  
Article
Structural, Thermal and Mechanical Assessment of Green Compounds with Natural Rubber
by Xavier Colom, Jordi Sans, Frederic de Bruijn, Fernando Carrillo and Javier Cañavate
Macromol 2024, 4(3), 566-581; https://doi.org/10.3390/macromol4030034 - 7 Aug 2024
Cited by 2 | Viewed by 1276
Abstract
The inadequate disposal of tires poses a significant threat to human health and requires effective recycling solutions. The crosslinked structure of rubber, formed through sulfur bridges during vulcanization, presents a major challenge for recycling because it prevents the rubber scraps from being reshaped [...] Read more.
The inadequate disposal of tires poses a significant threat to human health and requires effective recycling solutions. The crosslinked structure of rubber, formed through sulfur bridges during vulcanization, presents a major challenge for recycling because it prevents the rubber scraps from being reshaped thermoplastically. Reclaiming or devulcanization aims to reverse this crosslinking, allowing waste rubber to be transformed into products that can be reprocessed and revulcanized, thereby saving costs and preserving resources. Microwave technology shows promise for devulcanization due to its ability to break sulfur crosslinks. In this study, we investigate the devulcanization of ground tire rubber (GTR) through a combined process applied to samples from both car and truck tires subjected to varying periods of microwave irradiation (0, 3, 5 and 10 min). The devulcanized GTR was then blended with natural rubber (NR) and underwent a new vulcanization process, simulating recycling for novel applications. The GTR was mixed with NR in proportions of 0, 10, 30 and 50 parts per hundred rubber (phr). This study also examines the differences between the GTR from car tires and GTR from truck tires. The results showed that the treatment effectively breaks the crosslinks in the GTR, creating double bonds (C=C) and improving the mechanical properties of the revulcanized samples. The crosslinking density and related properties of the samples increased with treatment time, reaching a maximum at 5 min of microwave treatment, followed by a decrease at 10 min. Additionally, the incorporation of GTR enhanced the thermal stability of the resulting materials. Full article
Show Figures

Graphical abstract

22 pages, 5171 KiB  
Article
Flash Pyrolysis of Waste Tires in an Entrained Flow Reactor—An Experimental Study
by Balan Ramani, Arqam Anjum, Eddy Bramer, Wilma Dierkes, Anke Blume and Gerrit Brem
Polymers 2024, 16(12), 1746; https://doi.org/10.3390/polym16121746 - 20 Jun 2024
Cited by 2 | Viewed by 2728
Abstract
In this study, a flash pyrolysis process is developed using an entrained flow reactor for recycling of waste tires. The flash pyrolysis system is tested for process stability and reproducibility of the products under similar operating conditions when operated continuously. The study is [...] Read more.
In this study, a flash pyrolysis process is developed using an entrained flow reactor for recycling of waste tires. The flash pyrolysis system is tested for process stability and reproducibility of the products under similar operating conditions when operated continuously. The study is performed with two different feedstock materials, i.e., passenger car (PCT) and truck tire (TT) granulates, to understand the influence of feedstock on the yield and properties of the pyrolysis products. The different pyrolytic products i.e., pyrolytic carbon black (pCB), oil, and pyro-gas, are analyzed, and their key properties are discussed. The potential applications for the obtained pyrolytic products are discussed. Finally, a mass and energy balance analysis has been performed for the developed pyrolysis process. The study provides insight into the governing mechanisms of the flash pyrolysis process for waste tires, which is useful to optimize the process depending on the desired applications for the pyrolysis products, and also to scale up the pyrolysis process. Full article
(This article belongs to the Special Issue Recycling of Plastic and Rubber Wastes)
Show Figures

Figure 1

14 pages, 5357 KiB  
Article
Metal 3D-Printed Bioinspired Lattice Elevator Braking Pads for Enhanced Dynamic Friction Performance
by Nikolaos Kladovasilakis, Eleftheria Maria Pechlivani, Ioanna K. Sfampa, Konstantinos Tsongas, Apostolos Korlos, Constantine David and Dimitrios Tzovaras
Materials 2024, 17(11), 2765; https://doi.org/10.3390/ma17112765 - 5 Jun 2024
Cited by 5 | Viewed by 1554
Abstract
The elevator industry is constantly expanding creating an increased demand for the integration of high technological tools to increase elevator efficiency and safety. Towards this direction, Additive Manufacturing (AM), and especially metal AM, is one of the technologies that could offer numerous competitive [...] Read more.
The elevator industry is constantly expanding creating an increased demand for the integration of high technological tools to increase elevator efficiency and safety. Towards this direction, Additive Manufacturing (AM), and especially metal AM, is one of the technologies that could offer numerous competitive advantages in the production of industrial parts, such as integration of complex geometry, high manufacturability of high-strength metal alloys, etc. In this context, the present study has 3D designed, 3D printing manufactured, and evaluated novel bioinspired structures for elevator safety gear friction pads with the aim of enhancing their dynamic friction performance and eliminating the undesired behavior properties observed in conventional pads. Four different friction pads with embedded bioinspired surface lattice structures were formed on the template of the friction surface of the conventional pads and 3D printed by the Selective Laser Melting (SLM) process utilizing tool steel H13 powder as feedstock material. Each safety gear friction pad underwent tribological tests to evaluate its dynamic coefficient of friction (CoF). The results indicated that pads with a high contact surface area, such as those with car-tire-like and extended honeycomb structures, exhibit high CoF of 0.549 and 0.459, respectively. Based on the acquired CoFs, Finite Element Models (FEM) were developed to access the performance of braking pads under realistic operation conditions, highlighting the lower stress concentration for the aforementioned designs. The 3D-printed safety gear friction pads were assembled in an existing emergency progressive safety gear system of KLEEMANN Group, providing sufficient functionality. Full article
(This article belongs to the Special Issue Metal Additive Manufacturing: Design, Performance, and Applications)
Show Figures

Figure 1

24 pages, 11350 KiB  
Article
Assessment of the Environmental Impact of Solid Oil Materials Based on Pyrolysis Oil
by Anita Staroń, Magda Kijania-Kontak, Mariusz Dziadas and Marcin Banach
Materials 2023, 16(17), 5847; https://doi.org/10.3390/ma16175847 - 26 Aug 2023
Cited by 1 | Viewed by 1708
Abstract
One method of managing used car tires is decomposition by thermochemical conversion methods. By conducting the process at temperatures of 450–750 °C, three fractions are obtained from tires: oil, gas, and solid. The liquid product of the pyrolysis of used car tires is [...] Read more.
One method of managing used car tires is decomposition by thermochemical conversion methods. By conducting the process at temperatures of 450–750 °C, three fractions are obtained from tires: oil, gas, and solid. The liquid product of the pyrolysis of used car tires is pyrolysis oil, which consists of aromatic, polyaromatic, and aliphatic hydrocarbons. Unconventional building materials were obtained from tire pyrolysis oil and the environmental impact was evaluated. Blocks made from pyrolysis oil showed mechanical strength of up to about 1700 N. No heavy metals or polycyclic aromatic hydrocarbons, which were found in the crude heavy-PO fraction, were detected in the filtrates after incubation of the block obtained from the heavy-PO fraction at 240 °C. The highest inhibition of Sorghum saccharatum shoot (74.4%) and root (57.5%) growth was observed for solid materials from the medium-PO fraction obtained at 240 °C. The most favorable values of the parameters for the process of obtaining blocks based on post-PO were an annealing temperature of 180 °C, time of 20 h, and mass ratio of catalyst to catalyzed oil of 0.045. Full article
Show Figures

Figure 1

14 pages, 4390 KiB  
Article
Influence of the Addition of Recycled Aggregates and Polymer Fibers on the Properties of Pervious Concrete
by Oskar Mitrosz, Marzena Kurpińska, Mikołaj Miśkiewicz, Tadeusz Brzozowski and Hakim Salem Abdelgader
Materials 2023, 16(15), 5222; https://doi.org/10.3390/ma16155222 - 25 Jul 2023
Cited by 8 | Viewed by 2152
Abstract
The aim of the study was to check the possibility of reusing aggregate from recycled concrete waste and rubber granules from car tires as partial substitution of natural aggregate. The main objective was to investigate the effects of recycled waste aggregate modified with [...] Read more.
The aim of the study was to check the possibility of reusing aggregate from recycled concrete waste and rubber granules from car tires as partial substitution of natural aggregate. The main objective was to investigate the effects of recycled waste aggregate modified with polymer fibers on the compressive and flexural strength, modulus of elasticity and permeability of pervious concrete. Fibers with a multifilament structure and length of 54 mm were deliberately used to strengthen the joints among grains (max size 31.5 mm). Eight batches of designed mixes were used in the production of pervious concrete at fixed water/binder ratio of 0.34 with cement content of 350 kg/m3. Results showed that the use of recycled concrete aggregate (8/31.5 mm) with replacement ratio of 50% (by weight of aggregate) improved the mechanical properties of pervious concrete in all analyzed cases. Whereas the replacement of 10% rubber waste aggregate (2/5 mm) by volume of aggregate reduced the compressive strength by a maximum of 11.4%. Addition of 2 kg/m3 of polymer fibers proved the strengthening effect of concrete structure, enhancing the compressive and tensile strengths by a maximum of 23.4% and 25.0%, respectively. The obtained test results demonstrate the possibility of using the recycled waste aggregates in decarbonization process of pervious concrete production, but further laboratory and field performance tests are needed. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 6682 KiB  
Article
New Route of Tire Rubber Devulcanization Using Silanes
by Rounak Ghosh, Christian Mani, Roland Krafczyk, Rupert Schnell, Alexander Paasche, Auke Talma, Anke Blume and Wilma K. Dierkes
Polymers 2023, 15(13), 2848; https://doi.org/10.3390/polym15132848 - 28 Jun 2023
Cited by 8 | Viewed by 3722
Abstract
The disposal of tires at the end of their lifespan results in societal and environmental issues. To tackle this, recycling and reuse are effective solutions. Among various recycling methods, devulcanization is considered to be a very sustainable option, as it involves the controlled [...] Read more.
The disposal of tires at the end of their lifespan results in societal and environmental issues. To tackle this, recycling and reuse are effective solutions. Among various recycling methods, devulcanization is considered to be a very sustainable option, as it involves the controlled breakdown of crosslinks while maintaining the polymer backbones. The objective of this study is to develop a sustainable devulcanization process for passenger car tire rubber using silanes. In this study, a thermo-mechanical–chemical devulcanization process was conducted to screen six potential devulcanization aids (DAs). Silanes were chosen as they are widely used in tire rubber as coupling agents for silica. The efficiency of the devulcanization was studied by the degree of network breakdown, miscibility of the devulcanized material, and mechanical properties of the de- and revulcanized material. Compared to the parent compound, a 55–60% network breakdown was achieved for the devulcanizate along with 50–55% of tensile strength recovery. In addition to superior devulcanization efficiency, this DA offers a sustainable alternative to the conventional ones, such as di-phenyl-di-sulphide, due to its compliance with safety regulations. The devulcanizate can be utilized in high-performance applications, such as tires and seals, while 100% devulcanizate can be employed in low-strength technical rubber products. Full article
(This article belongs to the Special Issue Recycling of Plastic and Rubber Wastes)
Show Figures

Figure 1

15 pages, 4780 KiB  
Article
Comparative Analysis of Waste, Steel, and Polypropylene Microfibers as an Additive for Cement Mortar
by Mateusz Zakrzewski, Mateusz Gancarz, Katarína Tvrdá, Joanna Laskowska-Bury and Jacek Domski
Materials 2023, 16(4), 1625; https://doi.org/10.3390/ma16041625 - 15 Feb 2023
Cited by 6 | Viewed by 1987
Abstract
This study presents the results of laboratory experiments conducted to determine the mechanical parameters for cement mortar with various quantities of waste fibers, polypropylene microfibers, and steel microfibers. Waste fibers were used as samples and obtained using an end-of-life car tire recycling process. [...] Read more.
This study presents the results of laboratory experiments conducted to determine the mechanical parameters for cement mortar with various quantities of waste fibers, polypropylene microfibers, and steel microfibers. Waste fibers were used as samples and obtained using an end-of-life car tire recycling process. For comparison, samples with the addition of steel and polypropylene microfibers were tested. The same degrees of fiber reinforcement were used for all types of fibers. Ultimately, 22 mixtures of cement mortar were prepared. The aim of this study is therefore to present and compare basic mechanical parameter values. Compressive strength, flexural strength, fracture toughness, and flexural toughness were of particular interest. A three-point bending test was performed on three types of samples, without a notch and with a notch of 4 and 8 mm. The results show that the use of steel microfibers in the cement mortar produces a product with better properties compared to a mixture with steel cord or polypropylene fibers. However, the cement mortar with the steel cord provides better flexural strength and greater flexural toughness factors compared to the cement mortar with polypropylene fibers. This means that the steel cord is a full-value ecological replacement for different fibers. Full article
Show Figures

Figure 1

14 pages, 1227 KiB  
Article
Experimental Production of Iron-Bearing Sinters Using Chars from Waste Car Tires
by Marian Niesler, Janusz Stecko, Damian Gierad, Martyna Nowak and Sławomir Stelmach
Processes 2023, 11(1), 231; https://doi.org/10.3390/pr11010231 - 10 Jan 2023
Cited by 3 | Viewed by 2044
Abstract
The metallurgical industry is seeking raw material substitutes more and more intensively in order to replace materials traditionally used in pig iron production. Research has been conducted on the use of char obtained from waste car tires via a pyrolysis process in an [...] Read more.
The metallurgical industry is seeking raw material substitutes more and more intensively in order to replace materials traditionally used in pig iron production. Research has been conducted on the use of char obtained from waste car tires via a pyrolysis process in an iron ore sintering process. The char obtained from car tires could be a potential substitute for some of the coke breeze used in the iron ore sintering process. However, the Zn and S content of the char is a major technological issue. This paper presents the results of research conducted to assess the possibility of substituting coke breeze with a commercial char from waste tires. The experiments were carried out in a laboratory stand capable of sintering 200 kg of sintering blend. The results obtained show that it is possible to replace 10 %m/m of coke breeze with waste tire char without any technological danger for sintering lines. The application of waste tire char in metallurgical processes is an example of actions that form part of the circular economy and also of the appropriate use of anthropogenic resources that are technologically available. Full article
(This article belongs to the Special Issue Solid Waste and Resource Recycling)
Show Figures

Figure 1

9 pages, 1460 KiB  
Article
Tire Ground Rubber Biodegradation by a Consortium Isolated from an Aged Tire
by Sarelia M. Castañeda Alejo, Kevin Tejada Meza, María R. Valderrama Valencia, Armando J. Arenazas Rodríguez and Christian J. Málaga Espinoza
Microorganisms 2022, 10(7), 1414; https://doi.org/10.3390/microorganisms10071414 - 14 Jul 2022
Cited by 10 | Viewed by 4319
Abstract
Rubber is a natural product, the main car tire component. Due to the characteristics acquired by this material after its vulcanization process, its degradation under natural conditions requires very long times, causing several environmental problems. In the present work, the existence of a [...] Read more.
Rubber is a natural product, the main car tire component. Due to the characteristics acquired by this material after its vulcanization process, its degradation under natural conditions requires very long times, causing several environmental problems. In the present work, the existence of a bacterial consortium isolated from a discarded tire found within the Socabaya River with the ability to degrade shredded tire rubber without any chemical pretreatment is explored. Taking into consideration the complex chemical composition of a rubber tire and the described benefits of the use of pretreatments, the study is developed as a preliminary analysis. The augmentative growth technique was used, and the level of degradation was quantified as a percentage through the analysis of microbial respiration. Schiff’s test and the use of comparative photographs of scanning electron microscopy (SEM) were also used. The consortium using next generation genetic sequencing was analyzed. A 4.94% degradation point was obtained after 20 days of experimentation, and it was found that the consortium was mostly made up with Delftia tsuruhatensis with 69.12% of the total genetic readings of the consortium and the existence of 15% of unidentified microbial strains at the genre level. The role played by the organisms in the degradation process is unknown. However, the positive results in the tests carried out show that the consortium had action on the shredded tire, showing a mineralization process. Full article
(This article belongs to the Special Issue Biodegradation and Environmental Microbiomes)
Show Figures

Figure 1

19 pages, 1694 KiB  
Article
Comparison of PM10 Sources at Traffic and Urban Background Sites Based on Elemental, Chemical and Isotopic Composition: Case Study from Krakow, Southern Poland
by Lucyna Samek, Katarzyna Styszko, Zdzislaw Stegowski, Miroslaw Zimnoch, Alicja Skiba, Anna Turek-Fijak, Zbigniew Gorczyca, Przemyslaw Furman, Anne Kasper-Giebl and Kazimierz Rozanski
Atmosphere 2021, 12(10), 1364; https://doi.org/10.3390/atmos12101364 - 19 Oct 2021
Cited by 18 | Viewed by 3925
Abstract
In large urban agglomerations, car traffic is one of the main sources of particulate matter. It consists of particulate matter directly generated in the process of incomplete liquid fuel burning in vehicle engine, secondary aerosols formed from exhaust gaseous pollutants (NOx, [...] Read more.
In large urban agglomerations, car traffic is one of the main sources of particulate matter. It consists of particulate matter directly generated in the process of incomplete liquid fuel burning in vehicle engine, secondary aerosols formed from exhaust gaseous pollutants (NOx, SO2) as well as products of tires, brake pads and pavement abrasion. Krakow is one of the cities in Europe with the highest concentrations of particulate matter. The article presents the results of combined elemental, chemical and isotopic analyses of particulate matter PM10 at two contrasting urban environments during winter and summer seasons. Daily PM10 samples were collected during the summer and winter seasons of 2018/2019 at two stations belonging to the network monitoring air quality in the city. Mean PM10 concentrations at traffic-dominated stations were equal to 35 ± 7 µg/m3 and 76 ± 28 µg/m3 in summer and winter, respectively, to be compared with 25.6 ± 5.7 µg/m3 and 51 ± 25 µg/m3 in summer and winter, respectively, recorded at the urban background station. The source attribution of analyzed PM10 samples was carried out using two modeling approaches: (i) The Positive Matrix Factorization (PMF) method for elemental and chemical composition (concentrations of elements, ions, as well as organic and elemental carbon in daily PM10 samples), and (ii) Isotope Mass Balance (IMB) for 13C and 14C carbon isotope composition of carbonaceous fraction of PM10. For PMF application, five sources of particulate matter were identified for each station: fossil fuel combustion, secondary inorganic aerosols, traffic exhaust, soil, and the fifth source which included road dust, industry, construction work. The IMB method allowed the partitioning of the total carbon reservoir of PM10 into carbon originating from coal combustion, from biogenic sources (natural emissions and biomass burning) and from traffic. Both apportionment methods were applied together for the first time in the Krakow agglomeration and they gave consistent results. Full article
(This article belongs to the Special Issue Air Quality in Poland)
Show Figures

Figure 1

20 pages, 4004 KiB  
Article
Ground Tire Rubber Filled Flexible Polyurethane Foam—Effect of Waste Rubber Treatment on Composite Performance
by Paulina Kosmela, Adam Olszewski, Łukasz Zedler, Paulina Burger, Adam Piasecki, Krzysztof Formela and Aleksander Hejna
Materials 2021, 14(14), 3807; https://doi.org/10.3390/ma14143807 - 7 Jul 2021
Cited by 19 | Viewed by 3861
Abstract
The application range of flexible polyurethane (PU) foams is comprehensive because of their versatility and flexibility in adjusting structure and performance. In addition to the investigations associated with further broadening of their potential properties, researchers are looking for new raw materials, beneficially originated [...] Read more.
The application range of flexible polyurethane (PU) foams is comprehensive because of their versatility and flexibility in adjusting structure and performance. In addition to the investigations associated with further broadening of their potential properties, researchers are looking for new raw materials, beneficially originated from renewable resources or recycling. A great example of such a material is ground tire rubber (GTR)—the product of the material recycling of post-consumer car tires. To fully exploit the benefits of this material, it should be modified to enhance the interfacial interactions between PU and GTR. In the presented work, GTR particles were thermo-mechanically modified with the addition of fresh and waste rapeseed oil in the reactive extrusion process. The introduction of modified GTR particles into a flexible PU matrix caused a beneficial 17–28% decrease in average cell diameters. Such an effect caused an even 5% drop in thermal conductivity coefficient values, enhancing thermal insulation performance. The application of waste oil resulted in the superior mechanical performance of composites compared to the fresh one and thermo-mechanical modification without oils. The compressive and tensile performance of composites filled with waste oil-modified GTR was almost the same as for the unfilled foam. Moreover, the introduction of ground tire rubber particles enhanced the thermal stability of neat polyurethane foam. Full article
(This article belongs to the Special Issue Waste-Based Polymer Composites)
Show Figures

Figure 1

25 pages, 2490 KiB  
Article
LCA as a Tool for the Environmental Management of Car Tire Manufacturing
by Piotrowska Katarzyna, Piasecka Izabela, Bałdowska-Witos Patrycja, Kruszelnicka Weronika and Tomporowski Andrzej
Appl. Sci. 2020, 10(20), 7015; https://doi.org/10.3390/app10207015 - 9 Oct 2020
Cited by 32 | Viewed by 8005
Abstract
Car tire manufacturing can be the cause of numerous environmental hazards. Harmful emissions from the production process are an acute danger to human health as well as the environment. To mitigate these unwanted consequences, manufacturers employ the eco-balance analysis at the product designing [...] Read more.
Car tire manufacturing can be the cause of numerous environmental hazards. Harmful emissions from the production process are an acute danger to human health as well as the environment. To mitigate these unwanted consequences, manufacturers employ the eco-balance analysis at the product designing and development stage, when formulating general development strategies, and increasingly when investigating the entire product lifecycle management process. Since the negative effects of products are considered in a broader range of implications, it has become necessary to extend the traditional scope of analytical interest onto the production, use, and end-of-life stages. This work investigates the manufacturing of passenger car tires executed with traditional and modern manufacturing technologies. The Life Cycle Assessment (LCA) of tires reported in this study involved three LCA methods: Eco-Indicator 99, Cumulative Energy Demand (CED) and the scientific assessment methods developed by the Intergovernmental Panel on Climate Change, Global Warming Potential (IPCC). LCA as a tool for environmental analysis can be carried out for the entire life cycle or its individual phases. The implementation of the work made it possible to demonstrate that as a result of the identification of the main sources of negative impacts, it is possible to propose ways to minimize these impacts in the car tire manufacturing process. The results indicate that the most damaging impact is the depletion of natural resources, which play a key role in the production process of car tires. Full article
(This article belongs to the Special Issue Design and Management of Manufacturing Systems)
Show Figures

Graphical abstract

25 pages, 2801 KiB  
Article
Assessment of the Environmental Impact of a Car Tire throughout Its Lifecycle Using the LCA Method
by Katarzyna Piotrowska, Weronika Kruszelnicka, Patrycja Bałdowska-Witos, Robert Kasner, Jacek Rudnicki, Andrzej Tomporowski, Józef Flizikowski and Marek Opielak
Materials 2019, 12(24), 4177; https://doi.org/10.3390/ma12244177 - 12 Dec 2019
Cited by 73 | Viewed by 11156
Abstract
There are numerous threats to the natural environment that pose a significant risk both to the environment and to human health, including car tires. Thus, there is a need to determine the impact of the life cycle of car tires on the environment, [...] Read more.
There are numerous threats to the natural environment that pose a significant risk both to the environment and to human health, including car tires. Thus, there is a need to determine the impact of the life cycle of car tires on the environment, starting with the processes of raw materials acquisition, production, and ending with end-of-life management. Therefore, the authors of this study chose to do research on passenger car tires (size: P205/55/R16). As part of the research, the life cycle assessment (LCA) of traditional car tires was performed with the use of the Eco-indicator 99, cumulative energy demand (CED), and Intergovernmental Panel on Climate Change (IPCC) methods. The level of negative effects was determined for the life cycle of a tire and its particular stages: Production, use, and end of life. The negative impact on the atmosphere, soil, and water, as well as on human health, the environment, and natural resources was also investigated. The results show that the most energy-absorbing stage of a car tire life cycle is the use stage. It was found that the most harmful impact involves the depletion of natural resources and emissions into the atmosphere. Recycling car tires reduces their negative environmental impact during all their life cycle stages. Full article
(This article belongs to the Special Issue Recent Advances in Rubber Recycling)
Show Figures

Figure 1

17 pages, 2284 KiB  
Article
Upscaling of a Batch De-Vulcanization Process for Ground Car Tire Rubber to a Continuous Process in a Twin Screw Extruder
by Sitisaiyidah Saiwari, Johannes W. Van Hoek, Wilma K. Dierkes, Louis E.A.M. Reuvekamp, Geert Heideman, Anke Blume and Jacques W.M. Noordermeer
Materials 2016, 9(9), 724; https://doi.org/10.3390/ma9090724 - 24 Aug 2016
Cited by 29 | Viewed by 6522
Abstract
As a means to decrease the amount of waste tires and to re-use tire rubber for new tires, devulcanization of ground passenger car tires is a promising process. Being an established process for NR and EPDM, earlier work has shown that for ground [...] Read more.
As a means to decrease the amount of waste tires and to re-use tire rubber for new tires, devulcanization of ground passenger car tires is a promising process. Being an established process for NR and EPDM, earlier work has shown that for ground passenger car tire rubber with a relatively high amount of SBR, a devulcanization process can be formulated, as well. This was proven for a laboratory-scale batch process in an internal mixer, using diphenyl disulfide as the devulcanization aid and powder-sized material. In this paper, the devulcanization process for passenger car tire rubber is upscaled from 15 g per batch and transformed into a continuous process in a co-rotating twin screw extruder with a capacity of 2 kg/h. As SBR is rather sensitive to devulcanization process conditions, such as thermal and mechanical energy input, the screw design was based on a low shear concept. A granulate with particle sizes from 1–3.5 mm was chosen for purity, as well as economic reasons. The devulcanization process conditions were fine-tuned in terms of: devulcanization conditions (time/temperature profile, concentration of devulcanization aid), extruder parameters (screw configuration, screw speed, fill factor) and ancillary equipment (pre-treatment, extrudate handling). The influence of these parameters on the devulcanization efficiency and the quality of the final product will be discussed. The ratio of random to crosslink scission as determined by a Horikx plot was taken for the evaluation of the process and material. A best practice for continuous devulcanization will be given. Full article
(This article belongs to the Special Issue Advances in Research on Elastomers)
Show Figures

Figure 1

Back to TopTop