Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = car cosmetics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3994 KiB  
Article
Analysis of Foaming Properties, Foam Stability, and Basic Physicochemical and Application Parameters of Bio-Based Car Shampoos
by Bartosz Woźniak, Agata Wawrzyńczak and Izabela Nowak
Coatings 2025, 15(8), 907; https://doi.org/10.3390/coatings15080907 - 2 Aug 2025
Viewed by 572
Abstract
Environmental protection has become one of the key challenges of our time. This has led to an increase in pro-environmental activities in the field of cosmetics and household chemicals, where manufacturers are increasingly trying to meet the expectations of consumers who are aware [...] Read more.
Environmental protection has become one of the key challenges of our time. This has led to an increase in pro-environmental activities in the field of cosmetics and household chemicals, where manufacturers are increasingly trying to meet the expectations of consumers who are aware of the potential risks associated with the production of cosmetics and household chemistry products. This is one of the most important challenges of today’s industry, given that some of the raw materials still commonly used, such as surfactants, may be toxic to aquatic organisms. Many companies are choosing to use natural raw materials that have satisfactory performance properties but are also environmentally friendly. In addition, modern products are also characterized by reduced consumption of water, resources, and energy in production processes. These measures reduce the carbon footprint and reduce the amount of plastic packaging required. In the present study, seven formulations of environmentally friendly car shampoo concentrates were developed, based entirely on mixtures of bio-based surfactants. The developed formulations were tested for application on the car body surface, allowing the selection of the two best products. For these selected formulations, an in-depth physicochemical analysis was carried out, including pH, density, and viscosity measurements. Comparison of the results with commercial products available on the market was also performed. Additionally, using the multiple light scattering method, the foamability and foam stability were determined for the car shampoos developed. The results obtained indicate the very high application potential of the products under study, which combine high performance and environmental concerns. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Graphical abstract

51 pages, 2490 KiB  
Review
Raman Spectroscopy in the Characterization of Food Carotenoids: Challenges and Prospects
by Stefan M. Kolašinac, Ilinka Pećinar, Radoš Gajić, Dragosav Mutavdžić and Zora P. Dajić Stevanović
Foods 2025, 14(6), 953; https://doi.org/10.3390/foods14060953 - 11 Mar 2025
Cited by 2 | Viewed by 2044
Abstract
This paper presents an overview of the application of Raman spectroscopy (RS) in characterizing carotenoids, which have recently gained attention due to new findings on their health-promoting effects and rising demand in the food, pharmaceutical, and cosmetic industries. The backbone structure in the [...] Read more.
This paper presents an overview of the application of Raman spectroscopy (RS) in characterizing carotenoids, which have recently gained attention due to new findings on their health-promoting effects and rising demand in the food, pharmaceutical, and cosmetic industries. The backbone structure in the form of a polyene chain makes carotenoids sensitive to Raman spectroscopy, mainly due to the stretching vibrations of their conjugated double bonds. Raman spectroscopy is increasingly used in agricultural and food sciences and technologies as it is a non-preparative, environmentally friendly, fast and efficient method for characterizing target analytes. The application of RS in the qualitative and quantitative analysis of carotenoids requires the careful selection and adjustment of various instrument parameters (e.g., laser wavelength, laser power, spectral resolution, detector type, etc.) as well as performing complex chemometric modeling to interpret the Raman spectra. Most of the studies covered in this review focus more on qualitative than quantitative analysis. The most frequently used laser wavelengths are 1064, 785, and 532 nm, while 633 nm is the least used. Considering the sensitivity and complexity of RS, the present study focuses on the specific and critical points in the analysis of carotenoids by RS. The main methodological and experimental principles in the study of food carotenoids by RS are discussed and best practices recommended, while the future prospects and expectations for a wider application of RS, especially in food quality assessment, are emphasized. New Raman techniques such as Spatially Offset Raman Spectroscopy (SORS), Coherent Anti-Stokes Raman Spectroscopy (CARS) and Stimulated Raman Scattering Spectroscopy (SRS), as well as the application of artificial intelligence, are also described in the context of carotenoids analysis. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

28 pages, 2444 KiB  
Article
The Impact of Environmental Indicators on Consumer Decision-Making in the Purchasing of Lifestyle Essentials: A Quantitative Analysis
by Beata Paliwoda, Alina Matuszak-Flejszman, Magdalena Ankiel and Małgorzata Jasiulewicz-Kaczmarek
Sustainability 2025, 17(4), 1444; https://doi.org/10.3390/su17041444 - 10 Feb 2025
Cited by 1 | Viewed by 2897
Abstract
This research paper explores consumer perceptions and expectations regarding environmental criteria for a range of essential lifestyle products. The term “Lifestyle Essentials” includes various items integral to daily life, covering food, cosmetics, household chemicals, consumer electronics, household appliances, IT equipment, clothing, footwear, and [...] Read more.
This research paper explores consumer perceptions and expectations regarding environmental criteria for a range of essential lifestyle products. The term “Lifestyle Essentials” includes various items integral to daily life, covering food, cosmetics, household chemicals, consumer electronics, household appliances, IT equipment, clothing, footwear, and cars. The research aims to assess the significance of environmental factors in consumer purchase behavior and provides insights that can guide businesses and policymakers in developing targeted sustainability initiatives. The study, conducted in Poland with a representative sample (1221 respondents), gathered data on how consumers prioritize environmental indicators across five product categories. Results indicate that 80.5% of respondents expect businesses to be responsible for their environmental impact, and 56.9% of respondents consider environmental indicators as important in their purchasing decisions, with the highest importance assigned to chemical use (mean score: 3.94), waste management (3.90), and packaging (3.90). Additionally, the exploratory factor analysis highlighted that particular attention is given to the groups such as material and wastes, sustainable management, and risk and compliance, reflecting the main areas of consumer interest. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

30 pages, 5846 KiB  
Article
Gas Chromatography–Mass Spectrometry Analysis of Volatile Organic Compounds from Three Endemic Iris Taxa: Headspace Solid-Phase Microextraction vs. Hydrodistillation
by Maja Friščić, Željan Maleš, Ivanka Maleš, Ivan Duka, Ani Radonić, Božena Mitić, Dario Hruševar, Sandra Jurić and Igor Jerković
Molecules 2024, 29(17), 4107; https://doi.org/10.3390/molecules29174107 - 29 Aug 2024
Cited by 1 | Viewed by 1713
Abstract
Iris taxa are sources of valuable essential oils obtained from aged rhizomes used by various industries, including pharmacy, cosmetic, perfume, and food industry, in which irones are the most important aroma components. In this study, volatile organic compounds (VOCs) obtained from dried rhizomes [...] Read more.
Iris taxa are sources of valuable essential oils obtained from aged rhizomes used by various industries, including pharmacy, cosmetic, perfume, and food industry, in which irones are the most important aroma components. In this study, volatile organic compounds (VOCs) obtained from dried rhizomes of three endemics from Croatia, Iris pseudopallida, I. illyrica, and I. adriatica, were studied. The VOCs were isolated by three different methods: headspace solid-phase microextraction (HS–SPME) using divinylbenzene/carboxene/polydimethylsiloxane (DVB/CAR/PDMS) fiber or polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber, and hydrodistillation (HD). The samples were analyzed by gas chromatography–mass spectrometry (GC–MS). In five out of six samples, the main compounds detected by HS–SPME were perilla aldehyde, butan-2,3-diol, acetic acid, 2-phenylethanol, benzyl alcohol, hexanal, and nonanal, while 6-methylhept-5-en-2-one, trans-caryophyllene, and ethanol were common for all studied samples. The former VOCs were absent from the oldest, irone-rich I. pseudopallida sample, mainly characterized by cis-α-irone (43.74–45.76%). When using HD, its content was reduced (24.70%), while docosane prevailed (45.79%). HD yielded predominantly fatty acids, including myristic, common for all studied taxa (4.20–97.01%), and linoleic (40.69%) and palmitic (35.48%) as the major VOCs of I. adriatica EO. The performed GC–MS analyses of EOs, in combination with HS–SPME/GC–MS, proved to be useful for gaining a better insight into Iris VOCs. Full article
(This article belongs to the Section Flavours and Fragrances)
Show Figures

Graphical abstract

21 pages, 8848 KiB  
Article
Phytochemical Exploration of Ceruchinol in Moss: A Multidisciplinary Study on Biotechnological Cultivation of Physcomitrium patens (Hedw.) Mitt.
by Carlos Munoz, Kirsten Schröder, Bernhard Henes, Jane Hubert, Sébastien Leblond, Stéphane Poigny, Ralf Reski and Franziska Wandrey
Appl. Sci. 2024, 14(3), 1274; https://doi.org/10.3390/app14031274 - 3 Feb 2024
Cited by 2 | Viewed by 2073
Abstract
The moss Physcomitrium patens (P. patens), formerly known as Physcomitrella patens, has ascended to prominence as a pivotal model organism in plant biology. Its simplicity in structure and life cycle, coupled with genetic amenability, has rendered it indispensable in unraveling [...] Read more.
The moss Physcomitrium patens (P. patens), formerly known as Physcomitrella patens, has ascended to prominence as a pivotal model organism in plant biology. Its simplicity in structure and life cycle, coupled with genetic amenability, has rendered it indispensable in unraveling the complexities of land plant evolution and responses to environmental stimuli. As an evolutionary bridge between algae and vascular plants, P. patens offers a unique perspective on early terrestrial adaptation. This research involved the biotechnological cultivation of P. patens, followed by a deep phytochemical investigation of two extracts covering a large polarity range together using an NMR-based dereplication approach combined with GC/MS analyses. Subsequently, a multidisciplinary approach combining bioinformatics, in-silico techniques, and traditional methods was adopted to uncover intriguing molecules such as the diterpene ceruchinol and its potential receptor interactions for future cosmetic applications. The kaurene diterpene ceruchinol, representing up to 50% of the supercritical CO2 extract and also identified in the hydroalcoholic extract, was selected for the molecular docking study, which highlighted several biological targets as CAR, AKR1D1, and 17β-HSD1 for potential cosmetic use. These findings offer valuable insights for novel uses of this plant biomass in the future. Full article
(This article belongs to the Special Issue Development of Innovative Cosmetics)
Show Figures

Figure 1

35 pages, 7519 KiB  
Review
Optical Methods for Non-Invasive Determination of Skin Penetration: Current Trends, Advances, Possibilities, Prospects, and Translation into In Vivo Human Studies
by Maxim E. Darvin
Pharmaceutics 2023, 15(9), 2272; https://doi.org/10.3390/pharmaceutics15092272 - 3 Sep 2023
Cited by 18 | Viewed by 5366
Abstract
Information on the penetration depth, pathways, metabolization, storage of vehicles, active pharmaceutical ingredients (APIs), and functional cosmetic ingredients (FCIs) of topically applied formulations or contaminants (substances) in skin is of great importance for understanding their interaction with skin targets, treatment efficacy, and risk [...] Read more.
Information on the penetration depth, pathways, metabolization, storage of vehicles, active pharmaceutical ingredients (APIs), and functional cosmetic ingredients (FCIs) of topically applied formulations or contaminants (substances) in skin is of great importance for understanding their interaction with skin targets, treatment efficacy, and risk assessment—a challenging task in dermatology, cosmetology, and pharmacy. Non-invasive methods for the qualitative and quantitative visualization of substances in skin in vivo are favored and limited to optical imaging and spectroscopic methods such as fluorescence/reflectance confocal laser scanning microscopy (CLSM); two-photon tomography (2PT) combined with autofluorescence (2PT-AF), fluorescence lifetime imaging (2PT-FLIM), second-harmonic generation (SHG), coherent anti-Stokes Raman scattering (CARS), and reflectance confocal microscopy (2PT-RCM); three-photon tomography (3PT); confocal Raman micro-spectroscopy (CRM); surface-enhanced Raman scattering (SERS) micro-spectroscopy; stimulated Raman scattering (SRS) microscopy; and optical coherence tomography (OCT). This review summarizes the state of the art in the use of the CLSM, 2PT, 3PT, CRM, SERS, SRS, and OCT optical methods to study skin penetration in vivo non-invasively (302 references). The advantages, limitations, possibilities, and prospects of the reviewed optical methods are comprehensively discussed. The ex vivo studies discussed are potentially translatable into in vivo measurements. The requirements for the optical properties of substances to determine their penetration into skin by certain methods are highlighted. Full article
Show Figures

Graphical abstract

19 pages, 2885 KiB  
Article
Synthesis and Characterization of a New Alginate/Carrageenan Crosslinked Biopolymer and Study of the Antibacterial, Antioxidant, and Anticancer Performance of Its Mn(II), Fe(III), Ni(II), and Cu(II) Polymeric Complexes
by Yassine EL-Ghoul, Maged S. Al-Fakeh and Nora S. Al-Subaie
Polymers 2023, 15(11), 2511; https://doi.org/10.3390/polym15112511 - 30 May 2023
Cited by 18 | Viewed by 3286
Abstract
Natural polysaccharides are essential to a wide range of fields, including medicine, food, and cosmetics, for their various physiochemical and biological properties. However, they still have adverse effects limiting their further applications. Consequently, possible structural modifications should be carried out on the polysaccharides [...] Read more.
Natural polysaccharides are essential to a wide range of fields, including medicine, food, and cosmetics, for their various physiochemical and biological properties. However, they still have adverse effects limiting their further applications. Consequently, possible structural modifications should be carried out on the polysaccharides for their valorization. Recently, polysaccharides complexed with metal ions have been reported to enhance their bioactivities. In this paper, we synthesized a new crosslinked biopolymer based on sodium alginate (AG) and carrageenan (CAR) polysaccharides. The biopolymer was then exploited to form complexes with different metal salts including MnCl2·4H2O, FeCl3·6H2O, NiCl2·6H2O, and CuCl2·2H2O. The four polymeric complexes were characterized by Fourier-transform infrared spectroscopy (FT-IR), elemental analysis, ultraviolet–visible spectroscopy (UV–Vis), magnetic susceptibility, molar conductivity methods, and thermogravimetric analysis. The X-ray crystal structure of the Mn(II) complex is tetrahedral and belongs to the monoclinic crystal system with the space group P121/n1. The Fe(III) complex is octahedral and crystal data fit with the cubic crystal system with the space group Pm-3m. The Ni(II) complex is tetrahedral and crystal data correspond to the cubic crystal arrangement with the space group Pm-3m. The data estimated for the Cu(II) polymeric complex revealed that it is tetrahedral and belongs to the cubic system with the space group Fm-3m. The antibacterial study showed significant activity of all the complexes against both Gram-positive bacteria (Staphylococcus aureus and Micrococcus luteus) and Gram-negative (Escherichia coli and Salmonella typhimurium) pathogenic strains. Similarly, the various complexes revealed an antifungal activity against Candida albicans. The Cu(II) polymeric complex recorded a higher antimicrobial activity with an inhibitory zone reaching 4.5 cm against Staphylococcus aureus bacteria and the best antifungal effect of 4 cm. Furthermore, higher antioxidant values of the four complexes were obtained with DPPH scavenging activity varying from 73 to 94%. The two more biologically effective complexes were then selected for the viability cell assessments and in vitro anticancer assays. The polymeric complexes revealed excellent cytocompatibility with normal human breast epithelial cells (MCF10A) and a high anticancer potential with human breast cancer cells (MCF-7) which increase significantly in a dose-dependent manner. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

23 pages, 3184 KiB  
Article
Rapid Estimation of Astaxanthin and the Carotenoid-to-Chlorophyll Ratio in the Green Microalga Chromochloris zofingiensis Using Flow Cytometry
by Junhui Chen, Dong Wei and Georg Pohnert
Mar. Drugs 2017, 15(7), 231; https://doi.org/10.3390/md15070231 - 19 Jul 2017
Cited by 56 | Viewed by 10393
Abstract
The green microalga Chromochloris zofingiensis can accumulate significant amounts of valuable carotenoids, mainly natural astaxanthin, a product with applications in functional food, cosmetics, nutraceuticals, and with potential therapeutic value in cardiovascular and neurological diseases. To optimize the production of astaxanthin, it is essential [...] Read more.
The green microalga Chromochloris zofingiensis can accumulate significant amounts of valuable carotenoids, mainly natural astaxanthin, a product with applications in functional food, cosmetics, nutraceuticals, and with potential therapeutic value in cardiovascular and neurological diseases. To optimize the production of astaxanthin, it is essential to monitor the content of astaxanthin in algal cells during cultivation. The widely used HPLC (high-performance liquid chromatography) method for quantitative astaxanthin determination is time-consuming and laborious. In the present work, we present a method using flow cytometry (FCM) for in vivo determination of the astaxanthin content and the carotenoid-to-chlorophyll ratio (Car/Chl) in mixotrophic C. zofingiensis. The method is based on the assessment of fluorescent characteristics of cellular pigments. The mean fluorescence intensity (MFI) of living cells was determined by FCM to monitor pigment formation based on the correlation between MFI detected in particular channels (FL1: 533 ± 15 nm; FL2: 585 ± 20 nm; FL3: >670 nm) and pigment content in algal cells. Through correlation and regression analysis, a linear relationship was observed between MFI in FL2 (band-pass filter, emission at 585 nm in FCM) and astaxanthin content (in HPLC) and applied for predicting astaxanthin content. With similar procedures, the relationships between MFI in different channels and Car/Chl ratio in mixotrophic C. zofingiensis were also determined. Car/Chl ratios could be estimated by the ratios of MFI (FL1/FL3, FL2/FL3). FCM is thus a highly efficient and feasible method for rapid estimation of astaxanthin content in the green microalga C. zofingiensis. The rapid FCM method is complementary to the current HPLC method, especially for rapid evaluation and prediction of astaxanthin formation as it is required during the high-throughput culture in the laboratory and mass cultivation in industry. Full article
(This article belongs to the Collection Bioactive Compounds from Marine Plankton)
Show Figures

Figure 1

18 pages, 724 KiB  
Article
Characterisation of Mediterranean Grape Pomace Seed and Skin Extracts: Polyphenolic Content and Antioxidant Activity
by Isabelle Ky and Pierre-Louis Teissedre
Molecules 2015, 20(2), 2190-2207; https://doi.org/10.3390/molecules20022190 - 29 Jan 2015
Cited by 105 | Viewed by 11852
Abstract
Grape pomace seeds and skins from different Mediterranean varieties (Grenache [GRE], Syrah [SYR], Carignan [CAR], Mourvèdre [MOU] and Alicante [ALI]) were extracted using water and water/ethanol 70% in order to develop edible extracts (an aqueous extract [EAQ] and a 70% hydro-alcoholic extract [EA70]) [...] Read more.
Grape pomace seeds and skins from different Mediterranean varieties (Grenache [GRE], Syrah [SYR], Carignan [CAR], Mourvèdre [MOU] and Alicante [ALI]) were extracted using water and water/ethanol 70% in order to develop edible extracts (an aqueous extract [EAQ] and a 70% hydro-alcoholic extract [EA70]) for potential use in nutraceutical or cosmetic formulations. In this study, global content (total polyphenols, total anthocyanins and total tannins), flavan-3-ols and anthocyanins were assessed using HPLC-UV-Fluo-MSn. In addition, extract potential was evaluated by four different assays: Oxygen Radical Absorbance Capacity (ORAC), Ferric Reducing Antioxidant Potential assay (FRAP), Trolox equivalent antioxidant capacity (TEAC) or ABTS assay and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. As expected, seed pomace extracts contained higher amounts of polyphenols then skin pomace extracts. Indeed, seeds from Syrah contained a particularly important amount of total polyphenols and tannins in both type of extract (up to 215.84 ± 1.47 mg of gallic acid equivalent [GAE]/g dry weight (DW) and 455.42 ± 1.84 mg/g DW, respectively). These extracts also expressed the highest antioxidant potential with every test. For skins, the maximum total phenolic was found in Alicante EAQ (196.71 ± 0.37 mg GAE/g DW) and in Syrah EA70 (224.92 ± 0.18 mg GAE/g DW). Results obtained in this article constitute a useful tool for the pre-selection of grape pomace seed and skin extracts for nutraceutical purposes. Full article
(This article belongs to the Special Issue Natural Antioxidants and Ageing)
Back to TopTop