Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = capsicum oleoresin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 256 KB  
Article
Effect of a Combination of Phytogenic Compounds on In Vitro Rumen Fermentation Parameters and In Vivo Lactation Performance and Methane Emissions in Dairy Cows
by Hajer Khelil-Arfa, Sara Maria Tondini, Alejandro Belanche, Juan Manuel Palma-Hidalgo, Alexandra Blanchard, David Yáñez-Ruiz, Guillermo Elcoso and Alex Bach
Methane 2025, 4(2), 13; https://doi.org/10.3390/methane4020013 - 28 May 2025
Viewed by 1927
Abstract
An in vitro and an in vivo study were conducted to investigate the effects of a blend of cinnamaldehyde, eugenol, and capsicum oleoresin (CEC) on rumen fermentation parameters, animal performance, and methane (CH4) emissions in dairy cows. Continuous culture fermenters (CCF) [...] Read more.
An in vitro and an in vivo study were conducted to investigate the effects of a blend of cinnamaldehyde, eugenol, and capsicum oleoresin (CEC) on rumen fermentation parameters, animal performance, and methane (CH4) emissions in dairy cows. Continuous culture fermenters (CCF) were utilized to test one of two treatments: (1) CON; no supplementation and (2) CEC supplemented at 0.0125 g/d. The basal diet consisted of grass hay and concentrate (50:50). Supplementation with CEC increased (p < 0.01) total volatile fatty acids (VFA; mM) and decreased (p = 0.02) CH4 concentration compared with CON in vitro. Additionally, protozoa abundance tended (p = 0.07) to decrease in CEC compared with CON. The in vivo experiment utilized forty Holstein-Friesian dairy cows (32% primiparous and 68% multiparous) averaging 163 ± 48 days in milk (DIM) and 38 ± 6.2 kg/d of milk yield (MY). Cows were blocked by parity and randomly assigned to one of two treatments: (1) CON; no supplementation and (2) CEC supplemented at 1.2 g/cow/d. The basal diet consisted of grass hay and concentrate (40:60). Individual CH4 emissions were recorded using the sniffer technique. Dry matter intake (DMI) and eating rate were increased (p < 0.01; 3.6% and 5.2%, respectively), while feed efficiency decreased (p < 0.05) in CEC compared with CON. Additionally, CEC decreased (p = 0.02) CH4 yield by 16.4% and tended to reduce daily CH4 production (p = 0.09) and CH4 intensity (p = 0.08) by 13.4% and 14.0%, respectively. Supplementing CEC decreased CH4 concentration in vitro and CH4 yield in vivo without negatively impacting performance parameters. Full article
20 pages, 4553 KB  
Article
Spicy Food Ingredient from Red Habanero By-Product Obtained by Ultrasound-Assisted Extraction
by António Toscano, Andreia F. R. Silva, Maria P. Ramos, Norton Komora, Filipa V. M. Silva and Patrícia Fradinho
Foods 2025, 14(8), 1407; https://doi.org/10.3390/foods14081407 - 18 Apr 2025
Viewed by 1670
Abstract
The production of spicy sauces from chili peppers (Capsicum spp.) generates 5–30% of spicy by-product which is rich in valuable compounds (e.g., capsaicinoids, carotenoids, phenolics, etc.) and can serve as a source of Capsicum oleoresins, providing spice and color ingredients for food [...] Read more.
The production of spicy sauces from chili peppers (Capsicum spp.) generates 5–30% of spicy by-product which is rich in valuable compounds (e.g., capsaicinoids, carotenoids, phenolics, etc.) and can serve as a source of Capsicum oleoresins, providing spice and color ingredients for food products. This study primarily focused on the optimization of Capsicum oleoresin extraction from Red Habanero chili pepper (Capsicum chinense Jacq.) by-product using ultrasound-assisted extraction (UAE). A second focus was the comparison between UAE and reflux-assisted extraction (RAE). Response Surface Methodology (RSM) was employed to optimize the extraction time (3 to 17 min) and acoustic power density (APD, 0.30 to 1.00 W/mL). The optimal UAE conditions (8 min, 0.87 W/mL) showed a higher extraction yield (26%) and high quality oleoresin extracts rich in bioactives (capsaicinoids: 7 mg/g; phenolics: 4 mg GAE/g) with antioxidant activity (FRAP: 139 µmol FeSO4 eq/g; DPPH: 33 µmol TEAC/g). Optimum UAE extracts proved more colored, energy-efficient (95% less consumption), equally spicy (466,000 SHU) and had higher antioxidant activity than RAE. These results demonstrated UAE as a sustainable method for producing high value spicy additives from chili pepper by-product, turning them into products with enhanced bioactivity, favoring a circular economy in the agri-food industry. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

17 pages, 293 KB  
Article
Effects of Olive Pomace and Spice Extracts on Performance and Antioxidant Function in Broiler Chickens
by Fernando Sevillano, Marta Blanch, Jose J. Pastor, Miguel Angel Ibáñez and David Menoyo
Animals 2025, 15(6), 808; https://doi.org/10.3390/ani15060808 - 12 Mar 2025
Cited by 2 | Viewed by 1509
Abstract
This research aimed to evaluate the effects of an olive pomace extract (OE) and a fat-encapsulated extract composed of a blend of oleoresins from Capsicum sp., black pepper, and ginger (SPICY) on broiler chicken performance and antioxidant function. In total, 640 1-day-old male [...] Read more.
This research aimed to evaluate the effects of an olive pomace extract (OE) and a fat-encapsulated extract composed of a blend of oleoresins from Capsicum sp., black pepper, and ginger (SPICY) on broiler chicken performance and antioxidant function. In total, 640 1-day-old male chicks were randomly assigned to five experimental diets (eight replicates/treatment, 16 birds/replicate). Diets included a basal diet with no added vitamin E (NC), NC plus 100 ppm of vitamin E (PC), NC plus 1250 ppm of OE, NC plus 250 ppm of (SPICY), and NC plus 1250 ppm OE plus 250 ppm of SPICY (SPIOE). Phytogenic additives were supplied by Lucta S.A., Spain. Compared to the NC, the PC significantly (p < 0.05) increased ADG from 8 to 14 days of age, with both OE and SPICY showing intermediate values between both controls. At the end of this trial, at 35 days of age, a significant (p < 0.05) increase in plasma GPx activity was observed in PC-fed birds compared to the NC, with no effects of malonyl dialdehyde (MDA) and total antioxidant capacity. Birds fed the OE and SPICY displayed intermediate values of GPx activity compared to both controls. The expression of heat shock protein 70 (HSP70) and glutathione S-Transferase Alpha 4 (GSTA4) was significantly lower (p < 0.05) in the jejunal mucosa of birds fed the OE compared to the NC. Moreover, the expression of HSP70 was significantly lower (p < 0.05) in birds fed the OE compared to SPICY but was not significantly different compared to the blend of both extracts (SPIOE). In conclusion, OE and SPICY were useful in maintaining growth performance in no vit E-supplemented diets, particularly in the case of OE mediated by its antioxidant action through HSP70. Full article
(This article belongs to the Section Poultry)
24 pages, 4132 KB  
Article
Effects of Botanical Blend of Turmeric, Capsicum, and Pepper Extracts on Colostrum and Milk Yield and Quality, Passive Transfer of Immunity, and Performance of Beef Cow–Calf Pairs
by Grace H. Jardon, Madison R. Kovarna, Jeff S. Heldt, Emma H. Wall and Ana Clara B. Menezes
Vet. Sci. 2025, 12(3), 250; https://doi.org/10.3390/vetsci12030250 - 6 Mar 2025
Viewed by 2874
Abstract
This study evaluated the effects of a botanical supplement (a formulated proprietary blend of turmeric, capsicum, and black pepper oleoresin in a fat carrier; PHYT), fed pre- and post-calving, on colostrum and milk yield and the quality, passive transfer of immunity, and performance [...] Read more.
This study evaluated the effects of a botanical supplement (a formulated proprietary blend of turmeric, capsicum, and black pepper oleoresin in a fat carrier; PHYT), fed pre- and post-calving, on colostrum and milk yield and the quality, passive transfer of immunity, and performance of cow–calf pairs. Twenty-three (BW = 532 ± 9.13 kg; age 36 mo) crossbred Angus cows were randomly assigned to three treatment groups: (1) not supplemented (CON, n = 7); (2) supplemented with 250 mg/head/day (PHYT250, n = 8); or (3) supplemented with 500 mg/head/day (PHYT500, n = 8) of the botanical supplement. The cows were individually fed the supplement from 30 days (±6 days) pre-calving to 60 days post-calving. Colostrum was collected on d 0 (pre-suckling), and d 1, d 2, and d 3 post-calving. The total milk from all quarters was collected 45 and 90 d post-calving and at weaning. Colostrum and milk volumes were recorded, and samples were analyzed for percentages of fat, protein, milk urea nitrogen, other solids, and lactose. Colostrum samples were analyzed for concentrations of IgG, IgA, and IgM, and milk samples were analyzed for IgG concentration using radial immunodiffusion. Blood samples were collected from dams and calves, and serum was analyzed for concentrations of IgG (cows and calves) and IgA (calves). Cow and calf BW were measured periodically until weaning. Supplementation with PHYT linearly increased fat in colostrum (CON = 3.29, PHIT250 = 4.23, and PHYT500 = 4.17 ± 0.77%; p = 0.05) and IgA in calf serum (96.91, 151.69, and 183.42 ± 29.78 mg/dL for CON, PHYT250, and PHYT500, respectively; p = 0.04) and tended to linearly increase concentrations of fat in milk (CON = 3.84, PHYT250 = 4.05, and PHYT500 = 4.71 ± 1.04%; p = 0.07), IgG in calf serum (2082.31; 2196.29; and 2577.78 ± 213.08 mg/dL for CON, PHYT250, and PHYT500, respectively; p = 0.09), and IgM in colostrum (CON = 179.04; PHYT250 = 170.79; PHYT500 = 218.30 ± 16.08 mg/dL; p = 0.09). A quadratic response was observed for calf ADG (p = 0.03), where CON (0.99 ± 0.03 kg/d) was less than PHYT250 (1.10 ± 0.03 kg/d), and intermediate values were observed for PHYT500 (1.01 ± 0.03 kg/d). In summary, supplementation with PHYT led to a linear increase in colostrum fat and IgA levels in calf serum. Additionally, supplementation tended to linearly elevate fat concentrations in milk, IgG levels in calf serum, and IgM levels in colostrum. Our results suggest that supplementing beef cows in late gestation and early lactation with 250 or 500 mg/head/d of PHYT improves colostrum quality and calf health and performance. Further investigation is needed to determine both the biological significance and the economic benefits of botanical additives in beef production. Full article
Show Figures

Figure 1

12 pages, 268 KB  
Article
Effects of Capsicum oleoresin on the Growth Performance, Nutrient Digestibility and Meat Quality of Fattening Beef Cattle
by Zihua Wang, Wei You, Xin Hu, Haijian Cheng, Enliang Song, Zhiyong Hu and Fugui Jiang
Ruminants 2025, 5(1), 5; https://doi.org/10.3390/ruminants5010005 - 21 Jan 2025
Cited by 1 | Viewed by 2478
Abstract
This study investigated the effects of Capsicum oleoresin (CAP) on the growth performance, nutrient digestibility and meat quality of fattening beef cattle. A total of 48 Simmental crossbred cattle, selected based on body weight (484.7 ± 48.4 kg), were randomly assigned to four [...] Read more.
This study investigated the effects of Capsicum oleoresin (CAP) on the growth performance, nutrient digestibility and meat quality of fattening beef cattle. A total of 48 Simmental crossbred cattle, selected based on body weight (484.7 ± 48.4 kg), were randomly assigned to four treatment groups (each with 12 animals) in a randomized complete block design. In each group, the basal diet was supplemented with 0 g/d CAP (control), 4 g/d, 8 g/d and 12 g/d. The results showed that adding CAP linearly increased the dry matter intake (DMI; p = 0.023), led to a quadratic increase in the average daily gain (ADG; p = 0.035) and linearly decreased the feed-to-gain ratio (F/G; p = 0.018). The apparent digestibility of CP also linearly increased with increasing CAP dosage (p = 0.023), while the apparent digestibility of ADF showed a decreasing trend (p = 0.054). Additionally, the slaughter performance index and nutritional composition of beef were not affected by the amount of CAP added (p > 0.05), while the pH value of beef decreased linearly with increasing CAP addition (p = 0.016). Among all groups, the 8 g/d one exhibited the highest DMI, ADG, F/G, apparent digestibility of CP and water-holding capacity, as well as the lowest cooking loss. In conclusion, CAP can be used as a potential novel feed additive in the diet of beef cattle to improve growth performance and nutrient digestibility. Under the conditions applied in this study, a CAP amount of 8 g/d per cattle was found to be optimum for fattening beef cattle. Full article
(This article belongs to the Special Issue Nutrients and Feed Additives in Ruminants)
17 pages, 3585 KB  
Article
Immunological Responses, Expression of Immune-Related Genes, and Disease Resistance of Rainbow Trout (Oncorhynchus mykiss) Fed Diets Supplied with Capsicum (Capsicum annuum) Oleoresin
by Sevdan Yilmaz, Osman Nezih Kenanoğlu, Sebahattin Ergün, Ekrem Şanver Çelik, Mert Gürkan, Elsayed Eldeeb Mehana and Hany M. R. Abdel-Latif
Animals 2024, 14(23), 3402; https://doi.org/10.3390/ani14233402 - 25 Nov 2024
Cited by 3 | Viewed by 1658
Abstract
A 45-day feeding study was carried out to assess the immune-stimulatory effects of capsicum oleoresin when added to rainbow trout diets. A total of 450 fish (mean weight: 155.20 ± 1.96 g) were distributed into 400 L tanks (30 fish/tank) across five experimental [...] Read more.
A 45-day feeding study was carried out to assess the immune-stimulatory effects of capsicum oleoresin when added to rainbow trout diets. A total of 450 fish (mean weight: 155.20 ± 1.96 g) were distributed into 400 L tanks (30 fish/tank) across five experimental groups: control (CT, 0%), C7 (0.7%), C14 (1.4%), C21 (2.1%), and C28 (2.8%). Each group consisted of three replicate tanks. At the end of this period, hemato-biochemical parameters, innate immune responses, and immune-related gene expression levels were evaluated, and a histological examination of head kidney and liver sections was conducted. Finally, fish in all groups were challenged with Lactococcus garvieae and observed for an additional 20 days. The results revealed that oleoresin supplementation enhanced the immune responses of the treated fish, which was evidenced by the increased globulin, total protein, respiratory burst activity, and total immunoglobulin levels. The highest expression levels of the il-8, il-1β, TGF-β, and SAA genes was noticed in the C7 group, as compared with the results for the other groups. The IgT gene expression levels were higher in all experimental groups than in the CT group, and this increase was at the highest level in the C28 group. Following the bacterial challenge, all experimental groups displayed higher survival rates compared to that of the CT group. These values were 75.93, 72.22, 46.30, 33.33, and 29.63% in the C7, C14, C21, C28, and CT groups, respectively, with the C7 group displaying the highest survival rate among the groups. The histological examination of liver and head kidney tissues revealed that higher doses (in the C21 and C28 groups) showed an increase in cytoplasmic vacuolization, which causes adverse effects on fish health. However, the C7 group displayed normal histological structure in both tissues. Taken together, the most favorable immune responses were achieved in the C7 group, suggesting that 0.7% oleoresin could be applied to rainbow trout to boost immunity and protect the fish from diseases. Full article
(This article belongs to the Special Issue Enhancing Aquatic Animal Health Through Feed Additives)
Show Figures

Figure 1

20 pages, 3868 KB  
Article
PLGA/Ti-Zn as Nanocomposite for Drug Delivery of Oleoresin
by Noé Rodríguez-Barajas, Ubaldo de Jesús Martin-Camacho, Jasmin Salazar-Mendoza, Suresh Ghotekar, Jorge Alberto Sánchez-Burgos, Oscar Arturo González-Vargas, Mamoun Fellah, Monserrat Macías-Carballo, Yanet Karina Gutiérrez-Mercado, Gabriela Camargo-Hernández, Christian Martin Rodríguez-Razón and Alejandro Pérez-Larios
J. Compos. Sci. 2024, 8(10), 431; https://doi.org/10.3390/jcs8100431 - 16 Oct 2024
Cited by 12 | Viewed by 2663
Abstract
Capsicum annuum L. var. “Chile de árbol” combined with poly(lactic-co-glycolic acid) (PLGA) and TiO2-ZnO oxides synthesized at different molar ratios and pH (Ti-Zn A and B 3:1, 1:1, and 1:3) via the sol-gel method was characterized by the Brunauer–Emmett–Teller (BET) method, [...] Read more.
Capsicum annuum L. var. “Chile de árbol” combined with poly(lactic-co-glycolic acid) (PLGA) and TiO2-ZnO oxides synthesized at different molar ratios and pH (Ti-Zn A and B 3:1, 1:1, and 1:3) via the sol-gel method was characterized by the Brunauer–Emmett–Teller (BET) method, a UV-Vis spectrophotometer (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), High-Performance Liquid Chromatography (HPLC-DAD), and a release profile through mathematical models to explain its behavior. Furthermore, FTIR revealed the presence of PLGA, TiO2, and ZnO as well as amino group characteristics from oleoresin components, principally alkaloid groups (capsaicin and dihydrocapsaicin), as evidenced by HPLC, to identify the presence of capsaicin and dihydrocapsaicin. The UV-Vis spectra showed a slight hypsochromic shift in the PLGA treatments. The release profile demonstrated a higher controllable release in the PLGA treatments than in the double nanoemulsions. Moreover, it is important to note that the effect of NPs influenced the release profile itself, increasing the release when NPs were synthesized at an acidic pH. Therefore, the TiZnOl/PLGA A characteristics suggest that these results have potential for pharmaceutical (as drug carriers) and medical applications. Full article
(This article belongs to the Special Issue Recent Progress in Hybrid Composites)
Show Figures

Figure 1

18 pages, 4369 KB  
Article
Co-Microencapsulation of Cushuro (Nostoc sphaericum) Polysaccharide with Sacha Inchi Oil (Plukenetia huayllabambana) and Natural Antioxidant Extracts
by Nancy Chasquibol, Axel Sotelo, Mateo Tapia, Rafael Alarcón, Francisco Goycoolea and María del Carmen Perez-Camino
Antioxidants 2024, 13(6), 680; https://doi.org/10.3390/antiox13060680 - 31 May 2024
Cited by 6 | Viewed by 3521
Abstract
Cushuro (Nostoc sphaericum) polysaccharide was used to co-microencapsulate sacha inchi oil, natural antioxidant extracts from the oleoresin of charapita chili peppers (Capsicum frutescens L.) and grape orujo (Vitis vinifera L.). Encapsulation efficiency, moisture, particle size, morphology, oxidative stability, shelf-life, [...] Read more.
Cushuro (Nostoc sphaericum) polysaccharide was used to co-microencapsulate sacha inchi oil, natural antioxidant extracts from the oleoresin of charapita chili peppers (Capsicum frutescens L.) and grape orujo (Vitis vinifera L.). Encapsulation efficiency, moisture, particle size, morphology, oxidative stability, shelf-life, solubility, essential fatty acid profile, sterol content and antioxidant capacity were evaluated. The formulations with grape orujo extract showed higher oxidative stability (4908 ± 184 h), antioxidant capacity (4835.33 ± 40.02 µg Trolox/g ms), higher phenolic contents (960.11 ± 53.59 µg AGE/g ms) and a smaller particle size (7.55 µm) than the other formulations, as well as good solubility and a low moisture content. Therefore, grape orujo extracts can be used as natural antioxidants. The fatty acid composition (ω-3) remained quite stable in all the formulations carried out, which also occurred for sterols and tocopherols. In combination with gum arabic, grape orujo extract offered oxidative protection to sacha inchi oil during the first week of storage. Full article
(This article belongs to the Section Extraction and Industrial Applications of Antioxidants)
Show Figures

Figure 1

11 pages, 565 KB  
Article
Capsaicin as a Dietary Additive for Dairy Cows: A Meta-Analysis on Performance, Milk Composition, Digestibility, Rumen Fermentation, and Serum Metabolites
by José Felipe Orzuna-Orzuna, Juan Eduardo Godina-Rodríguez, Jonathan Raúl Garay-Martínez and Alejandro Lara-Bueno
Animals 2024, 14(7), 1075; https://doi.org/10.3390/ani14071075 - 2 Apr 2024
Cited by 8 | Viewed by 3852
Abstract
This study aimed to evaluate the effects of dietary supplementation with capsaicin (CAP) on productive performance, milk composition, nutrient digestibility, ruminal fermentation, and serum metabolites of dairy cows using a meta-analytical approach. The database included 13 studies, from which the response variables of [...] Read more.
This study aimed to evaluate the effects of dietary supplementation with capsaicin (CAP) on productive performance, milk composition, nutrient digestibility, ruminal fermentation, and serum metabolites of dairy cows using a meta-analytical approach. The database included 13 studies, from which the response variables of interest were obtained. Data were analyzed using a random effects model, and results were expressed as weighted mean differences between treatments supplemented with and without CAP. Dietary supplementation with CAP increased (p < 0.05) dry matter intake, milk yield, feed efficiency, milk fat yield, and milk fat content. However, CAP supplementation did not affect (p > 0.05) milk protein and lactose yield, milk urea nitrogen, or milk somatic cell count. Greater (p < 0.05) apparent digestibility of dry matter and crude protein was observed in response to the dietary inclusion of CAP. Likewise, supplementation with CAP increased (p < 0.05) the rumen concentration of total volatile fatty acids. In contrast, CAP supplementation did not affect (p > 0.05) ruminal pH or the ruminal concentration of ammonia nitrogen, acetate, propionate, and butyrate. In blood serum, CAP supplementation increased (p < 0.05) the glucose concentration and decreased (p < 0.05) the concentration of non-esterified fatty acids. However, CAP supplementation did not affect (p > 0.05) the serum concentration of urea and beta-hydroxybutyrate. In conclusion, capsaicin can be used as a dietary additive to improve the productive performance, milk composition, and nutrient digestibility in dairy cows and, at the same time, improve the ruminal concentration of total volatile fatty acids and serum levels of glucose and non-esterified fatty acids. Full article
(This article belongs to the Special Issue Plant Extracts as Feed Additives in Animal Nutrition and Health)
Show Figures

Figure 1

17 pages, 5937 KB  
Article
Characterization of Spray-Dried Microcapsules of Paprika Oleoresin Induced by Ultrasound and High-Pressure Homogenization: Physicochemical Properties and Storage Stability
by Qionglian Zhang, Yan Chen, Fang Geng and Xiaoyun Shen
Molecules 2023, 28(20), 7075; https://doi.org/10.3390/molecules28207075 - 13 Oct 2023
Cited by 13 | Viewed by 3507
Abstract
As an indispensable process in the microencapsulation of active substances, emulsion preparation has a significant impact on microencapsulated products. In this study, five primary emulsions of paprika oleoresin (PO, the natural colourant extracted from the fruit peel of Capsicum annuum L.) with different [...] Read more.
As an indispensable process in the microencapsulation of active substances, emulsion preparation has a significant impact on microencapsulated products. In this study, five primary emulsions of paprika oleoresin (PO, the natural colourant extracted from the fruit peel of Capsicum annuum L.) with different particle sizes (255–901.7 nm) were prepared using three industrialized pulverization-inducing techniques (stirring, ultrasound induction, and high-pressure homogenization). Subsequently, the PO emulsion was microencapsulated via spray drying. The effects of the different induction methods on the physicochemical properties, digestive behaviour, antioxidant activity, and storage stability of PO microencapsulated powder were investigated. The results showed that ultrasound and high-pressure homogenization induction could improve the encapsulation efficiency, solubility, and rehydration capacity of the microcapsules. In vitro digestion studies showed that ultrasound and high-pressure homogenization induction significantly increased the apparent solubility and dissolution of the microcapsules. High-pressure homogenization induction significantly improved the antioxidant capacity of the microcapsules, while high-intensity ultrasound (600 W) induction slowed down the degradation of the microcapsule fats and oils under short-term UV and long-term natural light exposure. Our study showed that ultrasound and high-pressure homogenization equipment could successfully be used to prepare emulsions containing nanoscale capsicum oil resin particles, improve their functional properties, and enhance the oral bioavailability of this bioactive product. Full article
Show Figures

Graphical abstract

12 pages, 1594 KB  
Article
Evaluation of the Capsaicinoid Extraction Conditions from Mexican Capsicum chinense Var. Mayapan with Supercritical Fluid Extraction (SFE)
by Kevin Alejandro Avilés-Betanzos, Matteo Scampicchio, Giovanna Ferrentino, Manuel Octavio Ramírez-Sucre and Ingrid Mayanin Rodríguez-Buenfil
Processes 2023, 11(8), 2272; https://doi.org/10.3390/pr11082272 - 28 Jul 2023
Cited by 4 | Viewed by 3375
Abstract
Capsaicin (Cp) is a secondary metabolite produced by the Capsicum plant family. This molecule exhibits various biological properties such as antioxidant capacities, anti-obesogenic effects, and antidiabetic properties, among others. However, conventional extraction methods for Cp present several disadvantages including toxicity, extraction time, and [...] Read more.
Capsaicin (Cp) is a secondary metabolite produced by the Capsicum plant family. This molecule exhibits various biological properties such as antioxidant capacities, anti-obesogenic effects, and antidiabetic properties, among others. However, conventional extraction methods for Cp present several disadvantages including toxicity, extraction time, and low purity. Therefore, the utilization of supercritical fluid extraction techniques represents a viable option for obtaining highly pure and low-toxicity oleoresins (capsaicin-rich extracts). This approach involves the use of CO2 in the supercritical state and finds applicability in the pharmaceutical, food, and cosmetic industries. The Capsicum chinense variety from the Yucatán Peninsula is a crop with significant economic impact in the region, due to having the highest concentrations of Cp in Mexico. This significant characteristic is attributed to its adaptation to the unique conditions (climate, soil, solar radiation, humidity) of the southeastern region of Mexico. The objective of this study was to evaluate the effect of temperature (45 °C, 60 °C), pressure (1450 psi, 2900 psi), and extraction time (60 min, 120 min) on the supercritical fluid extraction of Cp and dihydrocapsaicin (DhCp) from Capsicum chinense Jacq. The results obtained demonstrated that the extraction conditions of 45 °C, 1450 psi, and 60 min yielded the highest concentration of Cp (37.09 ± 0.84 mg/g extract) and DhCp (10.17 ± 0.18 mg/g extract), while the highest antioxidant capacity (91.48 ± 0.24% inhibition) was obtained with 60 °C, 2900 psi, and 60 min. The findings of this study indicate that the lower the pressure and extraction time, the higher the concentrations of Cp and DhCp compared to previous reports. This represents an opportunity for cost reduction in production lines and improved utilization of Capsicum chinense in the agrifood industry through additional optimization processes. Full article
Show Figures

Figure 1

17 pages, 3030 KB  
Article
Blend of Cinnamaldehyde, Eugenol, and Capsicum Oleoresin Improved Rumen Health of Lambs Fed High-Concentrate Diet as Revealed by Fermentation Characteristics, Epithelial Gene Expression, and Bacterial Community
by Wenwen Wang, Yuan Wang, Tao Guo, Chang Gao, Yi Yang, Lei Yang, Zhiwei Cui, Jinju Mao, Na Liu, Xiaoping An and Jingwei Qi
Animals 2023, 13(10), 1663; https://doi.org/10.3390/ani13101663 - 17 May 2023
Cited by 10 | Viewed by 2727
Abstract
We investigated the effects of CEC on the fermentation characteristics, epithelial gene expression, and bacterial community in the rumen of lambs fed a high-concentrate diet. Twenty-four 3-month-old female crossbred lambs with an initial body weight of 30.37 ± 0.57 kg were randomly allocated [...] Read more.
We investigated the effects of CEC on the fermentation characteristics, epithelial gene expression, and bacterial community in the rumen of lambs fed a high-concentrate diet. Twenty-four 3-month-old female crossbred lambs with an initial body weight of 30.37 ± 0.57 kg were randomly allocated to consume a diet supplemented with 80 mg/kg CEC (CEC) or not (CON). The experiment consisted of a 14 d adaptation period and a 60 d data collection period. Compared with the CON group, the CEC group had higher ADG, epithelial cell thickness, ruminal butyrate proportion, and lower ammonia nitrogen concentration. Increases in the mRNA expression of Occludin and Claudin-4, as well as decreases in the mRNA expression of apoptotic protease activating factor-1 (Apaf-1), cytochrome c (Cyt-C), Caspase-8, Caspase-9, Caspase-3, Caspase-7, and toll-like receptor 4 (TLR4), were observed in the CEC group. Moreover, CEC treatment also decreased the concentration of IL-1β, IL-12, and TNF-α. Supplementation with CEC altered the structure and composition of the rumen bacterial community, which was indicated by the increased relative abundances of Firmicutes, Synergistota, Rikenellaceae_RC9_gut_group, Olsenella, Schwartzia, Erysipelotrichaceae_UCG-002, Lachnospiraceae_NK3A20_group, Acetitomaculum, [Eubacterium]_ruminantium_group, Prevotellaceae_UCG-004, Christensenellaceae_R-7_group, Sphaerochaeta, Pyramidobacter, and [Eubacterium]_eligens_group, and the decreased relative abundances of Acidobacteriota, Chloroflexi, Gemmatimonadota, and MND1. Furthermore, Spearman correlation analysis revealed that the altered rumen bacteria were closely correlated with rumen health-related indices. Dietary CEC supplementation improved growth performance, reduced inflammation and apoptosis, protected barrier function, and modulated the bacterial community of lambs fed a high-concentrate diet. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

9 pages, 268 KB  
Article
Effects of Capsicum oleoresin Inclusion on Rumen Fermentation and Lactation Performance in Buffaloes (Bubalus bubalis) during Summer: In Vitro and In Vivo Studies
by Zhigao An, Junwei Zhao, Xinxin Zhang, Shanshan Gao, Chao Chen, Kaifeng Niu, Pei Nie, Zhiqiu Yao, Ke Wei, Umair Riaz and Liguo Yang
Fermentation 2023, 9(3), 232; https://doi.org/10.3390/fermentation9030232 - 28 Feb 2023
Cited by 4 | Viewed by 2533
Abstract
This research aimed to evaluate the effects of Capsicum oleoresin (CAP) supplementation on rumen fermentation in vivo and In vitro, and lactation performance in buffaloes. In the experiment in vitro, 2 × 5 factorial design was carried out according to two temperatures (normal [...] Read more.
This research aimed to evaluate the effects of Capsicum oleoresin (CAP) supplementation on rumen fermentation in vivo and In vitro, and lactation performance in buffaloes. In the experiment in vitro, 2 × 5 factorial design was carried out according to two temperatures (normal temperature: 39 °C; hyperthermal temperature: 42 °C) and five CAP concentrations (0 mg/L; 2 mg/L; 20 mg/L; 200 mg/L; 2000 mg/L). In the experiment in vivo, four multiparous mid-lactating Mediterranean buffaloes (body weight: 640.08 ± 17.90 kg) were randomly allocated to four treatments according to 4 × 4 Latin square design for CAP supplementation in four dosages (0 mg/kg, 10 mg/kg, 20 mg/kg, or 40 mg/kg of dry matter). The experiment’s results In vitro showed that hyperthermal temperature affected all fermentation characteristics measured in this research. CAP decreased the pH, short-chain fatty acids concentration, and percentages of propionate, butyrate, isobutyrate, valerate, and caproate, while increasing the percentage of acetate and the ratio of acetate to propionate at normal temperature (p ≤ 0.05). In the experiment in vivo, CAP decreased the percentage of propionate and quadratically affected acetate percentage in rumen fluid (p ≤ 0.05). CAP reduced rectal temperature and respiratory rates (p ≤ 0.05) and tended to increase dry matter intake quadratically (p ≤ 0.10). For lactation performance, CAP increased milk yield and milk lactose yield (p ≤ 0.05), and tended to increase milk protein yield (p ≤ 0.10). In conclusion, CAP modified rumen fermentation characteristics in vivo and In vitro and had beneficial effects on lactation performance in buffaloes during summer. Full article
(This article belongs to the Special Issue In Vitro Fermentation, 2nd Edition)
18 pages, 3188 KB  
Article
A Comparison of the Immunometabolic Effect of Antibiotics and Plant Extracts in a Chicken Macrophage-like Cell Line during a Salmonella Enteritidis Challenge
by Giulia Giovagnoni, Famatta Perry, Benedetta Tugnoli, Andrea Piva, Ester Grilli and Ryan J. Arsenault
Antibiotics 2023, 12(2), 357; https://doi.org/10.3390/antibiotics12020357 - 8 Feb 2023
Cited by 5 | Viewed by 2532
Abstract
Immunometabolic modulation of macrophages can play an important role in the innate immune response of chickens triggered with a multiplicity of insults. In this study, the immunometabolic role of two antibiotics (oxytetracycline and gentamicin) and four plant extracts (thyme essential oil, grape seed [...] Read more.
Immunometabolic modulation of macrophages can play an important role in the innate immune response of chickens triggered with a multiplicity of insults. In this study, the immunometabolic role of two antibiotics (oxytetracycline and gentamicin) and four plant extracts (thyme essential oil, grape seed extract, garlic oil, and capsicum oleoresin) were investigated on a chicken macrophage-like cell line (HD11) during a Salmonella Enteritidis infection. To study the effect of these substances, kinome peptide array analysis, Seahorse metabolic assay, and gene expression techniques were employed. Oxytetracycline, to which the bacterial strain was resistant, thyme essential oil, and capsicum oleoresin did not show any noteworthy immunometabolic effect. Garlic oil affected glycolysis, but this change was not detected by the kinome analysis. Gentamicin and grape seed extract showed the best immunometabolic profile among treatments, being able to both help the host with the activation of immune response pathways and with maintaining a less inflammatory status from a metabolic point of view. Full article
(This article belongs to the Special Issue Non-antibiotic Approaches to Control Food-Borne Pathogens)
Show Figures

Figure 1

21 pages, 3377 KB  
Article
Dietary Supplementation with Botanical Blends Modified Intestinal Microbiota and Metabolomics of Weaned Pigs Experimentally Infected with Enterotoxigenic Escherichia coli
by Cynthia Jinno, Kwangwook Kim, Braden Wong, Emma Wall, Ravichandran Sripathy and Yanhong Liu
Microorganisms 2023, 11(2), 320; https://doi.org/10.3390/microorganisms11020320 - 27 Jan 2023
Cited by 2 | Viewed by 2733
Abstract
The objective of this study was to investigate supplementation of botanical blends (BB) comprised of 0.3% capsicum oleoresin and 12% garlic oil on gut microbiota and metabolomic profiles in serum and ileal mucosa of Escherichia coli infected pigs. Sixty weaned pigs were assigned [...] Read more.
The objective of this study was to investigate supplementation of botanical blends (BB) comprised of 0.3% capsicum oleoresin and 12% garlic oil on gut microbiota and metabolomic profiles in serum and ileal mucosa of Escherichia coli infected pigs. Sixty weaned pigs were assigned to one of five treatments: negative control (CON−), positive control (CON+), dietary supplementation of 100 ppm BB1, 50 or 100 ppm BB2. All pigs, except CON−, were orally inoculated with 1010 CFU F18 ETEC/3-mL dose for 3 consecutive days after 7 d adaption. Feces, ileal digesta and cecal content were collected for 16S rRNA amplicon sequencing. Serum and ileal mucosa underwent primary metabolomics analysis. Supplementing 100 ppm BB1 increased (p < 0.05) relative abundances of Enterobacteriaceae and Escherichia–Shigella in ileum, and the relative abundances of Bacteroidota and Prevotellaceae in cecum than CON+ on d 5 post-inoculation (PI). Supplementing 100 ppm BB2 upregulated serum pinitol on d 4 PI and serum cholesterol and aminomalonic acids on d 21 PI, while supplementing 50 ppm BB2 reduced asparagine in ileal mucosa on d 5 PI than CON+. Supplementation with botanical blends modulated ileal and cecal microbiota and serum metabolomics profiles in weaned pigs under Escherichia coli challenge. Full article
(This article belongs to the Special Issue Gut Microbiome of Farm Animals in Health and Disease 2.0)
Show Figures

Figure 1

Back to TopTop