Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = capmatinib

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 10695 KiB  
Article
Phosphorylation of MET Is Upregulated in Metastatic Sites of Renal Cell Carcinoma: Possible Role of MET and Hepatocyte Growth Factor Activation-Targeted Combined Therapy
by Takahiro Akioka, Shoichi Kimura, Yuichi Katayama, Masato Fujii, Takumi Kiwaki, Makiko Kawaguchi, Tsuyoshi Fukushima, Yuichiro Sato, Shoichiro Mukai, Toshiyuki Kamoto and Atsuro Sawada
Biomedicines 2025, 13(4), 811; https://doi.org/10.3390/biomedicines13040811 - 28 Mar 2025
Viewed by 555
Abstract
Background: Increased expression of MET and hepatocyte growth factor (HGF)-related molecules has been positively correlated with poor prognosis in renal cell carcinoma (RCC). In the current study, the expression and phosphorylation of MET in metastatic RCC (mRCC) are determined by immunohistochemistry, and the [...] Read more.
Background: Increased expression of MET and hepatocyte growth factor (HGF)-related molecules has been positively correlated with poor prognosis in renal cell carcinoma (RCC). In the current study, the expression and phosphorylation of MET in metastatic RCC (mRCC) are determined by immunohistochemistry, and the therapeutic effect of MET and HGF activation-targeting agents for RCC cell lines is analyzed. Methods: Immunohistochemistry was performed for 76 formalin-fixed paraffin-embedded specimens (primary tumor: 32, metastatic site: 44). The therapeutic effect of capmatinib (MET-I) and SRI-31215 (inhibitor of HGF-activating proteases: HGFA-I) was determined based on the inhibition of MET phosphorylation, cell proliferation, and cell migration in 786-O and caki-1 cell lines. Results: Increased expression and phosphorylation of MET were observed in both primary tumor and metastatic sites; however, phosphorylation was significantly upregulated in metastatic sites (p = 0.0001). In an assay of RCC cell lines, the strongest inhibition of MET phosphorylation, cell proliferation, and migration was confirmed with the combined used of MET-I and HGFA-I. Conclusions: Phosphorylation of MET was significantly upregulated in metastasis, which suggested the importance of downregulation in the treatment of mRCC. Our findings suggest that dual inhibition of MET and HGF activation may offer a promising strategy for mRCC treatment, warranting further clinical validation. Full article
Show Figures

Figure 1

20 pages, 3638 KiB  
Article
Application of an Integrated Single-Cell and Three-Dimensional Spheroid Culture Platform for Investigating Drug Resistance Heterogeneity and Epithelial–Mesenchymal Transition (EMT) in Lung Cancer Subclones
by Shin-Hu Chen, Jian-Hong Yu, Yu-Chun Lin, Yi-Ming Chang, Nien-Tzu Liu and Su-Feng Chen
Int. J. Mol. Sci. 2025, 26(4), 1766; https://doi.org/10.3390/ijms26041766 - 19 Feb 2025
Cited by 1 | Viewed by 1516
Abstract
Lung cancer is a leading cause of cancer-related mortality worldwide, largely due to its heterogeneity and intrinsic drug resistance. Malignant pleural effusions (MPEs) provide diverse tumor cell populations ideal for studying these complexities. Although chemotherapy and targeted therapies can be initially effective, subpopulations [...] Read more.
Lung cancer is a leading cause of cancer-related mortality worldwide, largely due to its heterogeneity and intrinsic drug resistance. Malignant pleural effusions (MPEs) provide diverse tumor cell populations ideal for studying these complexities. Although chemotherapy and targeted therapies can be initially effective, subpopulations of cancer cells with phenotypic plasticity often survive treatment, eventually developing resistance. Here, we integrated single-cell isolation and three-dimensional (3D) spheroid culture to dissect subclonal heterogeneity and drug responses, aiming to inform precision medicine approaches. Using A549 lung cancer cells, we established a cisplatin-resistant line and isolated three resistant subclones (Holoclone, Meroclone, Paraclone) via single-cell sorting. In 3D spheroids, Docetaxel and Alimta displayed higher IC50 values than in 2D cultures, suggesting that 3D models better reflect clinical dosing. Additionally, MPE-derived Holoclone and Paraclone subclones exhibited distinct sensitivities to Giotrif and Capmatinib, revealing their heterogeneous drug responses. Molecular analyses confirmed elevated ABCB1, ABCG2, cancer stem cell (CSC) markers (OCT4, SOX2, CD44, CD133), and epithelial–mesenchymal transition (EMT) markers (E-cadherin downregulation, increased Vimentin, N-cadherin, Twist) in resistant subclones, correlating with enhanced migration and invasion. This integrated approach clarifies the interplay between heterogeneity, CSC/EMT phenotypes, and drug resistance, providing a valuable tool for predicting therapeutic responses and guiding personalized, combination-based lung cancer treatments. Full article
(This article belongs to the Special Issue Lung Cancers: An Update on Molecular Diagnostics and Therapy)
Show Figures

Figure 1

19 pages, 4606 KiB  
Article
MET Exon 14 Skipping and Novel Actionable Variants: Diagnostic and Therapeutic Implications in Latin American Non-Small-Cell Lung Cancer Patients
by Solange Rivas, Romina V. Sepúlveda, Ignacio Tapia, Catalina Estay, Vicente Soto, Alejandro Blanco, Evelin González and Ricardo Armisen
Int. J. Mol. Sci. 2024, 25(24), 13715; https://doi.org/10.3390/ijms252413715 - 22 Dec 2024
Cited by 1 | Viewed by 2263
Abstract
Targeted therapy indications for actionable variants in non-small-cell lung cancer (NSCLC) have primarily been studied in Caucasian populations, with limited data on Latin American patients. This study utilized a 52-genes next-generation sequencing (NGS) panel to analyze 1560 tumor biopsies from NSCLC patients in [...] Read more.
Targeted therapy indications for actionable variants in non-small-cell lung cancer (NSCLC) have primarily been studied in Caucasian populations, with limited data on Latin American patients. This study utilized a 52-genes next-generation sequencing (NGS) panel to analyze 1560 tumor biopsies from NSCLC patients in Chile, Brazil, and Peru. The RNA sequencing reads and DNA coverage were correlated to improve the detection of the actionable MET exon 14 skipping variant (METex14). The pathogenicity of MET variants of uncertain significance (VUSs) was assessed using bioinformatic methods, based on their predicted driver potential. The effects of the predicted drivers VUS T992I and H1094Y on c-MET signaling activation, proliferation, and migration were evaluated in HEK293T, BEAS-2B, and H1993 cell lines. Subsequently, c-Met inhibitors were tested in 2D and 3D cell cultures, and drug affinity was determined using 3D structure simulations. The prevalence of MET variants in the South American cohort was 8%, and RNA-based diagnosis detected 27% more cases of METex14 than DNA-based methods. Notably, 20% of METex14 cases with RNA reads below the detection threshold were confirmed using DNA analysis. The novel actionable T992I and H1094Y variants induced proliferation and migration through c-Met/Akt signaling. Both variants showed sensitivity to crizotinib and savolitinib, but the H1094Y variant exhibited reduced sensitivity to capmatinib. These findings highlight the importance of RNA-based METex14 diagnosis and reveal the drug sensitivity profiles of novel actionable MET variants from an understudied patient population. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

13 pages, 3204 KiB  
Article
Potential Utility of a 4th-Generation EGFR-TKI and Exploration of Resistance Mechanisms—An In Vitro Study
by Shota Fukuda, Kenichi Suda, Akira Hamada, Hana Oiki, Shuta Ohara, Masaoki Ito, Junichi Soh, Tetsuya Mitsudomi and Yasuhiro Tsutani
Biomedicines 2024, 12(7), 1412; https://doi.org/10.3390/biomedicines12071412 - 25 Jun 2024
Cited by 5 | Viewed by 3877
Abstract
The emergence of acquired resistance to EGFR-tyrosine kinase inhibitors (TKIs) is almost inevitable even after a remarkable clinical response. Secondary mutations such as T790M and C797S are responsible for the resistance to 1st/2nd-generation (1/2G) TKIs and 3G TKIs, respectively. To overcome both the [...] Read more.
The emergence of acquired resistance to EGFR-tyrosine kinase inhibitors (TKIs) is almost inevitable even after a remarkable clinical response. Secondary mutations such as T790M and C797S are responsible for the resistance to 1st/2nd-generation (1/2G) TKIs and 3G TKIs, respectively. To overcome both the T790M and C797S mutations, novel 4G EGFR-TKIs are now under early clinical development. In this study, we evaluated the efficacy of a 4G EGFR-TKI in the treatment of lung cancer with EGFR mutation as well as explored resistance mechanisms to a 4G TKI. First, we compared the efficacies of seven TKIs including a 4G TKI, BI4020, against Ba/F3 cell models that simulate resistant tumors after front-line osimertinib treatment failure because of a secondary mutation. We also established acquired resistant cells to BI4020 by chronic drug exposure. Ba/F3 cells with an osimertinib-resistant secondary mutation were refractory to all 3G TKIs tested (alflutinib, lazertinib, rezivertinib, almonertinib, and befotertinib). BI4020 inhibited the growth of C797S-positive cells; however, it was not effective against L718Q-positive cells. Erlotinib was active against all Ba/F3 cells tested. In the analysis of resistance mechanisms of BI4020-resistant (BIR) cells, none harbored secondary EGFR mutations. HCC827BIR cells had MET gene amplification and were sensitive to a combination of capmatinib (MET-TKI) and BI4020. HCC4006BIR and H1975BIR cells exhibited epithelial-to-mesenchymal transition. This study suggests that erlotinib may be more suitable than 4G TKIs to overcome secondary mutations after front-line osimertinib. We found that off-target mechanisms that cause resistance to earlier-generation TKIs will also cause resistance to 4G TKIs. Full article
Show Figures

Figure 1

13 pages, 3034 KiB  
Article
Characterization of MET Alterations in 37 Gastroesophageal Cancer Cell Lines for MET-Targeted Therapy
by Jin-Soo Kim, Mi Young Kim and Sungyoul Hong
Int. J. Mol. Sci. 2024, 25(11), 5975; https://doi.org/10.3390/ijms25115975 - 29 May 2024
Cited by 4 | Viewed by 1971
Abstract
Capmatinib and savolitinib, selective MET inhibitors, are widely used to treat various MET-positive cancers. In this study, we aimed to determine the effects of these inhibitors on MET-amplified gastric cancer (GC) cells. Methods: After screening 37 GC cell lines, the following [...] Read more.
Capmatinib and savolitinib, selective MET inhibitors, are widely used to treat various MET-positive cancers. In this study, we aimed to determine the effects of these inhibitors on MET-amplified gastric cancer (GC) cells. Methods: After screening 37 GC cell lines, the following cell lines were found to be MET-positive with copy number variation >10: SNU-620, ESO51, MKN-45, SNU-5, and OE33 cell lines. Next, we assessed the cytotoxic response of these cell lines to capmatinib or savolitinib alone using cell counting kit-8 and clonogenic cell survival assays. Western blotting was performed to assess the effects of capmatinib and savolitinib on the MET signaling pathway. Xenograft studies were performed to evaluate the in vivo therapeutic efficacy of savolitinib in MKN-45 cells. Savolitinib and capmatinib exerted anti-proliferative effects on MET-amplified GC cell lines in a dose-dependent manner. Savolitinib inhibited the phosphorylation of MET and downstream signaling pathways, such as the protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) pathways, in MET-amplified GC cells. Additionally, savolitinib significantly decreased the number of colonies formed on the soft agar and exerted dose-dependent anti-tumor effects in an MKN-45 GC cell xenograft model. Furthermore, a combination of trastuzumab and capmatinib exhibited enhanced inhibition of AKT and ERK activation in human epidermal growth factor receptor-2 (HER2)- and MET-positive OE33 cells. Targeting MET with savolitinib and capmatinib efficiently suppressed the growth of MET-amplified GC cells. Moreover, these MET inhibitors exerted synergistic effects with trastuzumab on HER2- and MET-amplified GC cells. Full article
Show Figures

Figure 1

18 pages, 4635 KiB  
Article
Targeting Lactate Dehydrogenase-B as a Strategy to Fight Cancer: Identification of Potential Inhibitors by In Silico Analysis and In Vitro Screening
by Manos Vlasiou, Vicky Nicolaidou and Christos Papaneophytou
Pharmaceutics 2023, 15(10), 2411; https://doi.org/10.3390/pharmaceutics15102411 - 1 Oct 2023
Cited by 12 | Viewed by 3491
Abstract
Lactate dehydrogenase (LDH) is an enzyme that catalyzes the reversible conversion of lactate to pyruvate while reducing NAD+ to NADH (or oxidizing NADH to NAD+). Due to its central role in the Warburg effect, LDH-A isoform has been considered a [...] Read more.
Lactate dehydrogenase (LDH) is an enzyme that catalyzes the reversible conversion of lactate to pyruvate while reducing NAD+ to NADH (or oxidizing NADH to NAD+). Due to its central role in the Warburg effect, LDH-A isoform has been considered a promising target for treating several types of cancer. However, research on inhibitors targeting LDH-B isoform is still limited, despite the enzyme’s implication in the development of specific cancer types such as breast and lung cancer. This study aimed to identify small-molecule compounds that specifically inhibit LDH-B. Our in silico analysis identified eight commercially available compounds that may affect LDH-B activity. The best five candidates, namely tucatinib, capmatinib, moxidectin, rifampicin, and acetyldigoxin, were evaluated further in vitro. Our results revealed that two compounds, viz., tucatinib and capmatinib, currently used for treating breast and lung cancer, respectively, could also act as inhibitors of LDH-B. Both compounds inhibited LDH-B activity through an uncompetitive mechanism, as observed in in vitro experiments. Molecular dynamics studies further support these findings. Together, our results suggest that two known drugs currently being used to treat specific cancer types may have a dual effect and target more than one enzyme that facilitates the development of these types of cancers. Furthermore, the results of this study could be used as a new starting point for identifying more potent and specific LDH-B inhibitors. Full article
Show Figures

Figure 1

19 pages, 870 KiB  
Review
The Development and Role of Capmatinib in the Treatment of MET-Dysregulated Non-Small Cell Lung Cancer—A Narrative Review
by Robert Hsu, David J. Benjamin and Misako Nagasaka
Cancers 2023, 15(14), 3561; https://doi.org/10.3390/cancers15143561 - 10 Jul 2023
Cited by 12 | Viewed by 4942
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of death, but over the past decade, there has been tremendous progress in the field with new targeted therapies. The mesenchymal–epithelial transition factor (MET) proto-oncogene has been implicated in multiple solid tumors, [...] Read more.
Non-small cell lung cancer (NSCLC) is a leading cause of death, but over the past decade, there has been tremendous progress in the field with new targeted therapies. The mesenchymal–epithelial transition factor (MET) proto-oncogene has been implicated in multiple solid tumors, including NSCLC, and dysregulation in NSCLC from MET can present most notably as MET exon 14 skipping mutation and amplification. From this, MET tyrosine kinase inhibitors (TKIs) have been developed to treat this dysregulation despite challenges with efficacy and reliable biomarkers. Capmatinib is a Type Ib MET TKI first discovered in 2011 and was FDA approved in August 2022 for advanced NSCLC with MET exon 14 skipping mutation. In this narrative review, we discuss preclinical and early-phase studies that led to the GEOMETRY mono-1 study, which showed beneficial efficacy in MET exon 14 skipping mutations, leading to FDA approval of capmatinib along with Foundation One CDx assay as its companion diagnostic assay. Current and future directions of capmatinib are focused on improving the efficacy, overcoming the resistance of capmatinib, and finding approaches for new indications of capmatinib such as acquired MET amplification from epidermal growth factor receptor (EGFR) TKI resistance. Clinical trials now involve combination therapy with capmatinib, including amivantamab, trametinib, and immunotherapy. Furthermore, new drug agents, particularly antibody–drug conjugates, are being developed to help treat patients with acquired resistance from capmatinib and other TKIs. Full article
(This article belongs to the Special Issue Roles of MET in Cancer Development and Treatment)
Show Figures

Figure 1

26 pages, 1031 KiB  
Review
Targeting MET in Non-Small Cell Lung Cancer (NSCLC): A New Old Story?
by Calogera Claudia Spagnolo, Giuliana Ciappina, Elisa Giovannetti, Andrea Squeri, Barbara Granata, Chiara Lazzari, Giulia Pretelli, Giulia Pasello and Mariacarmela Santarpia
Int. J. Mol. Sci. 2023, 24(12), 10119; https://doi.org/10.3390/ijms241210119 - 14 Jun 2023
Cited by 16 | Viewed by 5513
Abstract
In recent years, we have seen the development and approval for clinical use of an increasing number of therapeutic agents against actionable oncogenic drivers in metastatic non-small cell lung cancer (NSCLC). Among them, selective inhibitors, including tyrosine kinase inhibitors (TKIs) and monoclonal antibodies [...] Read more.
In recent years, we have seen the development and approval for clinical use of an increasing number of therapeutic agents against actionable oncogenic drivers in metastatic non-small cell lung cancer (NSCLC). Among them, selective inhibitors, including tyrosine kinase inhibitors (TKIs) and monoclonal antibodies targeting the mesenchymal–epithelial transition (MET) receptor, have been studied in patients with advanced NSCLC with MET deregulation, primarily due to exon 14 skipping mutations or MET amplification. Some MET TKIs, including capmatinib and tepotinib, have proven to be highly effective in this molecularly defined subgroup of patients and are already approved for clinical use. Other similar agents are being tested in early-stage clinical trials with promising antitumor activity. The purpose of this review is to provide an overview of MET signaling pathways, MET oncogenic alterations primarily focusing on exon 14 skipping mutations, and the laboratory techniques used to detect MET alterations. Furthermore, we will summarize the currently available clinical data and ongoing studies on MET inhibitors, as well as the mechanisms of resistance to MET TKIs and new potential strategies, including combinatorial approaches, to improve the clinical outcomes of MET exon 14-altered NSCLC patients. Full article
(This article belongs to the Special Issue Lung Cancer: From Molecular Mechanisms to Novel Therapeutics)
Show Figures

Figure 1

15 pages, 1797 KiB  
Article
A Rapid and Sensitive UPLC-MS/MS Method for Quantifying Capmatinib in Human Liver Microsomes: Evaluation of Metabolic Stability by In Silico and In Vitro Analysis
by Mohamed W. Attwa, Ali S. Abdelhameed, Aishah M. Alsibaee and Adnan A. Kadi
Separations 2023, 10(4), 247; https://doi.org/10.3390/separations10040247 - 10 Apr 2023
Cited by 13 | Viewed by 2756
Abstract
Capmatinib (CMB) is an orally bioavailable mesenchymal–epithelial transition (MET) inhibitor approved by the US-FDA to treat metastatic non-small cell lung cancer (NSCLC) patients, with MET exon 14 skipping mutation. The current study aimed to establish a specific, rapid, and sensitive ultra-performance liquid chromatography [...] Read more.
Capmatinib (CMB) is an orally bioavailable mesenchymal–epithelial transition (MET) inhibitor approved by the US-FDA to treat metastatic non-small cell lung cancer (NSCLC) patients, with MET exon 14 skipping mutation. The current study aimed to establish a specific, rapid, and sensitive ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) analytical method for quantifying CMB in human liver microsomes (HLMs), with therapeutic implications for assessing metabolic stability. Validation of the UPLC-MS/MS analytical method in the HLMs was performed using selectivity, sensitivity, linearity, accuracy, precision, extraction recovery, stability, and matrix effects according to the guidelines for bio-analytical method validation of the US-FDA. CMB was ionized by positive electrospray ionization (ESI) as the ionization source and analysed using multiple reaction monitoring (MRM) as the mass analyser mode. CMB and pemigatinib (PMT) were resolved on the C18 column, with an isocratic mobile phase. The CMB calibration curve showed linearity in the concentration range of 1–3000 ng/mL. The intra- and inter-day accuracy and precision were −7.67–4.48% and 0.46–6.99%, respectively. The lower limit of quantification (LLOQ) of 0.94 ng/mL confirmed the sensitivity of the UPLC-MS/MS analytical method. The intrinsic clearance (Clint) and in vitro half-life (t1/2) of CMB were 61.85 mL/min/kg and 13.11 min, respectively. CMB showed a high extraction ratio. The present study is the first to develop, establish, and standardize UPLC-MS/MS for the purpose of quantifying and evaluating the metabolic stability of CMB. Full article
(This article belongs to the Section Analysis of Natural Products and Pharmaceuticals)
Show Figures

Graphical abstract

14 pages, 2270 KiB  
Article
HPLC with Fluorescence and Photodiode Array Detection for Quantifying Capmatinib in Biological Samples: Application to In Vivo and In Vitro Studies
by Aref Zayed, Sana’a A. Jaber, Jomana Al Hroot, Sahar Hawamdeh, Nehad M. Ayoub and Nidal A. Qinna
Molecules 2022, 27(23), 8582; https://doi.org/10.3390/molecules27238582 - 5 Dec 2022
Cited by 3 | Viewed by 3125
Abstract
Capmatinib, a recently approved tyrosine kinase inhibitor, is used for the treatment of non-small cell lung cancer. We describe two new HPLC methods for capmatinib quantification in vivo and in vitro. HPLC with a fluorescence detection method was used to quantify capmatinib in [...] Read more.
Capmatinib, a recently approved tyrosine kinase inhibitor, is used for the treatment of non-small cell lung cancer. We describe two new HPLC methods for capmatinib quantification in vivo and in vitro. HPLC with a fluorescence detection method was used to quantify capmatinib in plasma for the first time. The method was successfully applied in a pharmacokinetic study following a 10 mg/kg oral dose of capmatinib given to rats. The chromatographic separation was performed using a Eurospher II 100-3 C18H (50 × 4 mm, 3 µm) column and a mobile phase containing 10 mM of ammonium acetate buffer (pH 5.5): acetonitrile (70:30, v/v), at a flow rate of 2.0 mL min−1. The study also describes the use of HPLC-PDA for the first time for the determination of capmatinib in human liver microsomes and describes its application to study its metabolic stability in vitro. Our results were in agreement with those reported using LC-MS/MS, demonstrating the reliability of the method. The study utilized a Gemini-NX C18 column and a mobile phase containing methanol: 20 mM ammonium formate buffer pH 3.5 (53:47, v/v), delivered at a flow rate of 1.1 mL min−1. These methods are suitable for supporting pharmacokinetic studies, particularly in bioanalytical labs lacking LC-MS/MS capabilities. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

4 pages, 528 KiB  
Case Report
Safety of Tepotinib Challenge after Capmatinib-Induced Pneumonitis in a Patient with Non-Small Cell Lung Cancer Harboring MET Exon 14 Skipping Mutation: A Case Report
by Liang-Wei Tseng, John Wen-Cheng Chang and Chiao-En Wu
Int. J. Mol. Sci. 2022, 23(19), 11809; https://doi.org/10.3390/ijms231911809 - 5 Oct 2022
Cited by 6 | Viewed by 2816
Abstract
The targeted agents capmatinib and tepotinib provide a new treatment for patients with non-small cell lung cancer (NSCLC) with MET exon 14 skipping mutation (METex14). However, drug-induced pneumonitis is an uncommon but threatening adverse effect found in patients treated with both capmatinib and [...] Read more.
The targeted agents capmatinib and tepotinib provide a new treatment for patients with non-small cell lung cancer (NSCLC) with MET exon 14 skipping mutation (METex14). However, drug-induced pneumonitis is an uncommon but threatening adverse effect found in patients treated with both capmatinib and tepotinib. The safety of treating a patient with a MET inhibitor after drug-induced pneumonitis by another MET inhibitor remains unclear. Here, we present a case of a patient with NSCLC harboring a METex14 who was treated with a standard dose of tepotinib after advanced capmatinib-induced pneumonitis and did not present pneumonitis relapse. Tepotinib may be a safe option when medical professionals consider switching MET inhibitors after patients experience pneumonitis. Full article
Show Figures

Figure 1

11 pages, 664 KiB  
Review
Companion Diagnostics and Predictive Biomarkers for MET-Targeted Therapy in NSCLC
by Jan Trøst Jørgensen and Jens Mollerup
Cancers 2022, 14(9), 2150; https://doi.org/10.3390/cancers14092150 - 26 Apr 2022
Cited by 20 | Viewed by 5384
Abstract
Dysregulation of the MET tyrosine kinase receptor is a known oncogenic driver, and multiple genetic alterations can lead to a clinically relevant oncogenesis. Currently, a number of drugs targeting MET are under development as potential therapeutics for different cancer indications, including non-small cell [...] Read more.
Dysregulation of the MET tyrosine kinase receptor is a known oncogenic driver, and multiple genetic alterations can lead to a clinically relevant oncogenesis. Currently, a number of drugs targeting MET are under development as potential therapeutics for different cancer indications, including non-small cell lung cancer (NSCLC). However, relatively few of these drugs have shown sufficient clinical activity and obtained regulatory approval. One of the reasons for this could be the lack of effective predictive biomarkers to select the right patient populations for treatment. So far, capmatinib is the only MET-targeted drug approved with a companion diagnostic (CDx) assay, which is indicated for the treatment of metastatic NSCLC in patients having a mutation resulting in MET exon 14 skipping. An alternative predictive biomarker for MET therapy is MET amplification, which has been identified as a resistance mechanism in patients with EGFR-mutated NSCLC. Results obtained from different clinical trials seem to indicate that the MET/CEP7 ratio detected by FISH possesses the best predictive properties, likely because this method excludes MET amplification caused by polysomy. In this article, the concept of CDx assays will be discussed, with a focus on the currently FDA-approved MET targeted therapies for the treatment of NSCLC. Full article
(This article belongs to the Special Issue Roles of MET in Cancer Development and Treatment)
Show Figures

Figure 1

17 pages, 593 KiB  
Review
MET Gene Dysregulation as a Promising Therapeutic Target in Lung Cancer—A Review
by Paulina Terlecka, Paweł Krawczyk, Anna Grenda and Janusz Milanowski
J. Pers. Med. 2021, 11(12), 1370; https://doi.org/10.3390/jpm11121370 - 14 Dec 2021
Cited by 12 | Viewed by 4323
Abstract
Several molecular abnormalities in the MET gene have been identified, including overexpression, amplification, point mutations, and “skipping mutation” in exon 14. Even though deregulated MET signaling occurs rarely in non-small cell lung cancer (NSCLC), it possesses tumorigenic activity. Since the discovery of the [...] Read more.
Several molecular abnormalities in the MET gene have been identified, including overexpression, amplification, point mutations, and “skipping mutation” in exon 14. Even though deregulated MET signaling occurs rarely in non-small cell lung cancer (NSCLC), it possesses tumorigenic activity. Since the discovery of the significant role played by MET dysregulations in resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKI), many clinical trials have been focused on mechanisms underlying this acquired resistance. Therefore, new therapeutic strategies are being considered in the personalized therapy of NSCLC patients carrying MET abnormalities. First, MET kinase inhibitors (tepotinib and capmatinib) have been shown to be effective in the first and subsequent lines of treatment in NSCLC patients with “skipping mutations” in exon 14 of MET gene. In this article, the authors show the role of MET signaling pathway alterations and describe the results of clinical trials with MET inhibitors in NSCLC patients. Full article
(This article belongs to the Section Methodology, Drug and Device Discovery)
Show Figures

Figure 1

20 pages, 5474 KiB  
Article
Kinome Profiling of NF1-Related MPNSTs in Response to Kinase Inhibition and Doxorubicin Reveals Therapeutic Vulnerabilities
by Jamie L. Grit, Matt G. Pridgeon, Curt J. Essenburg, Emily Wolfrum, Zachary B. Madaj, Lisa Turner, Julia Wulfkuhle, Emanuel F. Petricoin, Carrie R. Graveel and Matthew R. Steensma
Genes 2020, 11(3), 331; https://doi.org/10.3390/genes11030331 - 20 Mar 2020
Cited by 10 | Viewed by 4609
Abstract
Neurofibromatosis Type 1 (NF1)-related Malignant Peripheral Nerve Sheath Tumors (MPNST) are highly resistant sarcomas that account for significant mortality. The mechanisms of therapy resistance are not well-understood in MPNSTs, particularly with respect to kinase inhibition strategies. In this study, we aimed to quantify [...] Read more.
Neurofibromatosis Type 1 (NF1)-related Malignant Peripheral Nerve Sheath Tumors (MPNST) are highly resistant sarcomas that account for significant mortality. The mechanisms of therapy resistance are not well-understood in MPNSTs, particularly with respect to kinase inhibition strategies. In this study, we aimed to quantify the impact of both the genomic context and targeted therapy on MPNST resistance using reverse phase phosphoproteome array (RPPA) analysis. We treated tumorgrafts from three genetically engineered mouse models using MET (capmatinib) and MEK (trametinib) inhibitors and doxorubicin, and assessed phosphosignaling at 4 h, 2 days, and 21 days. Baseline kinase signaling in our mouse models recapitulated an MET-addicted state (NF1-MET), P53 mutation (NF1-P53), and HGF overexpression (NF1). Following perturbation with the drug, we observed broad and redundant kinome adaptations that extended well beyond canonical RAS/ERK or PI3K/AKT/mTOR signaling. MET and MEK inhibition were both associated with an initial inflammatory response mediated by kinases in the JAK/STAT pathway and NFkB. Growth signaling predominated at the 2-day and 21-day time points as a result of broad RTK and intracellular kinase activation. Interestingly, AXL and NFkB were strongly activated at the 2-day and 21-day time points, and tightly correlated, regardless of the treatment type or genomic context. The degree of kinome adaptation observed in innately resistant tumors was significantly less than the surviving fractions of responsive tumors that exhibited a latency period before reinitiating growth. Lastly, doxorubicin resistance was associated with kinome adaptations that strongly favored growth and survival signaling. These observations confirm that MPNSTs are capable of profound signaling plasticity in the face of kinase inhibition or DNA damaging agent administration. It is possible that by targeting AXL or NFkB, therapy resistance can be mitigated. Full article
(This article belongs to the Special Issue Genomics and Models of Nerve Sheath Tumors)
Show Figures

Figure 1

Back to TopTop