Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = capacitive pH sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3579 KB  
Article
Dual-Control-Gate Reconfigurable Ion-Sensitive Field-Effect Transistor with Nickel-Silicide Contacts for Adaptive and High-Sensitivity Chemical Sensing Beyond the Nernst Limit
by Seung-Jin Lee, Seung-Hyun Lee, Seung-Hwa Choi and Won-Ju Cho
Chemosensors 2025, 13(8), 281; https://doi.org/10.3390/chemosensors13080281 - 2 Aug 2025
Viewed by 459
Abstract
In this study, we propose a bidirectional chemical sensor platform based on a reconfigurable ion-sensitive field-effect transistor (R-ISFET) architecture. The device incorporates Ni-silicide Schottky barrier source/drain (S/D) contacts, enabling ambipolar conduction and bidirectional turn-on behavior for both p-type and n-type configurations. Channel polarity [...] Read more.
In this study, we propose a bidirectional chemical sensor platform based on a reconfigurable ion-sensitive field-effect transistor (R-ISFET) architecture. The device incorporates Ni-silicide Schottky barrier source/drain (S/D) contacts, enabling ambipolar conduction and bidirectional turn-on behavior for both p-type and n-type configurations. Channel polarity is dynamically controlled via the program gate (PG), while the control gate (CG) suppresses leakage current, enhancing operational stability and energy efficiency. A dual-control-gate (DCG) structure enhances capacitive coupling, enabling sensitivity beyond the Nernst limit without external amplification. The extended-gate (EG) architecture physically separates the transistor and sensing regions, improving durability and long-term reliability. Electrical characteristics were evaluated through transfer and output curves, and carrier transport mechanisms were analyzed using band diagrams. Sensor performance—including sensitivity, hysteresis, and drift—was assessed under various pH conditions and external noise up to 5 Vpp (i.e., peak-to-peak voltage). The n-type configuration exhibited high mobility and fast response, while the p-type configuration demonstrated excellent noise immunity and low drift. Both modes showed consistent sensitivity trends, confirming the feasibility of complementary sensing. These results indicate that the proposed R-ISFET sensor enables selective mode switching for high sensitivity and robust operation, offering strong potential for next-generation biosensing and chemical detection. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

15 pages, 6161 KB  
Article
Chiral-Dependent Redox Capacitive Biosensor Using Cu-Cys-GSH Nanoparticles for Ultrasensitive H2O2 Detection
by Duygu Yilmaz Aydin, Jie Jayne Wu and Jiangang Chen
Biosensors 2025, 15(5), 315; https://doi.org/10.3390/bios15050315 - 14 May 2025
Viewed by 565
Abstract
Copper-thiolate nanostructures, formed through the self-assembly of cysteine (Cys) and glutathione (GSH) with copper ions, offer a versatile platform for redox-active applications due to their structural stability and chemical functionality. In this study, Cu-Cys-GSH nanoparticles were synthesized and employed to develop a capacitive [...] Read more.
Copper-thiolate nanostructures, formed through the self-assembly of cysteine (Cys) and glutathione (GSH) with copper ions, offer a versatile platform for redox-active applications due to their structural stability and chemical functionality. In this study, Cu-Cys-GSH nanoparticles were synthesized and employed to develop a capacitive biosensor for the ultralow concentration detection of hydrogen peroxide (H2O2). The detection mechanism leverages a Fenton-like reaction, where H2O2 interacts with Cu-Cys-GSH nanoparticles to generate hydroxyl radicals (·OH) through redox cycling between Cu2+ and Cu+ ions. These redox processes induce changes in the sensor’s surface charge and dielectric properties, enabling highly sensitive capacitive sensing at gold interdigitated electrodes (IDEs). The influence of chirality on sensing performance was investigated by synthesizing nanoparticles with both L- and D-cysteine enantiomers. Comparative analysis revealed that the stereochemistry of cysteine impacts the catalytic activity and sensor response, with Cu-L-Cys-GSH nanoparticles exhibiting superior performance. Specifically, the biosensor achieved a linear detection range from 1.0 fM to 1.0 pM and demonstrated an ultra-sensitive detection limit of 21.8 aM, outperforming many existing methods for H2O2 detection. The sensor’s practical performance was further validated using milk and saliva samples, yielding high recovery rates and confirming its robustness and accuracy for real-world applications. This study offers a disposable, low-cost sensing platform compatible with sustainable healthcare practices and facilitates easy integration into point-of-care diagnostic systems. Full article
(This article belongs to the Special Issue Innovative Biosensing Technologies for Sustainable Healthcare)
Show Figures

Figure 1

15 pages, 3355 KB  
Article
Portable Measurement System for the Characterization of Capacitive Field-Effect Sensors
by Tobias Karschuck, Stefan Schmidt, Stefan Achtsnicht, Joey Ser, Ismail Bouarich, Georges Aboutass, Arshak Poghossian, Patrick H. Wagner and Michael J. Schöning
Sensors 2025, 25(9), 2681; https://doi.org/10.3390/s25092681 - 24 Apr 2025
Viewed by 760
Abstract
A user-friendly, portable, low-cost readout system for the on-site or point-of-care characterization of chemo- and biosensors based on an electrolyte–insulator–semiconductor capacitor (EISCAP) has been developed using a thumb-drive-sized commercial impedance analyzer. The system is controlled by a custom Python script and allows to [...] Read more.
A user-friendly, portable, low-cost readout system for the on-site or point-of-care characterization of chemo- and biosensors based on an electrolyte–insulator–semiconductor capacitor (EISCAP) has been developed using a thumb-drive-sized commercial impedance analyzer. The system is controlled by a custom Python script and allows to characterize EISCAP sensors with different methods (impedance spectra, capacitance-voltage, and constant-capacitance modes), which are selected in a user interface. The performance of the portable readout system was evaluated by pH measurements and the detection of the antibiotic penicillin, hereby using EISCAPs consisting of Al/p-Si/SiO2/Ta2O5 structures and compared to the results obtained with a stationary commercial impedance analyzer. Both the portable and the commercial systems provide very similar results with almost perfectly overlapping recorded EISCAP signals. The new portable system can accelerate the transition of EISCAP sensors from research laboratories to commercial end-user devices. Full article
(This article belongs to the Special Issue Sensors from Miniaturization of Analytical Instruments (2nd Edition))
Show Figures

Figure 1

36 pages, 10690 KB  
Article
Novel Amperometric Sensor Based on Glassy Graphene for Flow Injection Analysis
by Ramtin Eghbal Shabgahi, Alexander Minkow, Michael Wild, Dietmar Kissinger and Alberto Pasquarelli
Sensors 2025, 25(8), 2454; https://doi.org/10.3390/s25082454 - 13 Apr 2025
Cited by 2 | Viewed by 862
Abstract
Flow injection analysis (FIA) is widely used in drug screening, neurotransmitter detection, and water analysis. In this study, we investigated the electrochemical sensing performance of glassy graphene electrodes derived from pyrolyzed positive photoresist films (PPFs) via rapid thermal annealing (RTA) on SiO2 [...] Read more.
Flow injection analysis (FIA) is widely used in drug screening, neurotransmitter detection, and water analysis. In this study, we investigated the electrochemical sensing performance of glassy graphene electrodes derived from pyrolyzed positive photoresist films (PPFs) via rapid thermal annealing (RTA) on SiO2/Si and polycrystalline diamond (PCD). Glassy graphene films fabricated at 800, 900, and 950 °C were characterized using Raman spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM) to assess their structural and morphological properties. Electrochemical characterization in phosphate-buffered saline (PBS, pH 7.4) revealed that annealing temperature and substrate type influence the potential window and double-layer capacitance. The voltammetric response of glassy graphene electrodes was further evaluated using the surface-insensitive [Ru(NH3)6]3+/2+ redox marker, the surface-sensitive [Fe(CN)6]3−/4− redox couple, and adrenaline, demonstrating that electron transfer efficiency is governed by annealing temperature and substrate-induced microstructural changes. FIA with amperometric detection showed a linear electrochemical response to adrenaline in the 3–300 µM range, achieving a low detection limit of 1.05 µM and a high sensitivity of 1.02 µA cm−2/µM. These findings highlight the potential of glassy graphene as a cost-effective alternative for advanced electrochemical sensors, particularly in biomolecule detection and analytical applications. Full article
Show Figures

Figure 1

16 pages, 8767 KB  
Article
Cost-Effective Method for Dissolved Oxygen Sensing with Electrodeposited n-Cu2O Thin-Film Semiconductors
by H. E. Wijesooriya, J. A. Seneviratne, K. M. D. C. Jayathilaka, W. T. R. S. Fernando, P. L. A. K. Piyumal, A. L. A. K. Ranaweera, S. R. D. Kalingamudali, L. S. R. Kumara, O. Seo, O. Sakata and R. P. Wijesundera
Physchem 2025, 5(1), 6; https://doi.org/10.3390/physchem5010006 - 8 Feb 2025
Viewed by 1683
Abstract
Dissolved oxygen (DO) is a crucial parameter in water quality monitoring because it directly affects the health of aquatic ecosystems. This study explored electrodeposited Cu2O thin-film semiconductors for DO sensing. Cu2O was chosen for its low cost, eco-friendliness, and [...] Read more.
Dissolved oxygen (DO) is a crucial parameter in water quality monitoring because it directly affects the health of aquatic ecosystems. This study explored electrodeposited Cu2O thin-film semiconductors for DO sensing. Cu2O was chosen for its low cost, eco-friendliness, and non-toxic nature. Cu2O films were electrodeposited on titanium (Ti) substrates using an acetate bath (0.1 M sodium acetate and 0.01 M cupric acetate) at −200 mV versus Ag/AgCl for 30 min, with a bath temperature of 55 °C, stirred at 50 rpm. The bath pH was systematically adjusted from 5.8 to 6.8 in 0.2 steps using NaOH and Acetic acid. A range of analyses including synchrotron X-ray diffraction (SXRD), scanning electron microscopy (SEM), surface wettability, capacitance–voltage (C-V), Raman spectroscopy, Fourier-transform infrared (FTIR) spectrum, and Electrochemical Impedance Spectroscopy (EIS) was performed to assess their properties and sensing performance. The results showed that Cu2O films deposited at pH 6.4 exhibited optimal performance for DO sensing, with a strong linear response, marking this pH, deposition time, and temperature as ideal for creating effective DO sensors. This study introduces a novel, cost-effective approach to dissolved oxygen sensing using electrodeposited n-Cu2O thin-film semiconductors, marking the first application of this material in such sensors and showcasing its potential for scalable and environmentally sustainable sensing technologies. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

12 pages, 3135 KB  
Article
Ion-Selective Electrode for Nitrates Based on a Black PCV Membrane
by Nikola Lenar, Martyna Drużyńska, Robert Piech and Beata Paczosa-Bator
Molecules 2024, 29(15), 3473; https://doi.org/10.3390/molecules29153473 - 25 Jul 2024
Cited by 3 | Viewed by 1982
Abstract
Carbon nanomaterials were introduced into this research as modifiers for polymeric membranes for single-piece electrodes, and their properties were studied for the case of nitrate-selective sensors. The use of graphene, carbon black and carbon nanotubes is shown to significantly improve the potentiometric response, [...] Read more.
Carbon nanomaterials were introduced into this research as modifiers for polymeric membranes for single-piece electrodes, and their properties were studied for the case of nitrate-selective sensors. The use of graphene, carbon black and carbon nanotubes is shown to significantly improve the potentiometric response, while no redox response was observed. The use of carbon nanomaterials results in a near-Nernstian response (54 mV/pNO3) towards nitrate ions over a wide linear range (from 10−1 to 10−6 M NO3). The results obtained by chronopotentiometry and electrochemical impedance spectroscopy reveal little resistance, and the capacitance parameter is as high as 0.9 mF (for graphene-based sensor). The high electrical capacity of electrodes results in the good stability of the potentiometric response and a low potential drift (0.065 mV/h). Introducing carbon nanomaterials into the polymetric membrane, instead of using them as separate layers, allows for the simplification of the sensors’ preparation procedure. With single-piece electrodes, one step of the procedure could be omitted, in comparison to the procedure for the preparation of solid-contact electrodes. Full article
(This article belongs to the Special Issue Nano-Functional Materials for Sensor Applications)
Show Figures

Figure 1

1 pages, 128 KB  
Abstract
Soft Sensor for Ethanol Fermentation Monitoring through Data-Driven Modeling and Synthetic Data Generation
by Hyun Kwon, Joseph Shiu, Elmer Ccopa Rivera and Celina Yamakaya
Proceedings 2024, 104(1), 30; https://doi.org/10.3390/proceedings2024104030 - 28 May 2024
Viewed by 719
Abstract
This study presents a novel data-driven modeling approach employing machine learning to develop predictive “soft sensors” for real-time monitoring of ethanol and substrate levels during bioethanol fermentation processes. By utilizing readily measurable parameters such as pH, redox potential, capacitance, and temperature, the model [...] Read more.
This study presents a novel data-driven modeling approach employing machine learning to develop predictive “soft sensors” for real-time monitoring of ethanol and substrate levels during bioethanol fermentation processes. By utilizing readily measurable parameters such as pH, redox potential, capacitance, and temperature, the model enables continuous prediction of less frequently measured variables including ethanol, substrate, and cell concentrations. Eleven fermentations were conducted, focusing on intensified ethanol production from sugarcane substrate, utilizing cell cycling techniques to augment output. Despite the importance of fermentation data, its acquisition is often constrained by limitations in availability and resources. To address these challenges, this research integrates synthetic time series data generation, thereby enhancing the applicability of machine learning. Through the use of a variational autoencoder (VAE), synthetic time series data was successfully generated, facilitating training and testing of a deep neural network on both original and synthetic datasets. Results demonstrate a significant 30% increase in prediction robustness with the incorporation of generated data, while maintaining comparable accuracy levels. The augmented data effectively enhances the generalization ability of trained models, mitigating overfitting and expanding decision boundaries, thereby overcoming challenges associated with small datasets and inevitable data deviations. This innovative approach offers a promising avenue for enhancing the reliability and scalability of bioethanol fermentation monitoring through AI-based biosensors. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Biosensors)
17 pages, 2619 KB  
Article
A New Planar Potentiometric Sensor for In Situ Measurements
by Nikola Lenar, Robert Piech and Beata Paczosa-Bator
Sensors 2024, 24(8), 2492; https://doi.org/10.3390/s24082492 - 12 Apr 2024
Cited by 2 | Viewed by 1473
Abstract
A new construction of a potentiometric sensor was introduced for the first time. It relies on the use of two membranes instead of one, as in the well-known coated-disc electrode. For this purpose, a new electrode body was constructed, including not one, but [...] Read more.
A new construction of a potentiometric sensor was introduced for the first time. It relies on the use of two membranes instead of one, as in the well-known coated-disc electrode. For this purpose, a new electrode body was constructed, including not one, but two glassy carbon discs covered with an ion-selective membrane. This solution allows for the sensor properties to be enhanced without using additional materials (layers or additives) on the membrane. The new construction is particularly useful for in situ measurements in environmental samples. Two ion-selective polymeric membranes were used, namely H+ and K+-selective membranes, to confirm the universality of the idea. The tests conducted included chronopotentiometric tests, electrochemical impedance spectroscopy, and potentiometric measurements. The electrical and analytical parameters of the sensors were evaluated and compared for all tested electrodes to evaluate the properties of the planar electrode versus previously known constructions. Research has shown that the application of two membranes instead of one allows for the resistance of an electrode to be lowered and for the electrical capacitance to be elevated. Improving the electrical properties of an electrode resulted in the enhancement of its analytical properties. The pH measurement range of the planar electrode is 2–11, which is much wider in contrast to that of the single-membrane electrode. The linear range of the K+-selective planar electrode is wider than that of the coated-disc electrode and equals 10−6 to 10−1 M. The response time turned out to be a few seconds shorter, and the potential drift was smaller due to the application of an additional membrane in the electrode construction. This research creates a new opportunity to design robust potentiometric sensors, as the presented construction is universal and can be used to obtain electrodes selective to various ions. Full article
(This article belongs to the Special Issue Electrochemical Sensors in Environment, Food and Healthcare)
Show Figures

Figure 1

12 pages, 6511 KB  
Article
Carbon Paste Electrodes Surface-Modified with Surfactants: Principles of Surface Interactions at the Interface between Two Immiscible Liquid Phases
by Ivan Švancara and Milan Sýs
Sensors 2023, 23(24), 9891; https://doi.org/10.3390/s23249891 - 18 Dec 2023
Cited by 2 | Viewed by 2023
Abstract
Carbon paste electrodes ex-situ modified with different surfactants were studied using cyclic voltammetry with two model redox couples, namely hexaammineruthenium (II)/(III) and hexacyanoferrate (II)/(III), in 0.1 mol L−1 acetate buffer (pH 4), 0.1 mol L−1 phosphate buffer (pH 7), and 0.1 [...] Read more.
Carbon paste electrodes ex-situ modified with different surfactants were studied using cyclic voltammetry with two model redox couples, namely hexaammineruthenium (II)/(III) and hexacyanoferrate (II)/(III), in 0.1 mol L−1 acetate buffer (pH 4), 0.1 mol L−1 phosphate buffer (pH 7), and 0.1 mol L−1 ammonia buffer (pH 9) at a scan rate ranging from 50 to 500 mV s−1. Distinct effects of pH, ionic strength, and the composition of supporting media, as well as of the amount of surfactant and its accumulation at the electrode surface, could be observed and found reflected in changes of double-layer capacitance and electrode kinetics. It has been proved that, at the two-phase interface, the presence of surfactants results in elctrostatic interactions that dominate in the transfer of model substances, possibly accompanied also by the effect of erosion at the carbon paste surface. The individual findings depend on the configurations investigated, which are also illustrated on numerous schemes of the actual microstructure at the respective electrode surface. Finally, principal observations and results are highlighted and discussed with respect to the future development and possible applications of sensors based on surfactant-modified composited electrodes. Full article
(This article belongs to the Special Issue Electrochemical Sensors: Technologies and Applications)
Show Figures

Figure 1

24 pages, 5464 KB  
Review
Polyaniline-Based Ink for Inkjet Printing for Supercapacitors, Sensors, and Electrochromic Devices
by Ekta Kundra Arora, Vibha Sharma, Aravind Ravi, Akanksha Shahi, Shweta Jagtap, Arindam Adhikari, Jatis Kumar Dash, Pawan Kumar and Rajkumar Patel
Energies 2023, 16(18), 6716; https://doi.org/10.3390/en16186716 - 20 Sep 2023
Cited by 14 | Viewed by 3958
Abstract
In recent years, there has been a huge surge in interest in improving the efficiency of smart electronic and optoelectronic devices via the development of novel materials and printing technologies. Inkjet printing, known to deposit ‘ink on demand’, helps to reduce the consumption [...] Read more.
In recent years, there has been a huge surge in interest in improving the efficiency of smart electronic and optoelectronic devices via the development of novel materials and printing technologies. Inkjet printing, known to deposit ‘ink on demand’, helps to reduce the consumption of materials. Printing inks on various substrates like paper, glass, and fabric is possible, generating flexible devices that include supercapacitors, sensors, and electrochromic devices. Newer inks being tested and used include formulations of carbon nanoparticles, photochromic dyes, conducting polymers, etc. Among the conducting polymers, PANI has been well researched. It can be synthesized and doped easily and allows for the easy formation of composite conductive inks. Doping and the addition of additives like metal salts, oxidants, and halide ions tune its electrical properties. PANI has a large specific capacitance and has been researched for its applications in supercapacitors. It has been used as a sensor for pH and humidity as well as a biosensor for sweat, blood, etc. The response is generated by a change in its electrical conductivity. This review paper presents an overview of the investigations on the formulation of the inks based on conductive polymers, mainly centered around PANI, and inkjet printing of its formulations for a variety of devices, including supercapacitors, sensors, electrochromic devices, and patterning on flexible substrates. It covers their performance characteristics and also presents a future perspective on inkjet printing technology for advanced electronic, optoelectronic, and other conductive-polymer-based devices. We believe this review provides a new direction for next-generation conductive-polymer-based devices for various applications. Full article
(This article belongs to the Special Issue New Insights into Solar Cells)
Show Figures

Graphical abstract

29 pages, 14189 KB  
Review
Electric Double Layer Based Epidermal Electronics for Healthcare and Human-Machine Interface
by Yuan Gao, Hanchu Zhang, Bowen Song, Chun Zhao and Qifeng Lu
Biosensors 2023, 13(8), 787; https://doi.org/10.3390/bios13080787 - 3 Aug 2023
Cited by 9 | Viewed by 4067
Abstract
Epidermal electronics, an emerging interdisciplinary field, is advancing the development of flexible devices that can seamlessly integrate with the skin. These devices, especially Electric Double Layer (EDL)-based sensors, overcome the limitations of conventional electronic devices, offering high sensitivity, rapid response, and excellent stability. [...] Read more.
Epidermal electronics, an emerging interdisciplinary field, is advancing the development of flexible devices that can seamlessly integrate with the skin. These devices, especially Electric Double Layer (EDL)-based sensors, overcome the limitations of conventional electronic devices, offering high sensitivity, rapid response, and excellent stability. Especially, Electric Double Layer (EDL)-based epidermal sensors show great potential in the application of wearable electronics to detect biological signals due to their high sensitivity, fast response, and excellent stability. The advantages can be attributed to the biocompatibility of the materials, the flexibility of the devices, and the large capacitance due to the EDL effect. Furthermore, we discuss the potential of EDL epidermal electronics as wearable sensors for health monitoring and wound healing. These devices can analyze various biofluids, offering real-time feedback on parameters like pH, temperature, glucose, lactate, and oxygen levels, which aids in accurate diagnosis and effective treatment. Beyond healthcare, we explore the role of EDL epidermal electronics in human-machine interaction, particularly their application in prosthetics and pressure-sensing robots. By mimicking the flexibility and sensitivity of human skin, these devices enhance the functionality and user experience of these systems. This review summarizes the latest advancements in EDL-based epidermal electronic devices, offering a perspective for future research in this rapidly evolving field. Full article
(This article belongs to the Special Issue Epidermal Electronics and Implantable Devices)
Show Figures

Figure 1

12 pages, 3126 KB  
Article
Fabrication and Performance of a Ta2O5 Thin Film pH Sensor Manufactured Using MEMS Processes
by Yuzhen Guo, Zengxing Zhang, Bin Yao, Jin Chai, Shiqiang Zhang, Jianwei Liu, Zhou Zhao and Chenyang Xue
Sensors 2023, 23(13), 6061; https://doi.org/10.3390/s23136061 - 30 Jun 2023
Cited by 12 | Viewed by 3149
Abstract
In this work, a capacitive pH sensor consisting of Ta2O5 functional film is designed and fabricated by employing MEMS-based procedures. The Ta2O5 thin film has an amorphous microstructure, and its surface roughness is less than 3.17 nm. [...] Read more.
In this work, a capacitive pH sensor consisting of Ta2O5 functional film is designed and fabricated by employing MEMS-based procedures. The Ta2O5 thin film has an amorphous microstructure, and its surface roughness is less than 3.17 nm. A signal processing circuit and a software filtering algorithm are also designed to measure the pH value, thus improving the detection accuracy and anti-interference ability. Good linearity (R2 = 0.99904) and sensitivity (63.12 mV/pH) are recorded for the proposed sensing element in the range of pH 2~12. In addition, the sensor’s drift and hysteresis are equal to 5.1 mV and 5.8 mV, respectively. The enhanced sensing performance in combination with the facile miniaturization process, low fabrication cost, and suitability for mass production render the fabricated sensor attractive for applications where pH change measurements in a water environment are required. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

20 pages, 5761 KB  
Article
A Sensor for Electrochemical pH Monitoring Based on Laser-Induced Graphene Modified with Polyfolate
by Vytautas Žutautas, Romualdas Trusovas, Aivaras Sartanavičius, Karolis Ratautas, Algirdas Selskis and Rasa Pauliukaite
Chemosensors 2023, 11(6), 329; https://doi.org/10.3390/chemosensors11060329 - 2 Jun 2023
Cited by 5 | Viewed by 2609
Abstract
A laser-induced graphene (LIG) modified with chitosan (Chit) and conducting polymer polyfolate (PFA) was used as a base to develop a flat and flexible pH sensor. LIGs were formed using two different irradiation wavelengths of 355 nm and 532 nm. Depending on the [...] Read more.
A laser-induced graphene (LIG) modified with chitosan (Chit) and conducting polymer polyfolate (PFA) was used as a base to develop a flat and flexible pH sensor. LIGs were formed using two different irradiation wavelengths of 355 nm and 532 nm. Depending on the wavelengths, the obtained electrodes were named LIG355 and LIG532. Microscopic imaging revealed that the bare LIG electrode surface had rough structures after laser treatment giving hydrophilic properties, and that PFA forms fibre-like structures on Chit coated LIG. Electrochemical investigation with the redox probe demonstrated that diffusion is a limiting process at the bare and modified LIG electrodes. A capacitive behaviour was observed from electrochemical impedance spectra at bare electrodes, showing a rather rough interface at LIG355 but a microporous one at LIG532. The developed flat and flexible electrode was sensitive to pH in the region from 6.0 to 9.0. In the studied pH range, the sensitivity was 27.86 ± 0.81 for PFA/Chit/LIG355 and 30.32 ± 0.50 mV/pH for PFA/Chit/LIG532 with moderate stability for a period of more than two months. Full article
(This article belongs to the Section Applied Chemical Sensors)
Show Figures

Figure 1

11 pages, 6880 KB  
Article
Development of an Implantable Capacitive Pressure Sensor for Biomedical Applications
by Ji-Hyoung Roh, Kyu-Sik Shin, Tae-Ha Song, Jihong Kim and Dae-Sung Lee
Micromachines 2023, 14(5), 975; https://doi.org/10.3390/mi14050975 - 29 Apr 2023
Cited by 8 | Viewed by 3954
Abstract
In this study, a subminiature implantable capacitive pressure sensor is proposed for biomedical applications. The proposed pressure sensor comprises an array of elastic silicon nitride (SiN) diaphragms formed by the application of a polysilicon (p-Si) sacrificial layer. In addition, using the p-Si layer, [...] Read more.
In this study, a subminiature implantable capacitive pressure sensor is proposed for biomedical applications. The proposed pressure sensor comprises an array of elastic silicon nitride (SiN) diaphragms formed by the application of a polysilicon (p-Si) sacrificial layer. In addition, using the p-Si layer, a resistive temperature sensor is also integrated into one device without additional fabrication steps or extra cost, thus enabling the device to measure pressure and temperature simultaneously. The sensor with a size of 0.5 × 1.2 mm was fabricated using microelectromechanical systems (MEMS) technology and was packaged in needle-shaped metal housing that is both insertable and biocompatible. The packaged pressure sensor immersed in a physiological saline solution exhibited excellent performance without leakage. The sensor achieved a sensitivity of approximately 1.73 pF/bar and a hysteresis of about 1.7%, respectively. Furthermore, it was confirmed that the pressure sensor operated normally for 48 h without experiencing insulation breakdown or degradation of the capacitance. The integrated resistive temperature sensor also worked properly. The response of the temperature sensor varied linearly with temperature variation. It had an acceptable temperature coefficient of resistance (TCR) of approximately 0.25%/°C. Full article
Show Figures

Figure 1

17 pages, 9586 KB  
Article
Nanomaterial with Core–Shell Structure Composed of {P2W18O62} and Cobalt Homobenzotrizoate for Supercapacitors and H2O2-Sensing Applications
by Lanyue Zhang, Shan Di, Hong Lin, Chunmei Wang, Kai Yu, Jinghua Lv, Chunxiao Wang and Baibin Zhou
Nanomaterials 2023, 13(7), 1176; https://doi.org/10.3390/nano13071176 - 25 Mar 2023
Cited by 6 | Viewed by 2395
Abstract
Designing and preparing dual-functional Dawson-type polyoxometalate-based metal–organic framework (POMOF) energy storage materials is challenging. Here, the Dawson-type POMOF nanomaterial with the molecular formula CoK4[P2W18O62]@Co3(btc)2 (abbreviated as {P2W18}@Co-BTC, H [...] Read more.
Designing and preparing dual-functional Dawson-type polyoxometalate-based metal–organic framework (POMOF) energy storage materials is challenging. Here, the Dawson-type POMOF nanomaterial with the molecular formula CoK4[P2W18O62]@Co3(btc)2 (abbreviated as {P2W18}@Co-BTC, H3btc = 1,3,5-benzylcarboxylic acid) was prepared using a solid-phase grinding method. XRD, SEM, TEM et al. analyses prove that this nanomaterial has a core–shell structure of Co-BTC wrapping around the {P2W18}. In the three-electrode system, it was found that {P2W18}@Co-BTC has the best supercapacitance performance, with a specific capacitance of 490.7 F g−1 (1 A g−1) and good stability, compared to nanomaterials synthesized with different feedstock ratios and two precursors. In the symmetrical double-electrode system, both the power density (800.00 W kg−1) and the energy density (11.36 Wh kg−1) are greater. In addition, as the electrode material for the H2O2 sensor, {P2W18}@Co-BTC also exhibits a better H2O2-sensing performance, such as a wide linear range (1.9 μM–1.67 mM), low detection limit (0.633 μM), high selectivity, stability (92.4%) and high recovery for the detection of H2O2 in human serum samples. This study provides a new strategy for the development of Dawson-type POMOF nanomaterial compounds. Full article
Show Figures

Graphical abstract

Back to TopTop