Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (408)

Search Parameters:
Keywords = cannabis compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
56 pages, 1426 KiB  
Review
A Holistic Review of Cannabis and Its Potential Risks and Benefits in Mental Health
by Alejandro Borrego-Ruiz and Juan J. Borrego
Psychiatry Int. 2025, 6(3), 92; https://doi.org/10.3390/psychiatryint6030092 - 4 Aug 2025
Viewed by 446
Abstract
Background: The dual nature of cannabis, as both a promising therapeutic tool and a widely used recreational substance with potential risks, raises important societal controversies, including its unclear impacts regarding mental health. This narrative review provides a comprehensive overview of cannabis, addressing (i) [...] Read more.
Background: The dual nature of cannabis, as both a promising therapeutic tool and a widely used recreational substance with potential risks, raises important societal controversies, including its unclear impacts regarding mental health. This narrative review provides a comprehensive overview of cannabis, addressing (i) its historical context; (ii) its chemical composition and pharmacokinetics; (iii) its pharmacological effects; (iv) its negative impacts on physiological and mental health; (v) its potential use as a drug for the treatment of neurological and psychiatric disorders; (vi) its relationship with the gut microbiome and how this interaction might influence mental functioning; (vii) the pathophysiology, prevalence, comorbidities, and treatment strategies of cannabis use disorder; and (viii) social perspectives on its legalization. Results: Cannabis presents a complex chemical profile and pharmacokinetics that show promise in treating numerous neurological, psychiatric, and psychological conditions. However, its use carries risks, which depend on factors such as compound concentration, dosage, consumption method, frequency of use, and individual vulnerability. Cannabis use disorder seems to be less severe than other substance use disorders, but it still constitutes a significant concern, as its manifestation is not uniform across all users. Conclusions: Cannabis demands a thorough understanding that goes beyond simplistic explanations and prejudices, standing as a plant of substantial clinical significance and highlighting the importance of personalized approaches to its use and increased awareness of how individuals respond to its effects. Full article
Show Figures

Figure 1

14 pages, 2566 KiB  
Review
Improved Biomass Production and Secondary Metabolism: A Critical Review of Grafting in Cannabis sativa
by S. M. Ahsan, Md. Injamum-Ul-Hoque, Md. Mezanur Rahman, Sang-Mo Kang, In-Jung Lee and Hyong Woo Choi
Plants 2025, 14(15), 2347; https://doi.org/10.3390/plants14152347 - 30 Jul 2025
Viewed by 496
Abstract
Cannabis sativa L. is a versatile plant with applications in various sectors such as agriculture, medicine, food, and cosmetics. The therapeutic properties of cannabis are often linked to its secondary compounds. The worldwide cannabis market is undergoing swift changes due to varying legal [...] Read more.
Cannabis sativa L. is a versatile plant with applications in various sectors such as agriculture, medicine, food, and cosmetics. The therapeutic properties of cannabis are often linked to its secondary compounds. The worldwide cannabis market is undergoing swift changes due to varying legal frameworks. Medicinal cannabis (as a heterozygous and dioecious species) is distinct from most annual crops grown in controlled environments, typically propagated through stem cutting rather than seeds to ensure genetic uniformity. Consequently, as with any commercially cultivated crop, biomass yield plays a crucial role in overall productivity. The key factors involved in cultivation conditions, such as successful root establishment, stress tolerance, and the production cycle duration, are critical for safeguarding, improving, and optimizing plant yield. Grafting is a long-established horticultural practice that mechanically joins the scion and rootstock of distinct genetic origins by merging their vascular systems. This approach can mitigate undesirable traits by leveraging the strengths of particular plants, proving beneficial to various applications. Grafting is not used commercially in Cannabis. Only three very recent investigations suggest that grafting holds significant promise for enhancing both the agronomic and medicinal potential of Cannabis. This review critically examines the latest advancements in cannabis grafting and explores prospects for improving biomass (stem, root, flower, etc.) yield and secondary metabolite production. Full article
Show Figures

Figure 1

29 pages, 1550 KiB  
Review
Phytochemical Modulators of Nociception: A Review of Cannabis Terpenes in Chronic Pain Syndromes
by Aniello Alfieri, Sveva Di Franco, Vincenzo Maffei, Pasquale Sansone, Maria Caterina Pace, Maria Beatrice Passavanti and Marco Fiore
Pharmaceuticals 2025, 18(8), 1100; https://doi.org/10.3390/ph18081100 - 24 Jul 2025
Viewed by 711
Abstract
Cannabis sativa L. is a phytochemically rich plant with therapeutic potential across various clinical domains, including pain, inflammation, and neurological disorders. Among its constituents, terpenes are gaining recognition for their capacity to modulate the pathophysiological processes underlying chronic pain syndromes. Traditionally valued for [...] Read more.
Cannabis sativa L. is a phytochemically rich plant with therapeutic potential across various clinical domains, including pain, inflammation, and neurological disorders. Among its constituents, terpenes are gaining recognition for their capacity to modulate the pathophysiological processes underlying chronic pain syndromes. Traditionally valued for their aromatic qualities, terpenes such as myrcene, β-caryophyllene (BCP), limonene, pinene, linalool, and humulene have demonstrated a broad spectrum of biological activities. Beyond their observable analgesic, anti-inflammatory, and anxiolytic outcomes, these compounds exert their actions through distinct molecular mechanisms. These include the activation of cannabinoid receptor type 2 (CB2), the modulation of transient receptor potential (TRP) and adenosine receptors, and the inhibition of pro-inflammatory signalling pathways such as Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Cyclooxygenase-2 (COX-2). This narrative review synthesizes the current preclinical and emerging clinical data on terpene-mediated analgesia, highlighting both monoterpenes and sesquiterpenes, and discusses their potential for synergistic interaction with cannabinoids, the so-called entourage effect. Although preclinical findings are promising, clinical translation is limited by methodological variability, the lack of standardized formulations, and insufficient pharmacokinetic characterization. Further human studies are essential to clarify their therapeutic potential. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

39 pages, 2934 KiB  
Review
Phytocannabinoids as Novel SGLT2 Modulators for Renal Glucose Reabsorption in Type 2 Diabetes Management
by Raymond Rubianto Tjandrawinata, Dante Saksono Harbuwono, Sidartawan Soegondo, Nurpudji Astuti Taslim and Fahrul Nurkolis
Pharmaceuticals 2025, 18(8), 1101; https://doi.org/10.3390/ph18081101 - 24 Jul 2025
Viewed by 485
Abstract
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target [...] Read more.
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target pharmacology, including interactions with cannabinoid receptors, Peroxisome Proliferator-Activated Receptors (PPARs), Transient Receptor Potential (TRP) channels, and potentially SGLT2. Objective: To evaluate the potential of phytocannabinoids as novel modulators of renal glucose reabsorption via SGLT2 and to compare their efficacy, safety, and pharmacological profiles with synthetic SGLT2 inhibitors. Methods: We performed a narrative review encompassing the following: (1) the molecular and physiological roles of SGLT2; (2) chemical classification, natural sources, and pharmacokinetics/pharmacodynamics of major phytocannabinoids (Δ9-Tetrahydrocannabinol or Δ9-THC, Cannabidiol or CBD, Cannabigerol or CBG, Cannabichromene or CBC, Tetrahydrocannabivarin or THCV, and β-caryophyllene); (3) in silico docking and drug-likeness assessments; (4) in vitro assays of receptor binding, TRP channel modulation, and glucose transport; (5) in vivo rodent models evaluating glycemic control, weight change, and organ protection; (6) pilot clinical studies of THCV and case reports of CBD/BCP; (7) comparative analysis with established synthetic inhibitors. Results: In silico studies identify high-affinity binding of several phytocannabinoids within the SGLT2 substrate pocket. In vitro, CBG and THCV modulate SGLT2-related pathways indirectly via TRP channels and CB receptors; direct IC50 values for SGLT2 remain to be determined. In vivo, THCV and CBD demonstrate glucose-lowering, insulin-sensitizing, weight-reducing, anti-inflammatory, and organ-protective effects. Pilot clinical data (n = 62) show that THCV decreases fasting glucose, enhances β-cell function, and lacks psychoactive side effects. Compared to synthetic inhibitors, phytocannabinoids offer pleiotropic benefits but face challenges of low oral bioavailability, polypharmacology, inter-individual variability, and limited large-scale trials. Discussion: While preclinical and early clinical data highlight phytocannabinoids’ potential in SGLT2 modulation and broader metabolic improvement, their translation is impeded by significant challenges. These include low oral bioavailability, inconsistent pharmacokinetic profiles, and the absence of standardized formulations, necessitating advanced delivery system development. Furthermore, the inherent polypharmacology of these compounds, while beneficial, demands comprehensive safety assessments for potential off-target effects and drug interactions. The scarcity of large-scale, well-controlled clinical trials and the need for clear regulatory frameworks remain critical hurdles. Addressing these aspects is paramount to fully realize the therapeutic utility of phytocannabinoids as a comprehensive approach to T2DM management. Conclusion: Phytocannabinoids represent promising multi-target agents for T2DM through potential SGLT2 modulation and complementary metabolic effects. Future work should focus on pharmacokinetic optimization, precise quantification of SGLT2 inhibition, and robust clinical trials to establish efficacy and safety profiles relative to synthetic inhibitors. Full article
Show Figures

Graphical abstract

15 pages, 757 KiB  
Article
Dietary Hemp (Cannabis sativa L.) Products Enhance Egg Yolk Omega-3 Fatty Acids and Color Without Compromising Laying-Hen Performance: A Meta-Analysis
by Yusup Sopian, Panneepa Sivapirunthep, Anuraga Jayanegara and Chanporn Chaosap
Animals 2025, 15(14), 2062; https://doi.org/10.3390/ani15142062 - 12 Jul 2025
Viewed by 297
Abstract
Hemp (Cannabis sativa L.) products have gained attention in poultry nutrition for their rich content of polyunsaturated fatty acids (PUFAs), bioactive compounds, and potential functional benefits. However, findings on their impact on laying-hen performance, egg quality, and yolk fatty acid profiles have [...] Read more.
Hemp (Cannabis sativa L.) products have gained attention in poultry nutrition for their rich content of polyunsaturated fatty acids (PUFAs), bioactive compounds, and potential functional benefits. However, findings on their impact on laying-hen performance, egg quality, and yolk fatty acid profiles have been inconsistent. This meta-analysis aimed to evaluate the effects of dietary hemp products on laying-hen performance, egg quality traits, and yolk fatty acid composition, while exploring potential sources of heterogeneity across studies. A comprehensive literature search identified 21 studies that met the inclusion criteria. A random-effects model was used to calculate standardized mean differences (SMDs) with 95% confidence intervals (CIs) for various outcomes, including production performance, egg quality, and yolk fatty acid profiles. Subgroup and meta-regression analyses assessed the influence of factors such as inclusion level, hen age, and hemp product type. The results showed that hemp supplementation had no significant effect on hen-day production, egg mass, feed conversion ratio, or feed intake. However, yolk redness (SMD = 4.40; 95% CI: 2.46, 6.33; p < 0.001) and yellowness (SMD = 4.45; 95% CI: 2.75, 6.16; p < 0.001) were significantly enhanced. Hemp feeding also increased n-3 PUFA levels in egg yolk, including C18:3n3, C20:5n3, and C22:6n3, while reducing saturated and monounsaturated fatty acids. Subgroup analysis indicated that inclusion levels > 10% and hen age ≤ 25 weeks were associated with slight reductions in hen-day production, whereas older hens (>25 weeks) showed increased egg weight. In conclusion, hemp products can enrich yolk pigmentation and n-3 PUFA content in eggs, supporting the production of functional, value-added eggs without compromising the laying-hen performance. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

19 pages, 1615 KiB  
Article
A Stroll Through Saffron Fields, Cannabis Leaves, and Cherry Reveals the Path to Waste-Derived Antimicrobial Bioproducts
by Stefania Lamponi, Roberta Barletta, Michela Geminiani, Alfonso Trezza, Luisa Frusciante, Behnaz Shabab, Collins Nyaberi Nyong’a and Annalisa Santucci
Pharmaceuticals 2025, 18(7), 1003; https://doi.org/10.3390/ph18071003 - 3 Jul 2025
Viewed by 381
Abstract
Background: The accumulation of agri-food waste is a major environmental and economic challenge and converting these by-products into bioactive compounds fits within the circular bioeconomy. This study aimed to evaluate the antimicrobial potential of extracts derived from Cannabis sativa L. leaves (CSE), Crocus [...] Read more.
Background: The accumulation of agri-food waste is a major environmental and economic challenge and converting these by-products into bioactive compounds fits within the circular bioeconomy. This study aimed to evaluate the antimicrobial potential of extracts derived from Cannabis sativa L. leaves (CSE), Crocus sativus tepals (CST), and Prunus avium L. cherry waste (VCE) against four key bacterial species (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa). Methods: Minimum inhibitory concentration (MIC) assays were performed to assess antibacterial activity, while a bioinformatic pipeline was implemented to explore possible molecular targets. Full-proteome multiple sequence alignments across the bacterial strains were used to identify conserved, strain-specific proteins, and molecular docking simulations were applied to predict binding interactions between the most abundant compounds in the extracts and their targets. Results: CSE and CST demonstrated bacteriostatic activity against S. aureus and B. subtilis (MIC = 15.6 mg/mL), while VCE showed selective activity against B. subtilis (MIC = 31.5 mg/mL). CodY was identified as a putative molecular target for CSE and CST, and ChaA for VCE. Docking results supported the possibility of spontaneous binding between abundant extract constituents and the predicted targets, with high binding affinities triggering a strong interaction network with target sensing residues. Conclusions: This study demonstrates the antimicrobial activity of these agri-food wastes and introduces a comprehensive in vitro and in silico workflow to support the bioactivity of these agri-food wastes and repurpose them for innovative, eco-sustainable applications in the biotechnology field and beyond. Full article
(This article belongs to the Special Issue Sustainable Approaches and Strategies for Bioactive Natural Compounds)
Show Figures

Figure 1

17 pages, 1064 KiB  
Article
Assessment of Abuse Potential of Three Indazole-Carboxamide Synthetic Cannabinoids 5F-ADB, MDMB-4en-PINACA and ADB-4en-PINACA
by Yanling Qiao, Xuesong Shi, Kaixi Li, Lixin Kuai, Xiangyu Li, Bin Di and Peng Xu
Int. J. Mol. Sci. 2025, 26(13), 6409; https://doi.org/10.3390/ijms26136409 - 3 Jul 2025
Viewed by 499
Abstract
5F-ADB, MDMB-4en-PINACA and ADB-4en-PINACA are three potent indazole-carboxamide synthetic cannabinoids (SCs) that have been widely abused in recent years. However, the pharmacological research on these compounds remains limited, especially in vivo research data. The purpose of the present study was to investigate the [...] Read more.
5F-ADB, MDMB-4en-PINACA and ADB-4en-PINACA are three potent indazole-carboxamide synthetic cannabinoids (SCs) that have been widely abused in recent years. However, the pharmacological research on these compounds remains limited, especially in vivo research data. The purpose of the present study was to investigate the pharmacological effects of 5F-ADB, MDMB-4en-PINACA and ADB-4en-PINACA in mice, comparing their in vivo effects with those caused by Δ9-tetrahydrocannabinol (Δ9-THC), the main psychoactive substance in cannabis. We evaluated the cannabinoid-specific pharmacological effects of 5F-ADB, MDMB-4en-PINACA and ADB-4en-PINACA using the tetrad assay (locomotion inhibition, hypothermia, analgesia and catalepsy). Then we conducted conditioned place preference (CPP) and precipitated withdrawal assay to assess the rewarding effect and physical dependence, with Δ9-THC as a positive control. The results showed that all of the three SCs exhibited potential tetrad effects in a dose-dependent manner, with median effective dose (ED50) values ranging from 0.03 to 0.77 mg/kg. In the CPP tests, they all exhibited a significant biphasic effect of conditioned place preference (CPP) and conditioned place aversion (CPA). A significant increase in paw tremors and head twitches was observed in the rimonabant-precipitated withdrawal assay, indicating that the repeated administration of these SCs can lead to potential physical dependence. All effective doses were lower than Δ9-THC. These findings strongly suggested that the three SCs exhibited similar but stronger cannabinoid-specific tetrad effects, rewarding effect and physical dependence compared with Δ9-THC, indicating their high abuse potential and possible threats to human health. The rank order of abuse potential for these drugs was 5F-ADB > MDMB-4en-PINACA > ADB-4en-PINACA > Δ9-THC. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

24 pages, 2105 KiB  
Article
Process Development for GMP-Grade Full Extract Cannabis Oil: Towards Standardized Medicinal Use
by Maria do Céu Costa, Ana Patrícia Gomes, Iva Vinhas, Joana Rosa, Filipe Pereira, Sara Moniz, Elsa M. Gonçalves, Miguel Pestana, Mafalda Silva, Luís Monteiro Rodrigues, Anthony DeMeo, Logan Marynissen, António Marques da Costa, Patrícia Rijo and Michael Sassano
Pharmaceutics 2025, 17(7), 848; https://doi.org/10.3390/pharmaceutics17070848 - 28 Jun 2025
Viewed by 1841
Abstract
Background/Objectives: The industrial extraction and purification processes of Cannabis sativa L. compounds are critical steps in creating formulations with reliable and reproducible therapeutic and sensorial attributes. Methods: For this study, standardized preparations of chemotype I were chemically analyzed, and the sensory attributes were [...] Read more.
Background/Objectives: The industrial extraction and purification processes of Cannabis sativa L. compounds are critical steps in creating formulations with reliable and reproducible therapeutic and sensorial attributes. Methods: For this study, standardized preparations of chemotype I were chemically analyzed, and the sensory attributes were studied to characterize the extraction and purification processes, ensuring the maximum retention of cannabinoids and minimization of other secondary metabolites. The industrial process used deep-cooled ethanol for selective extraction. Results: Taking into consideration that decarboxylation occurs in the process, the cannabinoid profile composition was preserved from the herbal substance to the herbal preparations, with wiped-film distillation under deep vacuum conditions below 0.2 mbar, as a final purification step. The profiles of the terpenes and cannabinoids in crude and purified Full-spectrum Extract Cannabis Oil (FECO) were analyzed at different stages to evaluate compositional changes that occurred throughout processing. Subjective intensity and acceptance ratings were received for taste, color, overall appearance, smell, and mouthfeel of FECO preparations. Conclusions: According to sensory analysis, purified FECO was more accepted than crude FECO, which had a stronger and more polarizing taste, and received higher ratings for color and overall acceptance. In contrast, a full cannabis extract in the market resulted in lower acceptance due to taste imbalance. The purification process effectively removed non-cannabinoids, improving sensory quality while maintaining therapeutic potency. Terpene markers of the flower were remarkably preserved in SOMAÍ’s preparations’ fingerprint, highlighting a major qualitative profile reproducibility and the opportunity for their previous separation and/or controlled reintroduction. The study underscores the importance of monitoring the extraction and purification processes to optimize the cannabinoid content and sensory characteristics in cannabis preparations. Full article
(This article belongs to the Collection Advanced Pharmaceutical Science and Technology in Portugal)
Show Figures

Graphical abstract

22 pages, 5507 KiB  
Review
Exploring Aroma and Flavor Diversity in Cannabis sativa L.—A Review of Scientific Developments and Applications
by Kacper Piotr Kaminski, Julia Hoeng, Kasia Lach-Falcone, Fernando Goffman, Walter K. Schlage and Diogo Latino
Molecules 2025, 30(13), 2784; https://doi.org/10.3390/molecules30132784 - 28 Jun 2025
Viewed by 1533
Abstract
Cannabis sativa L. exhibits a complex sensory profile governed by a diverse range of volatile and non-volatile compounds. Volatile constituents—such as terpenes, aldehydes, ketones, esters, and sulfur-containing compounds—together with non-volatile taste-active molecules including flavonoids and phenolic compounds, underlie its distinctive aroma and flavor. [...] Read more.
Cannabis sativa L. exhibits a complex sensory profile governed by a diverse range of volatile and non-volatile compounds. Volatile constituents—such as terpenes, aldehydes, ketones, esters, and sulfur-containing compounds—together with non-volatile taste-active molecules including flavonoids and phenolic compounds, underlie its distinctive aroma and flavor. This review examines how genetic diversity, cultivation practices, and post-harvest processing modulate the synthesis, accumulation, and chemical transformation of these metabolites in the cannabis flower. It discusses recent advancements in the extraction, identification, and quantification of these compounds, highlighting the crucial integration of chemical characterization with sensory evaluation. By synthesizing findings from advanced analytical methodologies, this review addresses the challenges and opportunities involved in defining the sensory profiles of C. sativa L. varieties. Drawing insights from research on other consumer plants, strategies for future innovations are outlined, including the discovery of novel aroma and flavor compounds and the development of a universal cannabis aroma and flavor wheel. This work aims to support advancements in breeding programs, enhance product quality control, and guide future research in cannabis sensory science. Full article
Show Figures

Graphical abstract

35 pages, 1877 KiB  
Review
Dysregulation of the Cannabinoid System in Childhood Epilepsy: From Mechanisms to Therapy
by Gloria Montebello and Giuseppe Di Giovanni
Int. J. Mol. Sci. 2025, 26(13), 6234; https://doi.org/10.3390/ijms26136234 - 27 Jun 2025
Viewed by 1963
Abstract
Epilepsy affects over 12 million children worldwide, with approximately 30% classified as having drug-resistant epilepsy (DRE), often accompanied by neuropsychiatric comorbidities that severely impact quality of life. The endocannabinoid system (ECS) functions as a multifaceted neuromodulatory network regulating neuronal excitability, synaptic plasticity, and [...] Read more.
Epilepsy affects over 12 million children worldwide, with approximately 30% classified as having drug-resistant epilepsy (DRE), often accompanied by neuropsychiatric comorbidities that severely impact quality of life. The endocannabinoid system (ECS) functions as a multifaceted neuromodulatory network regulating neuronal excitability, synaptic plasticity, and immune homeostasis from early life through adolescence and into aging. In pediatric epilepsies, alterations in ECS components, particularly CB1 receptor expression and endocannabinoid levels, reveal disorder-specific vulnerabilities and therapeutic opportunities. Cannabidiol (CBD), a non-psychoactive compound from Cannabis sativa, has shown strong preclinical and clinical efficacy in treating DRE and is approved for Dravet syndrome, Lennox–Gastaut syndrome, and Tuberous Sclerosis Complex. Other ECS-based strategies, such as the use of CB1 receptor-positive allosteric modulators, can selectively enhance endogenous cannabinoid signaling where and when it is active, potentially reducing seizures in conditions like Dravet and absence epilepsy. Similarly, FAAH and MAGL inhibitors may help restore ECS tone without directly activating CB1 receptors. Precision targeting of ECS components based on regional expression and syndrome-specific pathophysiology may optimize seizure control and associated comorbidities. Nonetheless, long-term pediatric use must be approached with caution, given the critical role of the ECS in brain development. Full article
Show Figures

Figure 1

14 pages, 1031 KiB  
Article
Nutrient Profiles and Bioavailability in Industrial Hemp (Cannabis sativa L.) Seeds from Diverse Provenances
by Mohammad Moinul Islam, Kadambot H. M. Siddique and Zakaria M. Solaiman
Sustainability 2025, 17(13), 5844; https://doi.org/10.3390/su17135844 - 25 Jun 2025
Viewed by 559
Abstract
Hemp (Cannabis sativa L.) seeds have been essential for human nutrition for millennia. The products and by-products of hemp seeds are gaining popularity nowadays as food, feed and medicine for their high nutritional and nutraceutical properties. In parallel, concerns about phytate, an [...] Read more.
Hemp (Cannabis sativa L.) seeds have been essential for human nutrition for millennia. The products and by-products of hemp seeds are gaining popularity nowadays as food, feed and medicine for their high nutritional and nutraceutical properties. In parallel, concerns about phytate, an antinutritional compound limiting nutrient bioavailability in hemp seeds and seed meal are rising. Hemp seeds contain an array of nutrients, but their bioavailability is mostly unknown. Here, we report nutrient and phytate concentrations and phytate contents in source seeds and multiplied seeds of seven industrial hemp varieties. We estimated the bioavailability of specific nutrients based on calculated molar ratios of phytate to minerals. Seed multiplication was carried out in a phytotron using a compost-based growth medium. Five macronutrients (P, K, Mg, S, Ca), four micronutrients (Fe, Mn, Zn, Cu) and Cr were measured in seeds using ICP-OES. Seed phytate was determined using a UV-visible spectrophotometer rapid colourimetric assay. The results revealed significant differences between seven industrial hemp varieties for most macro- and micronutrient concentrations (not Fe), phytate concentration and content and phytate-to-mineral molar ratios in both source and multiplied seeds. Multiplied hemp seeds had higher K, Mn and Zn and, lower Cr and phytate concentrations and lower phytate content than source seeds. Considering nutrient bioavailability, Ca and Fe are non-bioavailable, and Zn is bioavailable in hemp seeds. Ferimon has increased Zn bioavailability in source and multiplied seeds, indicating the variety’s potential for seed production in Western Australia. Full article
Show Figures

Figure 1

22 pages, 1017 KiB  
Article
Development of a Validated LC-MS Method for the Determination of Cannabinoids and Evaluation of Supercritical CO2 vs. Ultrasound-Assisted Extraction in Cannabis sativa L. (Kompolti cv.)
by Vasileios A. Ioannidis, Varvara Sygouni, Sotirios Giannopoulos, Konstantinos Sotirianos, Theophilos Ioannides, Christakis A. Paraskeva and Fotini N. Lamari
Antioxidants 2025, 14(7), 777; https://doi.org/10.3390/antiox14070777 - 24 Jun 2025
Viewed by 1515
Abstract
Cannabis (Cannabis sativa L.) contains numerous secondary metabolites with different bioactivities. Extraction methods differ in their efficiency in recovering metabolites from plant material, and thus cannabis extracts vary significantly in their composition and activity. We aimed to develop a repeatable and accurate [...] Read more.
Cannabis (Cannabis sativa L.) contains numerous secondary metabolites with different bioactivities. Extraction methods differ in their efficiency in recovering metabolites from plant material, and thus cannabis extracts vary significantly in their composition and activity. We aimed to develop a repeatable and accurate HPLC-MS method for the determination of nine common cannabinoids and compare two widely used extraction techniques: ultrasound-assisted extraction (UAE) with methanol and supercritical CO2 extraction (SFE). Inflorescences of the Kompolti cultivar were used as the plant material. On a polar C18 column, more than thirty compounds were well separated within 25 min; thirteen cannabinoids were identified and eight of them were quantified, with cannabidiol and its acidic precursor being the most abundant. Additionally, three spectrophotometric assays were employed for extract characterization: the total phenolic content, total flavonoid content, and DPPH radical scavenging capacity. The SFE extract, obtained using ethanol as a co-solvent under low pressure (<100 bar) and temperature (<45 °C), was more enriched than the UAE extract (181.62 ± 2.90 vs. 140.64 ± 13.24 mg quercetin equivalents/g of dry extract) and cannabinoids (446.29 ± 22.66 vs. 379.85 ± 17.16 mg/g of dry extract), especially cannabinoid acids. However, UAE achieved greater recovery from the plant material (cannabinoids: 83.42 ± 5.15 vs. 68.84 ± 3.49 mg/g of plant material) and showed superior antioxidant capacity (DPPH IC50: 2.50 ± 0.18 vs. 3.37 ± 0.07 mg/mL). Notwithstanding the observed partial decarboxylation, the high repeatability (RSD < 15%, n = 11) of the entire analytical workflow involving UAE extraction and LC-MS analysis renders it suitable for routine analyses. This study contributes to the ongoing efforts toward the quality control and valorization of C. sativa. Full article
Show Figures

Figure 1

19 pages, 1882 KiB  
Article
Pharmacokinetics of Cannabidiol in Rat Brain Tissue After Single-Dose Administration of Different Formulations
by Zuzana Binova, Frantisek Benes, Marie Zlechovcova, Matej Maly, Petr Kastanek, Monika Cahova, Milena Stranska and Jana Hajslova
Molecules 2025, 30(13), 2676; https://doi.org/10.3390/molecules30132676 - 20 Jun 2025
Viewed by 441
Abstract
Cannabidiol (CBD), a phytocannabinoid commonly isolated from chemotype III Cannabis sativa plants, is known for its therapeutic potential. However, comprehensive information on its bioavailability is still lacking. The key objective of this study was to investigate the impact of specific formulations on CBD [...] Read more.
Cannabidiol (CBD), a phytocannabinoid commonly isolated from chemotype III Cannabis sativa plants, is known for its therapeutic potential. However, comprehensive information on its bioavailability is still lacking. The key objective of this study was to investigate the impact of specific formulations on CBD delivery to the site of action and, in particular, the brain of experimental animals. As brain tissue is an extremely complex matrix, a highly sensitive method employing liquid chromatography–tandem mass spectrometry (LC-MS/MS) had to be implemented. To make it applicable for multiple analytes, the method was validated for 17 other phytocannabinoids and selected metabolites. Using this method, a pharmacokinetic study was conducted on 200 brain samples collected from rats that had been administered various CBD formulations (carriers) via oral gavage. The peak concentration in brain occurred within 1–2 h; notably, the highest was reached with carriers containing triacylglycerols with the shortest fatty acid chains (caprylic/capric). In addition to the parent compound, 7-hydroxy-cannabidiol and 7-carboxy-cannabidiol were detected, confirming rapid post-administration metabolism. Overall, this research enhances understanding of CBD distribution in the brain and underscores the impact of specific formulations on its bioavailability, offering insights into optimizing CBD-based therapies to be both effective and ‘patient-friendly’. Full article
(This article belongs to the Special Issue Recent Advances in Cannabis and Hemp Research)
Show Figures

Graphical abstract

17 pages, 1675 KiB  
Article
Assisted Extraction of Hemp Oil and Its Application to Design Functional Gluten-Free Bakery Foods
by Noemi Baldino, Mario F. O. Paleologo, Mariateresa Chiodo, Olga Mileti, Francesca R. Lupi and Domenico Gabriele
Molecules 2025, 30(12), 2665; https://doi.org/10.3390/molecules30122665 - 19 Jun 2025
Viewed by 559
Abstract
Cannabis sativa L. is known for its high-value compounds, like Cannabidiol (CBD) and Cannabidiolic Acid (CBDA). It is widely used in the pharmaceutical and food industries. Different extraction methods, like Soxhlet and maceration, are commonly employed to obtain its extracts. High temperature and [...] Read more.
Cannabis sativa L. is known for its high-value compounds, like Cannabidiol (CBD) and Cannabidiolic Acid (CBDA). It is widely used in the pharmaceutical and food industries. Different extraction methods, like Soxhlet and maceration, are commonly employed to obtain its extracts. High temperature and long extraction time can influence the yield and the purity of the extracts, affecting the quality of the final product. This study focused on optimizing CBD oil extraction from hemp inflorescences and its incorporation into a gluten-free bakery product for functionalization. Dynamic maceration (DME), assisted by ultrasound and microwave irradiation, was used. Our study explored the impact of varying sonication times (three distinct durations) and microwave powers (three levels, applied for two different irradiation times) on the resulting extracts. HPLC analysis was performed on these extracts. Subsequently, we used hemp flour and hemp oil to bake gluten-free cupcakes, which were fortified with the extracted CBD oil. Rheological characterization was used to investigate the cupcake properties, along with stereoscopic, color and puncture analysis performed on the baked samples. The most effective extraction parameters identified were 30 s of microwave irradiation at 700 W, yielding 45.2 ± 2.0 g of CBD extract, and 15 min of sonication, which resulted in 53.2 ± 2.5 g. Subsequent rheological characterization indicated that the product exhibited mechanical properties and a temperature profile comparable to a benchmark, evidenced by a height of 4.1 ± 0.2 cm and a hardness of 1.9 ± 0.2 N. These promising values demonstrate that hemp oil and hemp flour are viable ingredients for traditional cakes and desserts, notably contributing increased nutritional value through the CBD-enriched hemp oil and the beneficial profile of hemp flour. Full article
Show Figures

Graphical abstract

22 pages, 3518 KiB  
Article
Cannabinol’s Modulation of Genes Involved in Oxidative Stress Response and Neuronal Plasticity: A Transcriptomic Analysis
by Serena Silvestro, Marco Calabrò, Alessandra Trainito, Stefano Salamone, Federica Pollastro, Emanuela Mazzon and Aurelio Minuti
Antioxidants 2025, 14(6), 744; https://doi.org/10.3390/antiox14060744 - 17 Jun 2025
Viewed by 774
Abstract
Cannabis sativa is a remarkable source of bioactive compounds, with over 150 distinct phytocannabinoids identified to date. Among these, cannabinoids are gaining attention as potential therapeutic agents for neurodegenerative diseases. Previous research showed that cannabinol (CBN), a minor cannabinoid derived from Δ9 [...] Read more.
Cannabis sativa is a remarkable source of bioactive compounds, with over 150 distinct phytocannabinoids identified to date. Among these, cannabinoids are gaining attention as potential therapeutic agents for neurodegenerative diseases. Previous research showed that cannabinol (CBN), a minor cannabinoid derived from Δ9-tetrahydrocannabinol, exhibits antioxidant, anti-inflammatory, analgesic, and anti-bacterial effects. The objective of this study was to assess the protective potential of 24 h CBN pre-treatment, applied at different concentrations (5 µM, 10 µM, 20 µM, 50 µM, and 100 µM), in differentiated neuroblastoma × spinal cord (NSC-34) cells. Transcriptomic analysis was performed using next-generation sequencing techniques. Our results reveal that CBN had no negative impact on cell viability at the tested concentrations. Instead, it showed a significant effect on stress response and neuroplasticity-related processes. Specifically, based on the Reactome database, the biological pathways mainly perturbed by CBN pre-treatment were investigated. This analysis highlighted a significant enrichment in the Reactome pathway’s cellular response to stress, cellular response to stimuli, and axon guidance. Overall, our results suggest that CBN holds promise as an adjuvant agent for neurodegenerative diseases by modulating genes involved in neuronal cell survival and axon guidance. Full article
(This article belongs to the Special Issue Oxidative Stress and Its Mitigation in Neurodegenerative Disorders)
Show Figures

Figure 1

Back to TopTop