Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = canine parvovirus (CPV)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 1252 KiB  
Article
Antibody Titer Testing in Dogs: Evaluation of Three Point-of-Care Tests for Canine Core Vaccine Antigens Compared to Virus Neutralization
by Lena Janowitz, Ahmed Abd El Wahed, Uwe Truyen, Regina Hofmann-Lehmann and Andrea Monika Spiri
Vet. Sci. 2025, 12(8), 737; https://doi.org/10.3390/vetsci12080737 - 6 Aug 2025
Abstract
Antibody titer testing can be useful in controlling successful puppy immunization and can reduce unnecessary vaccinations in adult dogs. We evaluated three commercially available point-of-care tests (POCTs) for detecting antibodies against canine parvovirus (CPV-2), canine distemper virus (CDV) and canine adenovirus (CAV-1 and/or [...] Read more.
Antibody titer testing can be useful in controlling successful puppy immunization and can reduce unnecessary vaccinations in adult dogs. We evaluated three commercially available point-of-care tests (POCTs) for detecting antibodies against canine parvovirus (CPV-2), canine distemper virus (CDV) and canine adenovirus (CAV-1 and/or -2), comparing them to the reference virus neutralization (VN) assay. Sera from 200 client-owned dogs (13 healthy, 63 chronically diseased, 124 acute) and 60 specific pathogen-free (SPF) dogs, including 20 sera with maternally derived antibodies (MDA), were tested. All three POCTs demonstrated high sensitivity (79.0–100%) and specificity (97.8–100%) for CPV-2. In contrast, specificity for CDV and CAV was lower with POCT-1 (43.5% and 55.3%) and POCT-2 (42.4% and 79.2%), despite high sensitivity (CDV in both POCTs 98.7%; CAV POCT-1: 99.4%, POCT-2: 90.8%). POCT-3, by comparison, showed high specificity (CDV: 94.1%; CAV: 84.4%) but very low sensitivity (CDV: 17.4%; CAV: 33.1%). Only POCT-1 for CPV-2 detected MDA reliably, whereas the other two POCTs, and POCT-1 for CDV and CAV, did not. When compared to VN, the agreement in vaccination recommendations was 82% for POCT-1 and POCT-2, and 62% for POCT-3. In conclusion, all three POCTs reliably detected antibodies against CPV-2, including MDA with POCT-1. However, the lower specificity for CDV and CAV antibody detection in POCT-1 and POCT-2 raises concerns about misclassifying unprotected dogs as immune, while false-negatives with POCT-3 could lead to unnecessary vaccinations. Further optimization of all three POCTs for CDV and CAV is recommended. Full article
(This article belongs to the Special Issue Advances in Veterinary Clinical Microbiology)
Show Figures

Figure 1

11 pages, 217 KiB  
Article
Assessing Canine Parvovirus Vaccine Performance in Puppies with Maternally Derived Antibody: An Improved Study Design
by Jacqueline Pearce, Ellen Versmissen, David Sutton, Qi Cao and Ian Tarpey
Vaccines 2025, 13(8), 832; https://doi.org/10.3390/vaccines13080832 - 4 Aug 2025
Viewed by 201
Abstract
Background/Objectives: Typically, studies aiming to assess the ability of canine parvovirus (CPV) vaccines to immunise puppies with maternally derived antibody (MDA) are undertaken using group-housed puppies. Since live attenuated vaccine virus is invariably shed in the faeces, this can result in repeated [...] Read more.
Background/Objectives: Typically, studies aiming to assess the ability of canine parvovirus (CPV) vaccines to immunise puppies with maternally derived antibody (MDA) are undertaken using group-housed puppies. Since live attenuated vaccine virus is invariably shed in the faeces, this can result in repeated oral re-exposure and puppies which failed to respond to the initial vaccination may respond instead to shed vaccine virus in the environment, thus artificially enhancing the efficacy of the vaccine. This problem can be avoided by adopting a pair-housed study design where one vaccinated pup is housed with one unvaccinated sentinel. Using this design, we examine the capability of four commercially available canine parvovirus vaccines to immunise MDA-positive pups. Methods: Thirty-four 6-week-old puppies born to vaccinated dams were divided into four vaccine groups with similar MDA ranges. Within each group puppies were paired based on matching MDA titres, and each pair was housed in separate biocontainment accommodation. In each pair, the pup with the highest MDA was vaccinated and the other left as an unvaccinated sentinel. All vaccinates were given a single dose of one of the vaccines. Vaccinates and sentinels were then bled every 2–4 days and CPV antibody was measured. Daily rectal swabs were also collected from all pups to identify any shed vaccinal CPV. Results: All the pups vaccinated with Nobivac DP PLUS seroconverted, with significantly higher antibody titres compared to the pups in other vaccine groups, all shed vaccine virus, and all bar one of the sentinel pups seroconverted. In the other groups, only vaccinated pups with lower levels of MDA seroconverted and shed vaccine virus but none of the sentinel pups seroconverted. Conclusions: Different canine parvovirus vaccines differ in their ability to replicate in and immunise puppies with MDA, the levels of which may vary widely between individuals. The shedding of vaccinal CPV is an important consideration when designing studies to demonstrate efficacy in MDA-positive puppies. Full article
(This article belongs to the Section Veterinary Vaccines)
13 pages, 3597 KiB  
Article
Effects of Canine IL-12 on the Immune Response Against the Canine Parvovirus VP2 Protein
by Shiyan Wang, Wenjie Jiao, Dannan Zhao, Yuzhu Gong, Jingying Ni, Huawei Wu, Jige Du, Tuanjie Wang and Chunsheng Yin
Vaccines 2025, 13(7), 758; https://doi.org/10.3390/vaccines13070758 - 16 Jul 2025
Viewed by 367
Abstract
Background: Canine parvovirus (CPV) is a highly pathogenic virus that predominantly affects puppies, with mortality rates exceeding 70%. Although commercial multivalent live attenuated vaccines (MLV) are widely employed, their efficacy is often compromised by maternal antibody interference. Consequently, the development of novel vaccines [...] Read more.
Background: Canine parvovirus (CPV) is a highly pathogenic virus that predominantly affects puppies, with mortality rates exceeding 70%. Although commercial multivalent live attenuated vaccines (MLV) are widely employed, their efficacy is often compromised by maternal antibody interference. Consequently, the development of novel vaccines remains imperative for effective CPV control. Methods: Recombinant CPV VP2 protein (rVP2) and canine interlukine 12 protein (rcIL-12) were expressed using the Bac-to-Bac baculovirus expression system and the biological activity of these proteins was assessed through hemagglutination, Cell Counting Kit-8 (CCK8) and IFN-γ induction assays. The combined immunoenhancement effect of rVP2 and rcIL-12 protein was evaluated in puppies. Results: Both rVP2 and rcIL-12 were successfully expressed and purified, exhibiting confirmed antigenicity, immunogenicity, and bioactivity. Co-administration of rVP2 with rcIL-12 elicited higher neutralizing antibody titer (6–7 times higher), complete challenge protection efficiency (no clinical symptoms and tissue and organ lesions), fewer viral shedding (decreasing significantly 8-day post challenge) and superior viral blockade (lower viral load in the organism) compared to rVP2 alone. Conclusions: Our findings demonstrate that rVP2 co-administered with rcIL-12 induces robust protective immunity in puppies and significantly mitigated the inhibitory effects of maternal antibodies. This represents a promising strategy for enabling earlier vaccination in puppies and rational design of CPV subunit vaccines. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

12 pages, 2967 KiB  
Article
The Detection of Mixed Infection with Canine Parvovirus, Canine Distemper Virus, and Rotavirus in Giant Pandas by Multiplex PCR
by Ai Liu, Wenyue Qiao, Rui Ma, Qigui Yan, Shan Zhao and Yifei Lang
Vet. Sci. 2025, 12(2), 81; https://doi.org/10.3390/vetsci12020081 - 23 Jan 2025
Viewed by 1189
Abstract
The well-being and subsistence of giant pandas, an endangered species with a limited distribution, are currently threatened by a number of viruses, including canine parvovirus (CPV-2), canine distemper virus (CDV), and giant panda rotavirus (GPRV). To allow for timely intervention upon viral infection, [...] Read more.
The well-being and subsistence of giant pandas, an endangered species with a limited distribution, are currently threatened by a number of viruses, including canine parvovirus (CPV-2), canine distemper virus (CDV), and giant panda rotavirus (GPRV). To allow for timely intervention upon viral infection, it is necessary to execute rapid and accurate diagnosis of potential mixed viral infections. In the present study, we developed and validated a multiplex PCR (mPCR) approach for the detection of CPV-2, CDV, and GPRV infections. The results indicate that the method could selectively amplify the three viruses with high sensitivity and specificity, which are necessary attributes in clinical settings. Utilizing the established method, (sub)clinical giant panda samples were examined, and CPV-2, CDV, and GPRV were found in 19.72% (43 out of 218), 7.34% (16 out of 218), and 6.42% (14 out of 218) of the samples, respectively. Noticeably, mixed infections of two or three viruses were common, and this was generally observed in CDV- or GPRV-positive samples. Meanwhile, mPCR results were further validated with sequencing and the phylogenetic analysis of full-length sequences of viral genes. Taken together, our study provides an approachable assay which enables the quick detection of the three viruses mentioned above, which will benefit clinical diagnosis and laboratory epidemiological-based investigations of the giant panda population. Full article
Show Figures

Figure 1

14 pages, 1479 KiB  
Article
Introduction of a Divergent Canine Parvovirus Type 2b Strain with a Dog in Sicily, Southern Italy, Through the Mediterranean Sea Route to Europe
by Francesco Mira, Giovanni Franzo, Giorgia Schirò, Domenico Vicari, Giuseppa Purpari, Vincenza Cannella, Elisabetta Giudice, Martino Trapani, Anna Carrozzo, Giada Spene, Virginia Talarico and Annalisa Guercio
Pathogens 2025, 14(2), 108; https://doi.org/10.3390/pathogens14020108 - 23 Jan 2025
Viewed by 1365
Abstract
Despite over four decades since its emergence, canine parvovirus type 2 (CPV-2) remains a relevant disease for dogs. Few studies, primarily only recent ones based on phylodynamic and phylogeography approaches, have highlighted the impact of rapid and long-distance transport of dogs on the [...] Read more.
Despite over four decades since its emergence, canine parvovirus type 2 (CPV-2) remains a relevant disease for dogs. Few studies, primarily only recent ones based on phylodynamic and phylogeography approaches, have highlighted the impact of rapid and long-distance transport of dogs on the CPV-2 spreading dynamics. The present study reports the genomic characterization of a CPV-2 strain detected in a dog introduced into Italy from the coasts of North Africa through the Mediterranean Sea route to Europe. The nearly complete CPV-2 sequence was obtained and analyzed. The viral isolate was characterized as a CPV-2b variant, showing genetic signatures distinct from those of CPV-2 strains detected to date in Europe. Phylodynamic and phylogeographic approaches revealed a close correlation with CPV-2 strains recently reported in the Middle East (Turkey and Egypt), which likely originated or co-evolved from Asian ones. It is at least suggestive that the inferred spreading pattern overlaps with the routes often followed by migrants travelling from Asia and Middle East to Europe, passing through Africa. This evidence for the introduction of CPV-2 via the Mediterranean Sea route to Europe highlights the relevant role of the dog movements in the global spread of emerging or re-emerging viral pathogens. Full article
Show Figures

Figure 1

16 pages, 2073 KiB  
Article
Characterization, Quantification, and Molecular Identification of Co-Infection of Canine Parvovirus (CPV-2) Variants in Dogs Affected by Gastroenteritis in Ecuador During 2022–2023
by Anthony Loor-Giler, Silvana Santander-Parra, Sara Castillo-Reyes, Martin Campos, Renán Mena-Pérez, Santiago Prado-Chiriboga and Luis Nuñez
Vet. Sci. 2025, 12(1), 46; https://doi.org/10.3390/vetsci12010046 - 11 Jan 2025
Viewed by 2072
Abstract
Canine parvovirus (CPV-2) is a highly contagious virus in canines, and it is mostly spread by touching infected feces. Dogs of all ages can catch it, but puppies are more likely to suffer from it. Severe signs include vomiting, diarrhea with blood, feeling [...] Read more.
Canine parvovirus (CPV-2) is a highly contagious virus in canines, and it is mostly spread by touching infected feces. Dogs of all ages can catch it, but puppies are more likely to suffer from it. Severe signs include vomiting, diarrhea with blood, feeling tired, and not drinking enough water. There are three different types of the original CPV-2 that have been found so far, which are CPV-2a, 2b, and 2c. The genome of CPV-2 is about 5.2 kb long and has two open reading frames (ORFs), namely the VP region and the NS region. Based on changes in amino acids at position 426, the VP2 protein distinguishes the gene apart in the VP region. Using a molecular method, this study contemplated the presence of CPV-2 and its variants in dogs that had gastroenteritis, as well as other infections. There were 511 samples tested, and 401 (78.47%) of them were positive for CPV-2. Of these, 144 (25.91%) were positive for the original genotype, 258 (64.34%) for genotype 2a, 343 (85.54%) for genotype 2b, and 167 (41.65%) for genotype 2c. Using the multiplex qPCR for genotyping, CPV-2a and CPV-2b were determined as the most frequent co-infections (16.45%). The three genotypes (2a, 2b, and 2c) were found in the samples examined based on the amino acids at position 426 of the VP2 protein, as demonstrated by the VP2 gene sequencing. Furthermore, it was discovered that in certain samples, a genetic modification at position 297 was connected to the virus’s pathogenicity. Full article
Show Figures

Figure 1

17 pages, 3228 KiB  
Article
Identification of Host–Protein Interaction Network of Canine Parvovirus Capsid Protein VP2 in F81 Cells
by Hongzhuan Zhou, Huanhuan Zhang, Xia Su, Fuzhou Xu, Bing Xiao, Jin Zhang, Qi Qi, Lulu Lin, Kaidi Cui, Qinqin Li, Songping Li and Bing Yang
Microorganisms 2025, 13(1), 88; https://doi.org/10.3390/microorganisms13010088 - 5 Jan 2025
Cited by 1 | Viewed by 1313
Abstract
Canine Parvovirus (CPV) is a highly contagious virus that causes severe hemorrhagic enteritis and myocarditis, posing a major threat to the life and health of dogs. The molecular mechanism by which VP2, the major capsid protein of CPV, infects host cells and utilizes [...] Read more.
Canine Parvovirus (CPV) is a highly contagious virus that causes severe hemorrhagic enteritis and myocarditis, posing a major threat to the life and health of dogs. The molecular mechanism by which VP2, the major capsid protein of CPV, infects host cells and utilizes host cell proteins for self-replication remains poorly understood. In this study, 140 host proteins specifically binding to CPV VP2 protein were identified by immunoprecipitation combined with liquid chromatography–mass spectrometry (LC-MS/MS). Subsequently, the protein Interaction Network (PPI), the annotation of gene ontology (GO) and the database of Kyoto Encyclopedia of Genes and Genomes (KEGG) were constructed for in-depth analysis. The results showed that CPV VP2 protein participated mainly in cell metabolism, cell biosynthesis, protein folding and various signal transduction processes. According to the results of proteomics analysis, we randomly selected seven proteins for co-immunoprecipitation verification, and the experimental results were consistent with the LC-MS/MS data. In addition, our study found that the expression level of the VP2-interacting protein FHL2 mediated CPV replication. Preliminary studies have shown that knockdown of FHL2 promotes CPV replication by decreasing the expression of interferon β (IFN-β) and interferon-stimulated genes (ISGs), while overexpression of FHL2 can inhibit the replication of CPV by up-regulating the expression of IFN-β and related ISGs. This study lays the foundation for elucidating the potential function of CPV VP2 protein in the process of viral infection and proliferation which provides a theoretical basis for the design of antiviral agents and vaccines. Full article
(This article belongs to the Special Issue Advances in Parvovirus Infection of Pets and Waterfowl)
Show Figures

Figure 1

16 pages, 2295 KiB  
Review
Overview of Recent Advances in Canine Parvovirus Research: Current Status and Future Perspectives
by Hongzhuan Zhou, Kaidi Cui, Xia Su, Huanhuan Zhang, Bing Xiao, Songping Li and Bing Yang
Microorganisms 2025, 13(1), 47; https://doi.org/10.3390/microorganisms13010047 - 30 Dec 2024
Cited by 3 | Viewed by 8220
Abstract
Canine parvovirus (CPV-2) was first identified in the late 1970s and has since become one of the most significant infectious agents affecting dogs. CPV-2 causes severe diseases such as hemorrhagic gastroenteritis and myocarditis, posing a major threat to canine health, particularly with a [...] Read more.
Canine parvovirus (CPV-2) was first identified in the late 1970s and has since become one of the most significant infectious agents affecting dogs. CPV-2 causes severe diseases such as hemorrhagic gastroenteritis and myocarditis, posing a major threat to canine health, particularly with a high mortality rate in puppies. It is globally recognized as a highly contagious and lethal pathogen. CPV is prone to rapid mutation, leading to the emergence of new variants. Despite widespread vaccination efforts, CPV remains one of the primary causes of acute gastroenteritis and death in young and juvenile dogs. Furthermore, the detection of CPV in swine populations has introduced additional challenges to its control. This review summarizes the current epidemiological status of CPV, highlighting recent advancements in diagnostic techniques and vaccine development. Additionally, it discusses the latest research on the pathogenesis of the virus and the development of antiviral agent research and proposes prevention and control suggestions for CPV under the One Health concept. In particular, there is a need to enhance surveillance of viral dynamics, accelerate the development of novel vaccines, and deepen the exploration of the underlying pathogenic mechanisms. This review aims to provide a scientific foundation for effective control of CPV and to guide future research directions. Full article
(This article belongs to the Special Issue Advances in Parvovirus Infection of Pets and Waterfowl)
Show Figures

Figure 1

11 pages, 4718 KiB  
Article
Genetic Diversity and Recombination Analysis of Canine Parvoviruses Prevalent in Central and Eastern China, from 2020 to 2023
by Shunshun Pan, Yuanzhuo Man, Xin Xu, Jun Ji, Shiyuan Zhang, Honghui Huang, Ying Li, Yingzuo Bi and Lunguang Yao
Microorganisms 2024, 12(11), 2173; https://doi.org/10.3390/microorganisms12112173 - 29 Oct 2024
Cited by 1 | Viewed by 1404
Abstract
Canine parvovirus type-2 (CPV-2), the primary causative agent of serious canine enteric diseases, is highly contagious and associated with high fatality rates worldwide. To comprehend the current emergence of CPV-2 in central and eastern China, 130 rectal swabs from domestic or stray dogs [...] Read more.
Canine parvovirus type-2 (CPV-2), the primary causative agent of serious canine enteric diseases, is highly contagious and associated with high fatality rates worldwide. To comprehend the current emergence of CPV-2 in central and eastern China, 130 rectal swabs from domestic or stray dogs with gastroenteritis symptoms were collected during 2020–2023. A total of 118 positive samples were detected via polymerase chain reaction, and further used to amplify and sequence the VP2 gene. Sequence analysis of the deduced amino acids of VP2 protein indicated that CPV-2c was the most prevalent variant (n = 106, 89.83%), followed by the novel CPV-2a (n = 10, 8.47%) and CPV-2b (n = 2, 1.69%) variants. The VP2 protein from the obtained and reference strains showed 86.95% (AH2103 and HB2108) to 99.94% identity. Based on the nine predicted recombination events, some prevalent CPV-2c strains were highly similar to previously isolated strains, indicating their complex evolution and recombination. The predicted analysis suggested that mutations in the antigen epitope (Val219Ile, Phe267Tyr, and Asn426Glu) and other mutations (Met87Leu, Ile101Thr, and Ser297Ala) affect the tertiary structure of the VP2 protein. This research will help us understand the recent evolution and mutation of Chinese CPV-2 and provide suggestions for updating the CPV-2 vaccine. Full article
(This article belongs to the Special Issue Advances in Parvovirus Infection of Pets and Waterfowl)
Show Figures

Figure 1

11 pages, 438 KiB  
Article
Production and Evaluation of an Inactivated Adjuvanted Vaccine against Canine Parvovirus in Morocco
by Ghizlane Sebbar, Safae El Azhari, Mourad Drifa, Said Mouhri, Mustapha Hammouchi, Hajar Moudhich, Chafiqa Loutfi and Farid Amraoui
Vaccines 2024, 12(9), 995; https://doi.org/10.3390/vaccines12090995 - 30 Aug 2024
Viewed by 1360
Abstract
The study conducted in Morocco focused on addressing the challenges posed by canine parvovirus (CPV-2) through comprehensive research, vaccine development, and efficacy assessment. Through real-time PCR screening and genotyping, CPV-2 variants were identified circulating in the region. An inactivated vaccine, derived from a [...] Read more.
The study conducted in Morocco focused on addressing the challenges posed by canine parvovirus (CPV-2) through comprehensive research, vaccine development, and efficacy assessment. Through real-time PCR screening and genotyping, CPV-2 variants were identified circulating in the region. An inactivated vaccine, derived from a CPV-2 strain isolated from a symptomatic dog, was produced and evaluated for safety and efficacy. The vaccine, from the strain named “CaPV M/3-2022”, demonstrated safety in vaccinated puppies, with no adverse reactions observed during the trial period. Efficacy trials showed that vaccinated puppies remained healthy and exhibited lower viral excretion post-challenge compared to unvaccinated controls. These results indicate that the vaccine effectively protects against illness related to CPV-2 and reduces viral shedding. The study provides valuable insights into CPV-2 epidemiology in Morocco, offers a promising vaccine solution, and underscores the importance of vaccination in controlling CPV-2 outbreaks and protecting canine health. Full article
(This article belongs to the Section Vaccine Advancement, Efficacy and Safety)
Show Figures

Figure 1

13 pages, 2753 KiB  
Article
Development and Application of Colloidal Gold Test Strips for the Rapid Detection of Canine Brucellosis
by Pengxiang Sun, Xinmei Yang, Jinyue Liu, Yanqing Bao, Jingjing Qi, Xiangan Han, Guanhui Liu, Shaohui Wang and Mingxing Tian
Biosensors 2024, 14(8), 388; https://doi.org/10.3390/bios14080388 - 10 Aug 2024
Cited by 1 | Viewed by 2530
Abstract
Brucellosis is a global problem, with the causative agent being the genus Brucella. B. canis can cause undulant fever in dogs, which is a zoonotic disease that can spread not only among dogs but also to humans. This poses a public health [...] Read more.
Brucellosis is a global problem, with the causative agent being the genus Brucella. B. canis can cause undulant fever in dogs, which is a zoonotic disease that can spread not only among dogs but also to humans. This poses a public health threat to society. In this study, a rapid and straightforward immune colloidal gold test strip was developed for the diagnosis of canine brucellosis through the detection of anti-LPS antibodies in serum samples. Rabbit anti-canine IgG conjugated with colloidal gold was employed as the colloidal gold-labeled antibody. The extracted high-purity R-LPS was employed as the capture antigen in the test line (T-line), while goat anti-rabbit IgG was utilized as the capture antibody in the control line (C-line). The colloidal gold strip exhibited high specificity in the detection of brucellosis, with no cross-reaction observed with the common clinical canine diseases caused by Canine coronavirus (CCV), Canine distemper virus (CDV), and Canine parvovirus (CPV). In comparison to the commercial iELISA kit, the sensitivity and specificity of the colloidal gold test strip were found to be 95.23% and 98.76%, respectively. The diagnostic coincidence rate was 98.47%. The findings of this study indicate that colloidal gold test strips may be employed as a straightforward, expeditious, sensitive, and specific diagnostic instrument for the identification of canine brucellosis, particularly in resource-limited regions. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

18 pages, 2291 KiB  
Article
Molecular Detection of Viral and Bacterial Pathogens in Red Foxes (Vulpes vulpes) from Italy
by Martina Magliocca, Roberta Taddei, Lorenza Urbani, Cristina Bertasio, Veronica Facile, Laura Gallina, Maria Sampieri, Gianluca Rugna, Silva Rubini, Giulia Maioli, Alessia Terrusi, Mara Battilani and Andrea Balboni
Animals 2024, 14(13), 1969; https://doi.org/10.3390/ani14131969 - 3 Jul 2024
Cited by 4 | Viewed by 1959
Abstract
Animals, including wildlife, are part of One-Health concept since many infectious diseases can affect both humans and animals. In this study, 126 red foxes (Vulpes vulpes) from Northern Italy in 2022–2023 were tested by molecular assays for Protoparvovirus carnivoran 1 (PPVC-1), [...] Read more.
Animals, including wildlife, are part of One-Health concept since many infectious diseases can affect both humans and animals. In this study, 126 red foxes (Vulpes vulpes) from Northern Italy in 2022–2023 were tested by molecular assays for Protoparvovirus carnivoran 1 (PPVC-1), Canine adenovirus type 1 and 2 (CAdV-1 and CAdV-2), Circovirus canine (CanineCV), Canine distemper virus (CDV), and Leptospira spp. A total of 39 of 126 (30.9%) red foxes were infected with at least one pathogen and five of these were coinfected: 20/126 (15.9%) red foxes tested positive for PPVC-1, 3/126 (2.4%) for CAdV, 20/126 (15.9%) for CanineCV, and 2/126 (1.6%) for Leptospira spp. DNA. No foxes tested positive for CDV RNA. The pathogens identified were genetically analysed. New findings were reported such as a fox with multiple feline panleukopenia virus (FPV) and canine parvovirus type 2b (CPV-2b) infection associated with quasispecies dynamics, typical genetic characteristics of the identified CanineCV, and the first detection in red foxes of Leptospira ST198 related to L. interrogans serogroup Australis. Further studies are necessary to investigate the transmission between domestic animals and wildlife and to understand the role of red foxes in the maintenance of these pathogens not only in the wild but also in urban and peri-urban environments. Full article
Show Figures

Figure 1

16 pages, 2317 KiB  
Article
Molecular Characterization of Feline Parvovirus from Domestic Cats in Henan Province, China from 2020 to 2022
by Zuhua Yu, Wenjie Wang, Chuan Yu, Lei He, Ke Ding, Ke Shang and Songbiao Chen
Vet. Sci. 2024, 11(7), 292; https://doi.org/10.3390/vetsci11070292 - 30 Jun 2024
Cited by 2 | Viewed by 2024
Abstract
Carnivore protoparvovirus-1, feline parvovirus (FPV), and canine parvovirus (CPV) continue to spread in companion animals all over the world. As a result, FPV and CPV underwent host-to-host transfer in carnivorous wild-animal hosts. Here, a total of 82 fecal samples of suspected cat [...] Read more.
Carnivore protoparvovirus-1, feline parvovirus (FPV), and canine parvovirus (CPV) continue to spread in companion animals all over the world. As a result, FPV and CPV underwent host-to-host transfer in carnivorous wild-animal hosts. Here, a total of 82 fecal samples of suspected cat FPV infections were collected from Henan Province from 2020 to 2022. The previously published full-length sequence primers of VP2 and NS1 genes were used to amplify the targeted genes of these samples, and the complete gene sequences of 11 VP2 and 21 NS1 samples were obtained and analyzed. Analysis showed that the amino acid homology of the VP2 and NS1 genes of these isolates was 96.1–100% and 97.6–100%, respectively. The phylogenetic results showed that the VP2 and NS1 genes of the local isolates were mainly concentrated in the G1 subgroup, while the vaccine strains were distributed in the G3 subgroup. Finally, F81 cells were inoculated with the local endemic isolate Luoyang-01 (FPV-LY strain for short) for virus amplification, purification, and titer determination, and the pathogenesis of FPV-LY was detected. After five generations of blind transmission in F81 cells, cells infected with FPV-LY displayed characteristic morphological changes, including a round, threadlike, and wrinkled appearance, indicative of viral infection. The virus titer associated with this cytopathic effect (CPE) was measured at 1.5 × 106 TCID50/mL. Subsequent animal regression tests confirmed that the virus titer of the PFV-LY isolate remained at 1.5 × 106 TCID50/mL, indicating its highly pathogenic nature. Cats exposed to the virus exhibited typical clinical symptoms and pathological changes, ultimately succumbing to the infection. These results suggest that the gene mutation rate of FPV is increasing, resulting in a complex pattern of gene evolution in terms of host preference, geographical selection, and novel genetic variants. The data also indicate that continuous molecular epidemiological surveillance is required to understand the genetic diversity of FPV isolates. Full article
Show Figures

Figure 1

15 pages, 1948 KiB  
Article
Canine Amniotic Fluid at Birth Holds Information about Neonatal Antibody Titres against Core Vaccine Viruses
by Debora Groppetti, Alessandro Pecile, Joel Filipe, Federica Riva, Alessia Inglesi, Pietro Andrea Kuhn, Elisa Giussani and Paola Dall’Ara
Vet. Sci. 2024, 11(6), 234; https://doi.org/10.3390/vetsci11060234 - 23 May 2024
Viewed by 2566
Abstract
There is a growing interest in the composition of amniotic fluid (AF) in both humans and animals. In addition to its nutritional and protective functions for the foetus, current knowledge demonstrates that AF also serves advanced diagnostic, prognostic, and therapeutic roles. Newborn dogs [...] Read more.
There is a growing interest in the composition of amniotic fluid (AF) in both humans and animals. In addition to its nutritional and protective functions for the foetus, current knowledge demonstrates that AF also serves advanced diagnostic, prognostic, and therapeutic roles. Newborn dogs have an underdeveloped immune system, making them highly susceptible to dangerous pathogens such as canine parvovirus (CPV-2), canine infectious hepatitis virus (CAdV-1), and canine distemper virus (CDV), thus exposing them to a high risk of mortality in the first weeks of life. Immunoglobulins G (IgGs) represent the only antibody isotype capable of crossing the placenta in a small amount and have been detected also in canine AF. The primary aim of this study was to investigate the reliability of AF collected at birth as a marker of passive immunity in canine species. For this purpose, total and specific IgGs against CPV-2, CAdV-1, and CDV were investigated and quantified in both maternal plasma and AF collected at the time of caesarean section. The vaccination status of the bitches was also taken into consideration. Since the immune system can be influenced by gestational age, with preterm infants having immature innate and adaptive immunity, IgG concentrations were correlated with amniotic lecithin, sphingomyelin, cortisol, surfactant protein A, and pentraxin 3 levels. In a previous study from our group on foetal maturity these molecules were measured in the same samples. Finally, correlations between their amniotic content and neonatal outcomes were investigated. This study demonstrates that AF analysis at birth can provide valuable insights into neonatal immunity in puppies, offering a non-invasive method to detect potential early health risks, for improved puppy care and management. Full article
(This article belongs to the Section Veterinary Reproduction and Obstetrics)
Show Figures

Figure 1

16 pages, 4806 KiB  
Article
A Quadruplex Reverse Transcription Quantitative Polymerase Chain Reaction for Detecting Canine Coronavirus, Canine Rotavirus, Canine Parvovirus, and Canine Distemper Virus
by Yandi Shi, Feng Long, Kaichuang Shi, Mengyi He, Yuwen Shi, Shuping Feng, Yanwen Yin, Xiankai Wei and Zongqiang Li
Microbiol. Res. 2024, 15(2), 746-761; https://doi.org/10.3390/microbiolres15020049 - 10 May 2024
Cited by 2 | Viewed by 1909
Abstract
Background: Canine coronavirus (CCoV), canine rotavirus (CRV), canine parvovirus (CPV), and canine distemper virus (CDV) cause gastroenteritis in dogs, and co-infections of these pathogens are common in China. In particular, CCoV and CRV are confirmed to have important zoonotic potential and cause public [...] Read more.
Background: Canine coronavirus (CCoV), canine rotavirus (CRV), canine parvovirus (CPV), and canine distemper virus (CDV) cause gastroenteritis in dogs, and co-infections of these pathogens are common in China. In particular, CCoV and CRV are confirmed to have important zoonotic potential and cause public health issues. It is difficult to diagnose these diseases based only on clinical manifestations and pathological damage. Methods: In this study, four pairs of specific primers and probes targeting the CCoV M, CRV VP7, CPV VP2, and CDV N genes were designed. The reaction conditions, including the primer and probe concentrations, annealing temperatures, and reaction cycles, were optimized for the development of a quadruplex RT-qPCR for the detection of CCoV, CRV, CPV, and CDV. The assay was used to test 1028 clinical samples to validate its application. Results: A quadruplex RT-qPCR was successfully established for the differential detection of CCoV, CRV, CPV, and CDV, with good specificity, high sensitivity, and excellent repeatability. The assay could specifically detect CCoV, CRV, CPV, and CDV without cross-reactivity with the other canine viruses tested. It showed high sensitivity with limits of detection (LOD) of 1.1 × 102 copies/reaction for all four plasmid constructs. It showed excellent repeatability, with 0.05–0.90% intra-assay variation and 0.02–0.94% inter-assay variation. The 1028 clinical samples were tested using the quadruplex RT-qPCR and a reported reference RT-qPCR. The positivity rates of CCoV, CRV, CPV, and CDV were 9.53%, 0.97%, 25.68%, and 5.06% using the developed assay, and 9.05%, 0.88%, 25.68%, and 4.86% using the reference assay, with agreements higher than 99.32%. Conclusion: The results indicated that a rapid and accurate quadruplex RT-qPCR was developed for the detection and differentiation of CCoV, CRV, CPV, and CDV. Full article
(This article belongs to the Special Issue Veterinary Microbiology and Diagnostics)
Show Figures

Figure 1

Back to TopTop