Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,215)

Search Parameters:
Keywords = cancer genetics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 10428 KB  
Article
Conversational AI-Enabled Precision Oncology Reveals Context-Dependent MAPK Pathway Alterations in Hispanic/Latino and Non-Hispanic White Colorectal Cancer Stratified by Age and FOLFOX Exposure
by Fernando C. Diaz, Brigette Waldrup, Francisco G. Carranza, Sophia Manjarrez and Enrique Velazquez-Villarreal
Cancers 2026, 18(2), 293; https://doi.org/10.3390/cancers18020293 (registering DOI) - 17 Jan 2026
Abstract
Background: Colorectal cancer (CRC) demonstrates substantial clinical and biological diversity across age groups, ancestral backgrounds, and treatment settings, alongside a rising incidence of early-onset disease (EOCRC). The mitogen-activated protein kinase (MAPK) pathway is a major driver of CRC development and therapy response; however, [...] Read more.
Background: Colorectal cancer (CRC) demonstrates substantial clinical and biological diversity across age groups, ancestral backgrounds, and treatment settings, alongside a rising incidence of early-onset disease (EOCRC). The mitogen-activated protein kinase (MAPK) pathway is a major driver of CRC development and therapy response; however, the distribution and prognostic value of MAPK alterations across distinct patient subgroups remain unclear. Methods: We analyzed 2515 CRC tumors with harmonized demographic, clinical, genomic, and treatment metadata. Patients were stratified by ancestry (Hispanic/Latino [H/L] vs. non-Hispanic White [NHW]), age at diagnosis (early-onset [EO] vs. late-onset [LO]), and FOLFOX chemotherapy exposure. MAPK pathway alterations were identified using a curated gene set encompassing canonical EGFR-RAS-RAF-MEK-ERK signaling components and regulatory nodes. Conversational artificial intelligence (AI-HOPE and AI-HOPE-MAPK) enabled natural language-driven cohort construction and exploratory analytics; findings were validated using Fisher’s exact testing, chi-square analyses, and Kaplan–Meier survival estimates. Results: MAPK pathway disruption demonstrated marked heterogeneity across ancestry and treatment contexts. Among EO H/L patients, FGFR3, NF1, and RPS6KA6 mutations were significantly enriched in tumors not receiving FOLFOX, whereas PDGFRB alterations were more frequent in FOLFOX-treated EO H/L tumors relative to EO NHW counterparts. In late-onset H/L disease, NTRK2 and PDGFRB mutations were more common in non-FOLFOX tumors. Distinct MAPK-associated alterations were also observed among NHW patients, particularly in non-FOLFOX settings, including AKT3, FGF4, RRAS2, CRKL, DUSP4, JUN, MAPK1, RRAS, and SOS1. Survival analyses provided borderline evidence that MAPK alterations may be linked to improved overall survival in treated EO NHW patients. Conversational AI markedly accelerated analytic throughput and multi-parameter discovery. Conclusions: Although MAPK alterations are pervasive in CRC, their distribution varies meaningfully by ancestry, age, and treatment exposure. These findings highlight NF1, MAPK3, RPS6KA4, and PDGFRB as potential biomarkers in EOCRC and H/L patients, supporting the need for ancestry-aware precision oncology approaches. Full article
(This article belongs to the Special Issue Innovations in Addressing Disparities in Cancer)
Show Figures

Figure 1

25 pages, 3187 KB  
Article
ANXA2P2 and PA2G4P4 Pseudogenes Are Associated with the Response to Ionizing Radiation and Could Be Used as Potential Biomarkers: In Silico Study
by Tomasz Kolenda, Piotr Białas, Kacper Kamiński, Maria Dziuba, Małgorzata Czernecka, Aleksandra Leszczyńska, Kacper Guglas, Joanna Kozłowska-Masłoń, Paulina Potter, Klaudia Dudek, Nina Grzejda, Karina Tylkowska, Anna Zapłata, Marlena Janiczek-Polewska, Paulina Gieremek, Katarzyna Regulska, Patrycja Mantaj, Anna Florczak-Substyk, Anna Przybyła, Urszula Kazimierczak, Ewa Leporowska, Zefiryn Cybulski, Beata Stanisz and Anna Teresiakadd Show full author list remove Hide full author list
Biomedicines 2026, 14(1), 200; https://doi.org/10.3390/biomedicines14010200 (registering DOI) - 16 Jan 2026
Abstract
Background: Head and neck squamous cell carcinoma remains a highly aggressive malignancy with limited predictive biomarkers for prognosis and radiotherapy response. Increasing evidence indicates that pseudogenes are functionally active regulators of cancer biology, yet their clinical relevance in HNSCC is poorly defined. Methods: [...] Read more.
Background: Head and neck squamous cell carcinoma remains a highly aggressive malignancy with limited predictive biomarkers for prognosis and radiotherapy response. Increasing evidence indicates that pseudogenes are functionally active regulators of cancer biology, yet their clinical relevance in HNSCC is poorly defined. Methods: Using transcriptomic and clinical data from The Cancer Genome Atlas, we analyzed the expression and clinical significance of two pseudogenes, ANXA2P2 and PA2G4P4, in HNSCC. Associations with clinicopathological features, HPV status, tumor subtypes, survival, genomic instability, radiotherapy response, and immune landscape were assessed using bioinformatic tools. Results: Both pseudogenes were significantly upregulated in HNSCC compared to normal tissues. Higher expression levels correlated with adverse clinicopathological features, increased tumor proliferation and wound-healing capacity, and unfavorable TCGA molecular subtypes. High ANXA2P2 and PA2G4P4 expression was associated with reduced overall survival, while their combined low-expression signature identified patients with significantly improved overall and disease-free survival. Notably, lower expression of both pseudogenes was observed in patients responding to radiotherapy, whereas higher expression was linked to genomic instability parameters and enrichment of oncogenic pathways, including MYC, PI3K/AKT/mTOR, cell cycle regulation, and DNA repair. ANXA2P2 expression differed significantly by HPV status, showing reduced levels in HPV-positive tumors. Furthermore, pseudogene expression stratified distinct immune profiles, including immune subtypes, stromal and immune scores, and specific immune cell populations. Conclusions:ANXA2P2 and PA2G4P4 are clinically relevant pseudogenes associated with tumor aggressiveness, immune modulation, and radiotherapy response in HNSCC. These findings support their potential utility as prognostic and predictive biomarkers and provide a rationale for further functional validation in experimental models. Full article
(This article belongs to the Special Issue Epigenetic Regulation and Its Impact for Medicine (2nd Edition))
Show Figures

Figure 1

23 pages, 1234 KB  
Review
Prostate Cancer, JAK/STAT3 Dysregulation, and Flavonoids: Is There a Possible Link?
by Valentina Uivarosi, Daniela Miricescu, Ileana Adela Vacaroiu, Dan Arsenie Spinu, Constantin Stefani, Silviu Stanciu, Remus Iulian Nica, Iulia-Ioana Stanescu-Spinu, Silviu Constantin Badoiu, Silvia Nica and Viorel Jinga
Int. J. Mol. Sci. 2026, 27(2), 885; https://doi.org/10.3390/ijms27020885 - 15 Jan 2026
Viewed by 27
Abstract
Worldwide, prostate cancer (PC) has a rising incidence and is the sixth leading cause of death globally, especially with increasing cases in developing countries. Risk factors for PC include genetic predisposition, family history, race/ethnicity, and various occupational factors like diet, obesity, smoking, and [...] Read more.
Worldwide, prostate cancer (PC) has a rising incidence and is the sixth leading cause of death globally, especially with increasing cases in developing countries. Risk factors for PC include genetic predisposition, family history, race/ethnicity, and various occupational factors like diet, obesity, smoking, and transmitted diseases. The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway can be activated by hormones, cytokines, and growth factors, and it plays a role in many vital biological processes such as cell growth, differentiation, immune regulation, and apoptosis. Dysregulation of JAK/STAT3 can lead to cancer, inflammation, diabetes, and neurodegenerative disorders. In cancers, including PC, STAT3 promotes cell survival, progression, angiogenesis, and metastasis. Inhibitors targeting JAK and STAT3 tested in vivo have shown potential to inhibit malignant cell growth. Additionally, flavonoids are bioactive plant compounds that are important in preventing inflammation, oxidative stress, and cancer. Research indicates that natural flavonoids can be developed into cancer-preventive and therapeutic agents. Experimental studies have demonstrated that some flavonoids can inhibit PC development. The main goal of this review is to present the incidence and risk factors of PC, the JAK/STAT3 pathway and its inhibitors, and how flavonoids may influence this pathology. Full article
Show Figures

Figure 1

23 pages, 6117 KB  
Article
Identification and Characterisation of Canine Osteosarcoma Biomarkers and Therapeutic Targets
by Jorja Jackson-Oxley, Aziza A. Alibhai, Rachel Thompson, Jennifer Lothion-Roy, Simone de Brot, Mark D. Dunning, Jennie N. Jeyapalan, Nigel P. Mongan and Catrin S. Rutland
Cancers 2026, 18(2), 262; https://doi.org/10.3390/cancers18020262 - 14 Jan 2026
Viewed by 177
Abstract
Background: Osteosarcoma (OSA) is the most common type of bone cancer in canines. Novel therapies are required to prevent the growth, survival, and metastatic progression of this cancer, to increase life expectancy of patients. Immunohistochemical (IHC) studies and RNA sequencing help us gain [...] Read more.
Background: Osteosarcoma (OSA) is the most common type of bone cancer in canines. Novel therapies are required to prevent the growth, survival, and metastatic progression of this cancer, to increase life expectancy of patients. Immunohistochemical (IHC) studies and RNA sequencing help us gain a deeper understanding into the molecular mechanisms of the disease. Methods: We previously compared canine OSA tissues with patient matched non-tumour tissues, revealing 442 overexpressed genes within the samples. The present research used IHC staining for four of these genes in OSA tissues: G protein-coupled receptor 64 (GPR64), TOX High Mobility Group Box Family Member 3 (TOX3), Matrix Metallopeptidase 12 (MMP-12), and Forkhead Box F1 (FOXF1). H-scoring was performed to quantitatively assess protein expression and qualitatively contextualise staining locations. Additional analyses addressed whether gender or anatomical location of lesions (axial or appendicular tumours) affected protein expression. cBioPortal was employed to analyse expression and genetic alterations in patients. Results: GPR64, TOX3, MMP-12, and FOXF1 showed high mRNA expression and genetic alterations in people with OSA. GPR64, TOX3, MMP-12, and FOXF1 were all expressed in canine OSA with novel findings regarding cellular expression. Additionally, differential sex expression was revealed for GPR64 and TOX3. Potential biomarkers or therapeutic targets were identified. Conclusions: These studies, and subsequent analysis, have provided insights into the molecular mechanisms associated with OSA progression and revealed potential biomarkers for diagnostic and prognostic purposes. A deeper understanding of genetic and protein interactions will support and progress novel pathways towards diagnostic, prognostic, and treatment interventions for OSA in both veterinary and human medicine. Full article
(This article belongs to the Special Issue Advances in Soft Tissue and Bone Sarcoma (2nd Edition))
Show Figures

Figure 1

30 pages, 2436 KB  
Review
Advances in the Pathophysiology and Management of Cancer Pain: A Scoping Review
by Giustino Varrassi, Antonella Paladini, Y Van Tran, Van Phong Pham, Ameen A. Al Alwany, Giacomo Farì, Annalisa Caruso, Marco Mercieri, Joseph V. Pergolizzi, Alan D. Kaye, Frank Breve, Alberto Corriero, Christopher Gharibo and Matteo Luigi Giuseppe Leoni
Cancers 2026, 18(2), 259; https://doi.org/10.3390/cancers18020259 - 14 Jan 2026
Viewed by 227
Abstract
Background/Objectives: Cancer pain affects 55–95% of patients with advanced malignancy, representing a complex syndrome involving nociceptive, neuropathic and nociplastic mechanisms. Despite therapeutic advances, two-thirds of patients with metastatic cancer experience inadequate pain control. This scoping review synthesizes recent advances in cancer pain pathophysiology [...] Read more.
Background/Objectives: Cancer pain affects 55–95% of patients with advanced malignancy, representing a complex syndrome involving nociceptive, neuropathic and nociplastic mechanisms. Despite therapeutic advances, two-thirds of patients with metastatic cancer experience inadequate pain control. This scoping review synthesizes recent advances in cancer pain pathophysiology and management, focusing on molecular and cellular mechanisms, emerging pharmacological, interventional and technological therapies and key evidence gaps to inform future precision-based pain management strategies. Methods: Following PRISMA-ScR methodology, we searched PubMed, Embase, Scopus, and Web of Science for studies published between January 2022 and September 2025. After screening 3412 records, 278 studies were included and analyzed across different domains: biological mechanisms, pharmacological management, interventional and neuromodulatory approaches, radiotherapy developments, and digital health innovations. Results: Recent mechanistic research reveals cancer pain arises from tumor–neuron–immune crosstalk, with malignant cells secreting neurotrophic factors that promote axonal sprouting and nociceptor sensitization. Genetic polymorphisms and epigenetic modifications contribute to inter-individual pain variability. Management strategies are evolving toward multimodal precision medicine: NSAIDs and opioids remain foundational, complemented by adjuvant agents and interventional procedures including nerve blocks, intrathecal delivery, and neuromodulation (spinal cord and dorsal root ganglion stimulation). Stereotactic body radiotherapy demonstrates superior analgesic durability versus conventional approaches. Digital health innovations, such as mobile applications, remote monitoring, wearables, and AI-enabled predictive models, enable continuous assessment and personalized treatment optimization. Conclusions: Cancer pain management is transitioning toward mechanism-based precision medicine integrating biological insights, advanced interventional techniques, and digital technologies. However, implementation challenges persist, including limited randomized trials for interventional approaches, the incomplete external validation of AI tools, and digital health equity concerns. Future research must prioritize prospective controlled studies and equitable integration into routine care. Full article
(This article belongs to the Special Issue Cancer Pain: Advances in Pathophysiology and Management)
Show Figures

Figure 1

22 pages, 2780 KB  
Review
Hippo Signaling in the Lung: A Tale of Two Effectors—Yap Drives Airway Fate and Taz Drives Alveolar Differentiation
by Rachel Warren and Stijn P. J. De Langhe
Cells 2026, 15(2), 143; https://doi.org/10.3390/cells15020143 - 13 Jan 2026
Viewed by 162
Abstract
The mammalian lung operates under a biological paradox, requiring architectural fragility for gas exchange while maintaining robust regenerative plasticity to withstand injury. The Hippo signaling pathway has emerged as a central “rheostat” in orchestrating these opposing needs, yet the distinct roles of its [...] Read more.
The mammalian lung operates under a biological paradox, requiring architectural fragility for gas exchange while maintaining robust regenerative plasticity to withstand injury. The Hippo signaling pathway has emerged as a central “rheostat” in orchestrating these opposing needs, yet the distinct roles of its downstream effectors remain underappreciated. This review synthesizes recent genetic and mechanobiological advances to propose a “Tale of Two Effectors” model, arguing for the functional non-redundancy of YAP and TAZ. We posit that YAP functions to drive airway progenitor expansion, mechanical force generation, and maladaptive remodeling. Conversely, TAZ—regulated uniquely via transcriptional mechanisms and mechanotransduction—acts as an obligate driver of alveolar differentiation and adaptive repair through an NKX2-1 feed-forward loop. Furthermore, we introduce the “See-Saw” model of tissue fitness, where mesenchymal niche collapse releases the mechanical brake on the epithelium, triggering the bronchiolization characteristic of pulmonary fibrosis. Finally, we extend this framework to malignancy, illustrating how Small Cell Lung Cancer (SCLC) subtypes mirror these developmental and regenerative states. This integrated framework offers new therapeutic distinct targets for modulating tissue fitness and resolving fibrosis. Full article
(This article belongs to the Special Issue Mechanisms of Lung Growth and Regeneration)
Show Figures

Figure 1

23 pages, 415 KB  
Review
HPV-Driven Cervical Carcinogenesis: Genetic and Epigenetic Mechanisms and Diagnostic Approaches
by Evangelia Legaki, Theofania Lappa, Konstantina-Lida Prasoula, Zoi Kardasi, Emmanouil Kalampokas, Theodoros Kalampokas, Maria G. Roubelakis, Ekaterina Charvalos and Maria Gazouli
Int. J. Mol. Sci. 2026, 27(2), 803; https://doi.org/10.3390/ijms27020803 - 13 Jan 2026
Viewed by 298
Abstract
Cervical cancer remains a major global public health concern, with persistent infection by high-risk human papillomavirus (hrHPV) types recognized as the primary etiological factor. This review explores the multifactorial nature of the disease, focusing on the complex interplay between host genetic susceptibility and [...] Read more.
Cervical cancer remains a major global public health concern, with persistent infection by high-risk human papillomavirus (hrHPV) types recognized as the primary etiological factor. This review explores the multifactorial nature of the disease, focusing on the complex interplay between host genetic susceptibility and epigenetic alterations that drive cervical carcinogenesis. Evidence from genome-wide association studies (GWAS) is discussed, highlighting the contribution of specific genetic loci, predominantly within the HLA region, to susceptibility to HPV infection and disease progression. In parallel, the review examines the molecular mechanisms by which the viral oncoproteins E6 and E7 promote genetic instability and epigenetic reprogramming, including histone modifications and dysregulation of non-coding RNAs. Particular emphasis is placed on DNA methylation, affecting both the viral genome and host genes such as FAM19A4, CADM1, PAX1, and MAL, as a promising biomarker for triage and detection of high-grade intraepithelial lesions (CIN2+). Finally, the review evaluates currently available methylation-based assays and self-sampling devices, highlighting their potential to enhance diagnostic accuracy and increase participation in cervical cancer screening programs. Full article
(This article belongs to the Special Issue Molecular Advances in Gynecologic Cancer, 2nd Edition)
14 pages, 426 KB  
Review
Genetic Basis of Familial Cancer Risk: A Narrative Review
by Eman Fares Sabik
DNA 2026, 6(1), 5; https://doi.org/10.3390/dna6010005 - 13 Jan 2026
Viewed by 85
Abstract
Familial cancers are caused by inherited mutations in specific genes that regulate cell growth, division, and repair. Approximately 5–10% of all cancer cases have a hereditary component, where germline mutations in certain genes increase an individual’s susceptibility to developing cancer. Two major categories [...] Read more.
Familial cancers are caused by inherited mutations in specific genes that regulate cell growth, division, and repair. Approximately 5–10% of all cancer cases have a hereditary component, where germline mutations in certain genes increase an individual’s susceptibility to developing cancer. Two major categories of genes are involved in cancer development: tumour suppressor genes and oncogenes. Both play critical roles in regulating normal cell behaviour, and when mutated, they can contribute to uncontrolled cell proliferation and tumour formation. In addition to genetic mutations, epigenetic alterations also play a significant role in familial cancer. Epigenetics refers to changes in gene expression due to DNA methylation, histone modifications, and the dysregulation of non-coding RNAs without alter the underlying DNA sequence. Familial cancer syndromes follow various inheritance patterns, including autosomal dominant, autosomal recessive, X-linked, and mitochondrial inheritance, each with distinct characteristics. Identifying genetic mutations associated with familial cancers is a cornerstone of genetic counselling, which helps individuals and families navigate the complex intersection of genetics, cancer risk, and prevention. Early identification of mutations enables personalized strategies for risk reduction, early detection, and, when applicable, targeted treatment options, ultimately improving patient outcomes. Full article
Show Figures

Figure 1

22 pages, 7431 KB  
Article
Inhibition of Breast Cancer Bone Metastasis by LRP5-Overexpressing Osteocytes via the LIMA1/MYO5B Signaling Axis
by Yaning Chen, Zicheng Wang, Yu Sun, Xinshi Li, Yuji Wang and Shengzhi Liu
Int. J. Mol. Sci. 2026, 27(2), 777; https://doi.org/10.3390/ijms27020777 - 13 Jan 2026
Viewed by 80
Abstract
Bone metastasis in breast cancer remains a major therapeutic challenge because current osteoclast-targeted therapies do not fully disrupt the tumor–bone vicious cycle. Osteocytes, the most abundant bone cells, are increasingly recognized as key regulators of bone–tumor crosstalk. Previous work has shown that osteocyte-specific [...] Read more.
Bone metastasis in breast cancer remains a major therapeutic challenge because current osteoclast-targeted therapies do not fully disrupt the tumor–bone vicious cycle. Osteocytes, the most abundant bone cells, are increasingly recognized as key regulators of bone–tumor crosstalk. Previous work has shown that osteocyte-specific overexpression of the Wnt co-receptor LRP5 inhibits breast cancer-induced osteolysis and generates conditioned medium (CM) with tumor-suppressive activity. Proteomic analysis identified LIM domain and actin-binding protein 1 (LIMA1) as a central mediator that interacts with Myosin Vb (MYO5B), suggesting the role of the LIMA1/MYO5B regulatory axis. This study demonstrates that CM derived from LRP5-overexpressing osteocytes suppresses EO771 breast cancer cell proliferation, migration, and invasion, and downregulates tumor-promoting proteins, including MMP9, Snail, IL-6, and TGF-β1, while upregulating the apoptosis-related protein cleaved caspase-3. These effects were largely reversed by knockdown of LIMA1 or MYO5B. In syngeneic mouse models of mammary tumors and bone metastasis, systemic administration of LRP5-overexpressing osteocyte-derived CM reduced tumor burden and osteolytic bone destruction, whereas genetic knockdown of LIMA1 in osteocytes or MYO5B in tumor cells abrogated these protective effects. Collectively, these findings indicate that LRP5 activation in osteocytes engages the LIMA1/MYO5B signaling axis that inhibits breast cancer progression and osteolysis, disrupts tumor–stromal interactions, and restores bone–tumor homeostasis, thereby providing a potential therapeutic strategy to break the vicious cycle of bone metastasis in breast cancer. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Graphical abstract

32 pages, 10921 KB  
Article
Prognostic Impact of RTK–RAS Alterations in FOLFOX-Treated Early-Onset Colorectal Cancer Revealed by Artificial Intelligence-Driven Precision Oncology
by Fernando C. Diaz, Brigette Waldrup, Francisco G. Carranza, Sophia Manjarrez and Enrique Velazquez-Villarreal
Cancers 2026, 18(2), 239; https://doi.org/10.3390/cancers18020239 - 13 Jan 2026
Viewed by 173
Abstract
Background/Objectives: Early-onset colorectal cancer (EOCRC; diagnosed before age 50) is rising at an accelerated rate, with a disproportionate impact on underserved populations. While alterations in the receptor tyrosine kinase–RAS (RTK–RAS) signaling pathway play a fundamental role in colorectal cancer (CRC) biology, their prognostic [...] Read more.
Background/Objectives: Early-onset colorectal cancer (EOCRC; diagnosed before age 50) is rising at an accelerated rate, with a disproportionate impact on underserved populations. While alterations in the receptor tyrosine kinase–RAS (RTK–RAS) signaling pathway play a fundamental role in colorectal cancer (CRC) biology, their prognostic significance in the setting of FOLFOX chemotherapy—particularly across different age groups and ancestral backgrounds—remains insufficiently characterized. We sought to characterize age-, ancestry-, and treatment-specific associations between RTK–RAS alterations and clinical outcomes using an AI-enabled precision oncology framework. Methods: We analyzed 2515 CRC cases, including 266 Hispanic/Latino (H/L) and 2249 non-Hispanic White (NHW) patients, stratified by age at onset, ancestry, and FOLFOX treatment status. Mutation frequencies were assessed using Fisher’s exact and chi-square tests, while overall survival was analyzed with Kaplan–Meier methods. The AI-HOPE and AI-HOPE–RTK–RAS conversational artificial intelligence platforms were used to integrate clinical, genomic, and treatment data via multi-parameter, natural language–based queries. Results: In early-onset Hispanic/Latino patients, ERBB2 and NF1 mutations occurred at significantly lower frequencies in FOLFOX-treated cases compared with untreated cases (p = 0.01 for both). In late-onset H/L patients, NTRK2 mutations were depleted in FOLFOX-treated tumors (p = 0.04). In untreated early-onset H/L patients, MAPK3 and NF1 mutations were enriched relative to NHW counterparts. Among early-onset NHW patients, IGF1R and ERRFI1 mutations were less frequent with FOLFOX exposure, while multiple RTK–RAS genes were reduced in FOLFOX-treated late-onset NHW patients. Survival analyses revealed worse overall survival in FOLFOX-untreated early-onset NHW patients with RTK–RAS alterations (p = 0.029), but improved survival in FOLFOX-treated late-onset NHW patients (p = 0.048). Conclusions: RTK–RAS pathway alterations demonstrate strong age-, ancestry-, and treatment-specific prognostic effects and may serve as precision biomarkers of differential chemotherapy response. AI-enabled analytics substantially accelerated integrative biomarker discovery, supporting their utility for advancing precision oncology in EOCRC. Full article
(This article belongs to the Section Cancer Epidemiology and Prevention)
Show Figures

Figure 1

22 pages, 3134 KB  
Article
Experimental Mis-Splicing Assessment and ACMG/AMP-Guided Classification of 47 ATM Splice-Site Variants
by Inés Llinares-Burguet, Lara Sanoguera-Miralles, Elena Bueno-Martínez, Ada Esteban-Sanchez, Daniel Romano-Medina, Lobna Ramadane-Morchadi, Alicia García-Álvarez, Pedro Pérez-Segura, Doug F. Easton, Peter Devilee, Maaike P. G. Vreeswijk, Miguel de la Hoya and Eladio A. Velasco-Sampedro
Int. J. Mol. Sci. 2026, 27(2), 765; https://doi.org/10.3390/ijms27020765 - 12 Jan 2026
Viewed by 147
Abstract
Pathogenic germline variants in the ATM gene are associated with a 20–30% lifetime risk of breast cancer. Crucially, a relevant fraction of loss-of-function variants in breast cancer susceptibility genes disrupts pre-mRNA splicing. We aimed to perform splicing analysis of ATM splice-site variants identified [...] Read more.
Pathogenic germline variants in the ATM gene are associated with a 20–30% lifetime risk of breast cancer. Crucially, a relevant fraction of loss-of-function variants in breast cancer susceptibility genes disrupts pre-mRNA splicing. We aimed to perform splicing analysis of ATM splice-site variants identified in the large-scale sequencing project BRIDGES (Breast Cancer After Diagnostic Gene Sequencing). To this end, we bioinformatically selected 47 splice-site variants across 17 exons that were genetically engineered into three minigenes and assayed in MCF-7 cells. Aberrant splicing was observed in 38 variants. Of these, 30 variants, including 7 missense, yielded no or negligible expression of the minigene full-length (mgFL) transcript. A total of 69 different transcripts were characterized, 48 of which harboured a premature termination codon. Some variants, such as c.2922-1G>A, generated complex patterns with up to 10 different transcripts. Alternative 3′ or 5′ splice-site usage was the predominant event. Integration of ATM minigene read-outs into the ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based specifications for the ATM gene enabled the classification of 30 ATM variants as pathogenic or likely pathogenic and 9 as likely benign. Overall, splicing assays provide key information for variant interpretation and the clinical management of patients. Full article
Show Figures

Figure 1

22 pages, 6253 KB  
Review
Lung Cancer in Never-Smokers: Risk Factors, Driver Mutations, and Therapeutic Advances
by Po-Ming Chen, Yu-Han Huang and Chia-Ying Li
Diagnostics 2026, 16(2), 245; https://doi.org/10.3390/diagnostics16020245 - 12 Jan 2026
Viewed by 245
Abstract
Background and Objectives: Lung cancer in never-smokers (LCINS) has become a major global health concern, ranking as the fifth leading cause of cancer-related mortality. Unlike smoking-related lung cancer, LCINS arises from complex interactions between environmental carcinogens and distinct genomic alterations. This review [...] Read more.
Background and Objectives: Lung cancer in never-smokers (LCINS) has become a major global health concern, ranking as the fifth leading cause of cancer-related mortality. Unlike smoking-related lung cancer, LCINS arises from complex interactions between environmental carcinogens and distinct genomic alterations. This review summarizes current evidence on environmental risks, molecular features, and therapeutic progress shaping lung cancer management. Methods: A narrative review was conducted to examine risk factors for lung cancer in non-smokers. Studies reporting driver mutations in never-smokers and smokers were identified across major lung cancer histological subtypes, including small-cell lung cancer (SCLC), lung adenocarcinoma (LUAD), squamous cell carcinoma (SCC), and large-cell carcinoma (LCC). In addition, PubMed was searched for phase III trials and studies on targeted therapies related to driver mutations published between 2016 and 2025. Results: Environmental factors such as cooking oil fumes, radon, asbestos, arsenic, and fine particulate matter (PM2.5) are strongly associated with LCINS through oxidative stress, DNA damage, and chronic inflammation. EGFR, PIK3CA, OS9, MET, and STK11 mutations are characteristic of never-smokers, in contrast to TP53 mutations, which are more common in smokers. Recent advances in targeted therapy and immunotherapy have improved survival and quality of life, emphasizing the importance of molecular profiling for treatment selection. Conclusions: LCINS represents a distinct clinical and molecular entity shaped by complex interactions between environmental exposures and genetic susceptibility. Genetic alterations promote tumor immune evasion, facilitating cancer development and progression. Continued advances in air quality control, molecular diagnostics, and precision therapies are essential for prevention, early detection, and reduction of the global disease burden. Full article
(This article belongs to the Special Issue Lung Cancer: Screening, Diagnosis and Management: 2nd Edition)
Show Figures

Figure 1

4 pages, 155 KB  
Editorial
Emerging Topics in Precision Medicine: Non-Invasive Innovations Shaping Cancer and Immunotherapy Progress
by Rada Amin and Bhanwar Lal Puniya
Appl. Sci. 2026, 16(2), 758; https://doi.org/10.3390/app16020758 - 12 Jan 2026
Viewed by 115
Abstract
Cancer is a heterogeneous disease, resulting from genetic, epigenetic, signaling, and metabolic alterations, which are supported by a highly organized tumor microenvironment (TME) [...] Full article
20 pages, 5995 KB  
Article
Co-Metabolic Network Reveals the Metabolic Mechanism of Host–Microbiota Interplay in Colorectal Cancer
by Han-Wen Wang, Wang Li, Qi-Jun Ma, Hong-Yu Zhang, Yuan Quan and Qiang Zhu
Metabolites 2026, 16(1), 64; https://doi.org/10.3390/metabo16010064 - 11 Jan 2026
Viewed by 236
Abstract
Background: Colorectal cancer (CRC) is a malignancy that ranks among the top three in terms of both global mortality and incidence. Although numerous studies have demonstrated that gut microbes are implicated in CRC pathogenesis, the precise mechanisms underlying host–microbiota metabolic crosstalk remain poorly [...] Read more.
Background: Colorectal cancer (CRC) is a malignancy that ranks among the top three in terms of both global mortality and incidence. Although numerous studies have demonstrated that gut microbes are implicated in CRC pathogenesis, the precise mechanisms underlying host–microbiota metabolic crosstalk remain poorly understood. Objective: This study aims to identify and delineate key co-metabolites and their associated metabolic pathways that modulate the biomass of CRC-related gut bacteria within healthy individuals, through the construction of host–gut microbiota co-metabolic network models. We seek to elucidate the underlying mechanisms of metabolic interplay between the host and CRC-related gut microbiota, thereby offering novel perspectives on the microbial involvement in the initiation and progression of CRC. Methods: We coupled a colon tissue-specific host Genome-Scale Metabolic Model (GEM), which utilized transcriptomic data from healthy human colon tissues, with 12 CRC-associated pro-/anti-carcinogenic gut bacterial GEMs to construct a co-metabolic network. Through a comparative analysis of the network structure and systemic methods (including Flux Sampling and metabolic difference analysis), we simulated scenarios of constrained host co-metabolite supply. Finally, metabolic subsystem enrichment analysis was employed to elucidate the specific molecular mechanisms by which key co-metabolites affect microbial function. Results: The 17 key co-metabolites identified include chloride ions, zinc ions, and acetate. Among these, thirteen metabolites (e.g., ferric iron, succinate, and acetate) were confirmed by literature to be associated with CRC. All 17 key co-metabolites were found to significantly modulate the biomass of CRC-associated gut bacteria. These regulatory effects primarily influence microbial function through core pathways such as glycerophospholipid metabolism and folate metabolism. Conclusion: This research provides a systemic perspective for elucidating the mechanisms of host–gut microbiota metabolic interplay in CRC, thereby complementing the existing theoretical framework concerning microbial regulation by the host genetic background. Full article
(This article belongs to the Section Bioinformatics and Data Analysis)
Show Figures

Graphical abstract

15 pages, 1915 KB  
Article
Establishment of Patient-Derived Organoids from Hepatocellular Carcinoma: Preliminary Data on Yield, Histopathological Concordance, and Methodological Challenges
by Oriana Lo Re, Christian Corti, Lucia Cerrito, Eleonora Cesari, Elisabetta Creta, Flavio De Maio, Alessia Di Prima, Vincenzo Facciuto, Clelia Ferraro, Eleonora Huqi, Rosa Liotta, Margot Lo Pinto, Duilio Pagano, Riccardo Perriera, Valentina Petito, Giulia Santarelli, Francesco Santopaolo, Leonardo Stella, Floriana Tortomasi, Claudio Sette, Salvatore Gruttadauria, Felice Giuliante, Giovanni Zito and Francesca Romana Ponzianiadd Show full author list remove Hide full author list
Cells 2026, 15(2), 125; https://doi.org/10.3390/cells15020125 - 10 Jan 2026
Viewed by 250
Abstract
Patient-derived organoids (PDOs) have emerged as promising preclinical models for studying tumor biology and testing therapeutic strategies in oncology. These three-dimensional culture systems retain key histological, genetic, and functional characteristics of the original tumors, offering a unique opportunity to advance personalized medicine approaches [...] Read more.
Patient-derived organoids (PDOs) have emerged as promising preclinical models for studying tumor biology and testing therapeutic strategies in oncology. These three-dimensional culture systems retain key histological, genetic, and functional characteristics of the original tumors, offering a unique opportunity to advance personalized medicine approaches in liver cancer. In this study, we present the methodological framework and preliminary findings of a prospective study aimed at generating and characterizing PDOs from patients with hepatocellular carcinoma (HCC) undergoing surgical resection. Tumor specimens were processed using an optimized protocol for organoid derivation, expansion, and cryopreservation. We evaluated the success rate of organoid establishment and the histo-molecular fidelity to the parental tumor. These early results demonstrate promising engraftment efficiency and maintenance of tumor-specific markers across passages. Our work highlights the potential of PDOs as a reliable and scalable platform for translational research in HCC, setting the stage for future applications in drug screening and biomarker discovery. Full article
(This article belongs to the Section Tissues and Organs)
Show Figures

Figure 1

Back to TopTop