Co-Metabolic Network Reveals the Metabolic Mechanism of Host–Microbiota Interplay in Colorectal Cancer
Abstract
1. Introduction
2. Materials and Methods
2.1. Model Data Collection and Preprocessing
2.1.1. Human-GEM
2.1.2. Colonic Tissue Transcriptome Data
2.1.3. GEMs of CRC-Associated Gut Microbiota
2.2. Construction of Host–Gut Microbiota Co-Metabolic Model
2.2.1. Tissue-Specific GEM
2.2.2. Co-Metabolic Network Model
2.3. Differential Metabolic Analysis via Flux Sampling
2.3.1. Flux Sampling
2.3.2. Metabolic Differential Analysis
3. Results
3.1. Quality Assessment of Host and Gut Bacterial GEMs
3.2. Structure of Host–Gut Microbiota Co-Metabolic Networks
3.3. Screening of Key Co-Metabolites
3.4. Impact of Key Co-Metabolites on Gut Bacterial Metabolic Subsystems
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CRC | Colorectal cancer |
| GEM | Genome-Scale Metabolic Model |
| SCFAs | Short-chain fatty acids |
| mGWAS | metabolome-wide genome-wide association study |
| GWAS | Genome-Wide Association Study |
| MR | Mendelian randomization |
| IBD | inflammatory bowel disease |
| FVA | Flux Variability Analysis |
| TPM | Transcripts Per Million |
| KS | Kolmogorov–Smirnov |
| FDR | False Discovery Rate |
| Probability Density Function | |
| FC | flux change |
| CI | confidence interval |
| HMDB | Human Metabolome Database |
| ROS | generating reactive oxygen species |
| GPR | Gene-Protein-Reaction |
| GO | Gene Ontology |
| KEGG | Kyoto Encyclopedia of Genes and Genomes |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Yang, T.; Li, X.; Montazeri, Z.; Little, J.; Farrington, S.M.; Ioannidis, J.P.A.; Dunlop, M.G.; Campbell, H.; Timofeeva, M.; Theodoratou, E. Gene–Environment Interactions and Colorectal Cancer Risk: An Umbrella Review of Systematic Reviews and Meta-analyses of Observational Studies. Int. J. Cancer 2019, 145, 2315–2329. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, C.; Goel, A. Role of Gut Microbiota in Epigenetic Regulation of Colorectal Cancer. Biochim. Biophys. Acta BBA-Rev. Cancer 2021, 1875, 188490. [Google Scholar] [CrossRef]
- Yachida, S.; Mizutani, S.; Shiroma, H.; Shiba, S.; Nakajima, T.; Sakamoto, T.; Watanabe, H.; Masuda, K.; Nishimoto, Y.; Kubo, M.; et al. Metagenomic and Metabolomic Analyses Reveal Distinct Stage-Specific Phenotypes of the Gut Microbiota in Colorectal Cancer. Nat. Med. 2019, 25, 968–976. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Jin, Y.; Chen, G.; Ma, X.; Zhang, L. Gut Microbiota Dysbiosis Drives the Development of Colorectal Cancer. Digestion 2021, 102, 508–515. [Google Scholar] [CrossRef]
- Goodrich, J.K.; Waters, J.L.; Poole, A.C.; Sutter, J.L.; Koren, O.; Blekhman, R.; Beaumont, M.; Van Treuren, W.; Knight, R.; Bell, J.T.; et al. Human Genetics Shape the Gut Microbiome. Cell 2014, 159, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Kurilshikov, A. Large-Scale Association Analyses Identify Host Factors Influencing Human Gut Microbiome Composition. Nat. Genet. 2021, 53, 156–165. [Google Scholar] [CrossRef]
- Nicholson, J.K.; Holmes, E.; Kinross, J.; Burcelin, R.; Gibson, G.; Jia, W.; Pettersson, S. Host-Gut Microbiota Metabolic Interactions. Science 2012, 336, 1262–1267. [Google Scholar] [CrossRef] [PubMed]
- Tremaroli, V.; Bäckhed, F. Functional Interactions between the Gut Microbiota and Host Metabolism. Nature 2012, 489, 242–249. [Google Scholar] [CrossRef]
- Jyoti; Dey, P. Mechanisms and Implications of the Gut Microbial Modulation of Intestinal Metabolic Processes. Npj Metab. Health Dis. 2025, 3, 24. [Google Scholar] [CrossRef]
- Martin, A.M.; Sun, E.W.; Rogers, G.B.; Keating, D.J. The Influence of the Gut Microbiome on Host Metabolism Through the Regulation of Gut Hormone Release. Front. Physiol. 2019, 10, 428. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.H.; Yu, J. Gut Microbiota in Colorectal Cancer: Mechanisms of Action and Clinical Applications. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 690–704. [Google Scholar] [CrossRef]
- Spragge, F.; Bakkeren, E.; Jahn, M.T.; Araujo, E.B.N.; Pearson, C.F.; Wang, X.; Pankhurst, L.; Cunrath, O.; Foster, K.R. Microbiome Diversity Protects against Pathogens by Nutrient Blocking. Science 2023, 382, eadj3502. [Google Scholar] [CrossRef]
- Surana, N.K.; Kasper, D.L. Moving beyond Microbiome-Wide Associations to Causal Microbe Identification. Nature 2017, 552, 244–247. [Google Scholar] [CrossRef]
- Fischbach, M.A. Microbiome: Focus on Causation and Mechanism. Cell 2018, 174, 785–790. [Google Scholar] [CrossRef]
- Diener, C.; Gibbons, S.M.; Resendis-Antonio, O. MICOM: Metagenome-Scale Modeling To Infer Metabolic Interactions in the Gut Microbiota. mSystems 2020, 5, e00606-19. [Google Scholar] [CrossRef]
- Bauer, E.; Thiele, I. From Metagenomic Data to Personalized in Silico Microbiotas: Predicting Dietary Supplements for Crohn’s Disease. Npj Syst. Biol. Appl. 2018, 4, 27. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.L.; Kocabaş, P.; Wang, H.; Cholley, P.-E.; Cook, D.; Nilsson, A.; Anton, M.; Ferreira, R.; Domenzain, I.; Billa, V.; et al. An Atlas of Human Metabolism. Sci. Signal. 2020, 13, eaaz1482. [Google Scholar] [CrossRef]
- GitHub Repository. Available online: https://github.com/wjsjshgsy/Co-metabolic-network-analysis (accessed on 12 December 2025).
- GTEx Portal. Available online: https://www.gtexportal.org/home/ (accessed on 12 December 2025).
- Human-GEM-Guide. Available online: https://sysbiochalmers.github.io/Human-GEM-guide/ (accessed on 12 December 2025).
- MicroPhenoDB. Available online: http://www.liwzlab.cn/microphenodb (accessed on 12 December 2025).
- gutMDisorder. Available online: http://bio-annotation.cn/gutMDisorder/ (accessed on 12 December 2025).
- Peryton. Available online: https://dianalab.e-ce.uth.gr/peryton (accessed on 12 December 2025).
- AGORA2 Project. Available online: https://vmh.life/files/reconstructions/AGORA2/version2.01/ (accessed on 12 December 2025).
- Shah, M.S.; DeSantis, T.Z.; Weinmaier, T.; McMurdie, P.J.; Cope, J.L.; Altrichter, A.; Yamal, J.-M.; Hollister, E.B. Leveraging Sequence-Based Faecal Microbial Community Survey Data to Identify a Composite Biomarker for Colorectal Cancer. Gut 2018, 67, 882–891. [Google Scholar] [CrossRef] [PubMed]
- Zeller, G.; Tap, J.; Voigt, A.Y.; Sunagawa, S.; Kultima, J.R.; Costea, P.I.; Amiot, A.; Böhm, J.; Brunetti, F.; Habermann, N.; et al. Potential of Fecal Microbiota for Early-stage Detection of Colorectal Cancer. Mol. Syst. Biol. 2014, 10, 766. [Google Scholar] [CrossRef]
- Yu, J.; Feng, Q.; Wong, S.H.; Zhang, D.; Liang, Q.Y.; Qin, Y.; Tang, L.; Zhao, H.; Stenvang, J.; Li, Y.; et al. Metagenomic Analysis of Faecal Microbiome as a Tool towards Targeted Non-Invasive Biomarkers for Colorectal Cancer. Gut 2017, 66, 70–78. [Google Scholar] [CrossRef]
- Bundgaard-Nielsen, C.; Baandrup, U.T.; Nielsen, L.P.; Sørensen, S. The Presence of Bacteria Varies between Colorectal Adenocarcinomas, Precursor Lesions and Non-Malignant Tissue. BMC Cancer 2019, 19, 399. [Google Scholar] [CrossRef]
- Nakatsu, G.; Li, X.; Zhou, H.; Sheng, J.; Wong, S.H.; Wu, W.K.K.; Ng, S.C.; Tsoi, H.; Dong, Y.; Zhang, N.; et al. Gut Mucosal Microbiome across Stages of Colorectal Carcinogenesis. Nat. Commun. 2015, 6, 8727. [Google Scholar] [CrossRef]
- Drewes, J.L.; White, J.R.; Dejea, C.M.; Fathi, P.; Iyadorai, T.; Vadivelu, J.; Roslani, A.C.; Wick, E.C.; Mongodin, E.F.; Loke, M.F.; et al. High-Resolution Bacterial 16S rRNA Gene Profile Meta-Analysis and Biofilm Status Reveal Common Colorectal Cancer Consortia. Npj Biofilm. Microbiomes 2017, 3, 34. [Google Scholar] [CrossRef]
- Weir, T.L.; Manter, D.K.; Sheflin, A.M.; Barnett, B.A.; Heuberger, A.L.; Ryan, E.P. Stool Microbiome and Metabolome Differences between Colorectal Cancer Patients and Healthy Adults. PLoS ONE 2013, 8, e70803. [Google Scholar] [CrossRef]
- Lopez-Siles, M.; Enrich-Capó, N.; Aldeguer, X.; Sabat-Mir, M.; Duncan, S.H.; Garcia-Gil, L.J.; Martinez-Medina, M. Alterations in the Abundance and Co-Occurrence of Akkermansia Muciniphila and Faecalibacterium Prausnitzii in the Colonic Mucosa of Inflammatory Bowel Disease Subjects. Front. Cell. Infect. Microbiol. 2018, 8, 281. [Google Scholar] [CrossRef] [PubMed]
- Burns, M.B.; Lynch, J.; Starr, T.K.; Knights, D.; Blekhman, R. Virulence Genes Are a Signature of the Microbiome in the Colorectal Tumor Microenvironment. Genome Med. 2015, 7, 55. [Google Scholar] [CrossRef]
- Castellarin, M.; Warren, R.L.; Freeman, J.D.; Dreolini, L.; Krzywinski, M.; Strauss, J.; Barnes, R.; Watson, P.; Allen-Vercoe, E.; Moore, R.A.; et al. Fusobacterium nucleatum Infection Is Prevalent in Human Colorectal Carcinoma. Genome Res. 2012, 22, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Kostic, A.D.; Gevers, D.; Pedamallu, C.S.; Michaud, M.; Duke, F.; Earl, A.M.; Ojesina, A.I.; Jung, J.; Bass, A.J.; Tabernero, J.; et al. Genomic Analysis Identifies Association of Fusobacterium with Colorectal Carcinoma. Genome Res. 2012, 22, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Leung, P.H.M.; Subramanya, R.; Mou, Q.; Lee, K.T.; Islam, F.; Gopalan, V.; Lu, C.; Lam, A.K. Characterization of Mucosa-Associated Microbiota in Matched Cancer and Non-Neoplastic Mucosa From Patients With Colorectal Cancer. Front. Microbiol. 2019, 10, 1317. [Google Scholar] [CrossRef]
- Agren, R.; Bordel, S.; Mardinoglu, A.; Pornputtapong, N.; Nookaew, I.; Nielsen, J. Reconstruction of Genome-Scale Active Metabolic Networks for 69 Human Cell Types and 16 Cancer Types Using INIT. PLoS Comput. Biol. 2012, 8, e1002518. [Google Scholar] [CrossRef]
- Gustafsson, J.; Anton, M.; Roshanzamir, F.; Jörnsten, R.; Kerkhoven, E.J.; Robinson, J.L.; Nielsen, J. Generation and Analysis of Context-Specific Genome-Scale Metabolic Models Derived from Single-Cell RNA-Seq Data. Proc. Natl. Acad. Sci. USA 2023, 120, e2217868120. [Google Scholar] [CrossRef] [PubMed]
- Colijn, C.; Brandes, A.; Zucker, J.; Lun, D.S.; Weiner, B.; Farhat, M.R.; Cheng, T.-Y.; Moody, D.B.; Murray, M.; Galagan, J.E. Interpreting Expression Data with Metabolic Flux Models: Predicting Mycobacterium Tuberculosis Mycolic Acid Production. PLoS Comput. Biol. 2009, 5, e1000489. [Google Scholar] [CrossRef]
- Klitgord, N.; Segrè, D. Environments That Induce Synthetic Microbial Ecosystems. PLoS Comput. Biol. 2010, 6, e1001002. [Google Scholar] [CrossRef]
- Megchelenbrink, W.; Huynen, M.; Marchiori, E. optGpSampler: An Improved Tool for Uniformly Sampling the Solution-Space of Genome-Scale Metabolic Networks. PLoS ONE 2014, 9, e86587. [Google Scholar] [CrossRef]
- Schellenberger, J.; Palsson, B.Ø. Use of Randomized Sampling for Analysis of Metabolic Networks. J. Biol. Chem. 2009, 284, 5457–5461. [Google Scholar] [CrossRef]
- Shoaie, S.; Ghaffari, P.; Kovatcheva-Datchary, P.; Mardinoglu, A.; Sen, P.; Pujos-Guillot, E.; de Wouters, T.; Juste, C.; Rizkalla, S.; Chilloux, J.; et al. Quantifying Diet-Induced Metabolic Changes of the Human Gut Microbiome. Cell Metab. 2015, 22, 320–331. [Google Scholar] [CrossRef]
- Mardinoglu, A.; Agren, R.; Kampf, C.; Asplund, A.; Uhlen, M.; Nielsen, J. Genome-Scale Metabolic Modelling of Hepatocytes Reveals Serine Deficiency in Patients with Non-Alcoholic Fatty Liver Disease. Nat. Commun. 2014, 5, 3083. [Google Scholar] [CrossRef] [PubMed]
- Lieven, C.; Beber, M.E.; Olivier, B.G.; Bergmann, F.T.; Ataman, M.; Babaei, P.; Bartell, J.A.; Blank, L.M.; Chauhan, S.; Correia, K.; et al. MEMOTE for Standardized Genome-Scale Metabolic Model Testing. Nat. Biotechnol. 2020, 38, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Yu, Y.; Wang, Y.; Wang, J.; Guan, R.; Sun, Y.; Shi, F.; Gao, J.; Fu, X. Role of SCFAs in Gut Microbiome and Glycolysis for Colorectal Cancer Therapy. J. Cell. Physiol. 2019, 234, 17023–17049. [Google Scholar] [CrossRef]
- Jiang, S.-S.; Xie, Y.-L.; Xiao, X.-Y.; Kang, Z.-R.; Lin, X.-L.; Zhang, L.; Li, C.-S.; Qian, Y.; Xu, P.-P.; Leng, X.-X.; et al. Fusobacterium Nucleatum-Derived Succinic Acid Induces Tumor Resistance to Immunotherapy in Colorectal Cancer. Cell Host Microbe 2023, 31, 781–797.e9. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Gong, J.; Zhang, Q.; Chen, G.; Yin, S.; Luo, Z.; Zeng, W.; Yu, J.; Lan, P.; He, Z. Dietary Iron Modulates Gut Microbiota and Induces SLPI Secretion to Promote Colorectal Tumorigenesis. Gut Microbes 2023, 15, 2221978. [Google Scholar] [CrossRef] [PubMed]
- Samami, E.; Aleebrahim-Dehkordi, E.; Mohebalizadeh, M.; Yaribash, S.; Saghazadeh, A.; Rezaei, N. Inosine, Gut Microbiota, and Cancer Immunometabolism. Am. J. Physiol.-Endocrinol. Metab. 2023, 324, E1–E8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, T.; Zhu, J.; Tuo, B.; Liu, X. Physiological and Pathophysiological Role of Ion Channels and Transporters in the Colorectum and Colorectal Cancer. J. Cell. Mol. Med. 2020, 24, 9486–9494. [Google Scholar] [CrossRef]
- Guo, Y.; Ye, Q.; Deng, P.; Cao, Y.; He, D.; Zhou, Z.; Wang, C.; Zaytseva, Y.Y.; Schwartz, C.E.; Lee, E.Y.; et al. Spermine Synthase and MYC Cooperate to Maintain Colorectal Cancer Cell Survival by Repressing Bim Expression. Nat. Commun. 2020, 11, 3243. [Google Scholar] [CrossRef]
- Pal, A.; Chatterjee, N.; Shamim, M.A.; Rani, I.; Dhar, A.; Tondolo, V.; Rongioletti, M.; Rizzo, G.; Goswami, K.; Squitti, R. Serum Zinc Status of Patients with Colorectal Cancer: A Systematic Review and Meta-Analysis. J. Trace Elem. Miner. 2024, 9, 100185. [Google Scholar] [CrossRef]
- Ma, Y.; Huangfu, Y.; Deng, L.; Wang, P.; Shen, L.; Zhou, Y. High Serum Riboflavin Is Associated with the Risk of Sporadic Colorectal Cancer. Cancer Epidemiol. 2023, 83, 102342. [Google Scholar] [CrossRef]
- Queiroz Júnior, J.R.A.D.; Costa Pereira, J.P.D.; Pires, L.L.; Maia, C.S. The Dichotomous Effect of Thiamine Supplementation on Tumorigenesis: A Systematic Review. Nutr. Cancer 2021, 74, 1942–1957. [Google Scholar] [CrossRef]
- Gu, J.; Xiao, Y.; Shu, D.; Liang, X.; Hu, X.; Xie, Y.; Lin, D.; Li, H. Metabolomics Analysis in Serum from Patients with Colorectal Polyp and Colorectal Cancer by1 H-NMR Spectrometry. Dis. Markers 2019, 2019, 3491852. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, T.; Zheng, Y.; Yao, Y.; Lin, M.; Zeng, C.; Yan, Y.; Zhou, Y.; Li, D.-D.; Zhang, J. Folate Metabolism-Associated CYP26A1 Is a Clinico-Immune Target in Colorectal Cancer. Genes Immun. 2025, 26, 376–393. [Google Scholar] [CrossRef]
- Magnúsdóttir, S.; Heinken, A.; Kutt, L.; Ravcheev, D.A.; Bauer, E.; Noronha, A.; Greenhalgh, K.; Jäger, C.; Baginska, J.; Wilmes, P.; et al. Generation of Genome-Scale Metabolic Reconstructions for 773 Members of the Human Gut Microbiota. Nat. Biotechnol. 2017, 35, 81–89. [Google Scholar] [CrossRef]
- Sudhakar, P.; Machiels, K.; Verstockt, B.; Korcsmaros, T.; Vermeire, S. Computational Biology and Machine Learning Approaches to Understand Mechanistic Microbiome-Host Interactions. Front. Microbiol. 2021, 12, 618856. [Google Scholar] [CrossRef] [PubMed]
- Krautkramer, K.A.; Fan, J.; Bäckhed, F. Gut Microbial Metabolites as Multi-Kingdom Intermediates. Nat. Rev. Microbiol. 2021, 19, 77–94. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Wang, H.; Xie, J. Thiamin (Vitamin B1) Biosynthesis and Regulation: A Rich Source of Antimicrobial Drug Targets? Int. J. Biol. Sci. 2011, 7, 41–52. [Google Scholar] [CrossRef]
- Masip, L.; Veeravalli, K.; Georgiou, G. The Many Faces of Glutathione in Bacteria. Antioxid. Redox Signal. 2006, 8, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Sohlenkamp, C.; Geiger, O. Bacterial Membrane Lipids: Diversity in Structures and Pathways. FEMS Microbiol. Rev. 2016, 40, 133–159. [Google Scholar] [CrossRef]
- Moens, F.; Van Den Abbeele, P.; Basit, A.W.; Dodoo, C.; Chatterjee, R.; Smith, B.; Gaisford, S. A Four-Strain Probiotic Exerts Positive Immunomodulatory Effects by Enhancing Colonic Butyrate Production in Vitro. Int. J. Pharm. 2019, 555, 1–10. [Google Scholar] [CrossRef]
- Biswas, A.; Petnicki-Ocwieja, T.; Kobayashi, K.S. Nod2: A Key Regulator Linking Microbiota to Intestinal Mucosal Immunity. J. Mol. Med. 2012, 90, 15–24. [Google Scholar] [CrossRef]
- Blachier, F.; Andriamihaja, M.; Larraufie, P.; Ahn, E.; Lan, A.; Kim, E. Production of Hydrogen Sulfide by the Intestinal Microbiota and Epithelial Cells and Consequences for the Colonic and Rectal Mucosa. Am. J. Physiol.-Gastrointest. Liver Physiol. 2021, 320, G125–G135. [Google Scholar] [CrossRef]
- Attene-Ramos, M.S.; Nava, G.M.; Muellner, M.G.; Wagner, E.D.; Plewa, M.J.; Gaskins, H.R. DNA Damage and Toxicogenomic Analyses of Hydrogen Sulfide in Human Intestinal Epithelial FHs 74 Int Cells. Environ. Mol. Mutagen. 2010, 51, 304–314. [Google Scholar] [CrossRef]
- Li, S.; Zhu, S.; Yu, J. The Role of Gut Microbiota and Metabolites in Cancer Chemotherapy. J. Adv. Res. 2024, 64, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Lang, T.; Zhu, R.; Zhu, X.; Yan, W.; Li, Y.; Zhai, Y.; Wu, T.; Huang, X.; Yin, Q.; Li, Y. Combining Gut Microbiota Modulation and Chemotherapy by Capecitabine-Loaded Prebiotic Nanoparticle Improves Colorectal Cancer Therapy. Nat. Commun. 2023, 14, 4746. [Google Scholar] [CrossRef]





| Bacterial Species | Phenotype in CRC | References/Project ID |
|---|---|---|
| AM | Inhibiting | [26], PRJNA397219 |
| BF | Promoting | [27,28,29], PRJEB10878 |
| CA | Inhibiting | [30], PRJNA397219 |
| DP | Promoting | [31], PRJDB4176, PRJEB10878 |
| DF | Inhibiting | [27,32] |
| EV | Inhibiting | [28], PRJEB10878 |
| FP | Inhibiting | [33,34], PRJEB10878 |
| FN | Promoting | [35,36,37], PRJEB10878, PRJNA397219 |
| LP | Inhibiting | [32], PRJEB10878 |
| PM | Promoting | [27,31] PRJEB10878, [27], PRJNA397219 |
| PS | Promoting | [31], PRJDB4176, PRJEB10878 |
| PC | Inhibiting | [32], PRJDB4176, PRJNA397219 |
| Key Metabolite | Related Gut Microbiota | Influence of Reaction |
|---|---|---|
| Acetate | PM | Reduction |
| Succinate | FN, LP, PS | Reduction |
| Chloride | AM, BF, CA, DF, DP, EV, FN, FP, LP, PC, PM, PS | Reduction |
| Fe2+ | DF, DP, EV, FN, FP, LP, PC, PM | Reduction |
| Fe3+ | AM, CA, DF, EV, FN, FP, LP, PC, PM, PS | Reduction |
| Zinc | AM, BF, CA, DF, DP, EV, FN, FP, LP, PC, PM, PS | Reduction |
| Sulfate | AM, BF, CA, DF, DP, EV, FN, FP, LP, PC, PM, PS | Reduction |
| Glycerol | AM, PC | Reduction |
| Riboflavin | CA, EV, FN, FP, LP, PC, PM, PS | Reduction |
| Thiamin | DP, FN, FP, LP, PS | Reduction |
| Biotin | FN | Reduction |
| Folate | FN, FP, LP, PC, PS | Reduction |
| Nicotinamide | PM | Reduction |
| Spermidine | AM, DP, LP, PS | Reduction |
| Ornithine | CA, PS | Reduction |
| Hypoxanthine | CA, EV, PM | Reduction |
| Thymidine | LP | Reduction |
| Key Metabolite | HMDB ID | References | Related Evidence |
|---|---|---|---|
| Acetate/Acetic acid | HMDB0000042 | [47] | As a key SCFA, Acetate directly inhibits CRC growth and suppresses tumor development by modulating the Wnt/β-catenin pathway. |
| Succinate/Succinic acid | HMDB0000254 | [48] | Acts as a signaling molecule that promotes CRC immuno-evasion and progression by suppressing host cGAS-STING immunity. |
| Fe2+/Fe3(Iron) | HMDB0001314 | [49] | Dietary Iron promotes CRC tumorigenesis by modulating the gut microbiota and inducing the secretion of specific host factors. |
| Sulfate | HMDB0001448 | [50] | H2S, a key sulfur metabolite, promotes the proliferation of CRCs |
| Hypoxanthine | HMDB0000157 | [51] | The metabolite Inosine, a purine derivative, is listed as a gut microbiota metabolite that inhibits CRC. |
| Chloride | HMDB0000060 | [52] | Chloride channels and transporters are involved in the occurrence and development of CRC. |
| Spermidine | HMDB0001257 | [53] | Spermidine overaccumulation is directly associated with tumor cell survival. |
| Zn/Zinc | HMDB0001303 | [54] | Serum zinc levels are significantly decreased in CRC patients. |
| Riboflavin | HMDB0000244 | [55] | High serum riboflavin is associated with the risk of sporadic colorectal cancer |
| Thiamin | HMDB0000235 | [56] | Low-dose thiamine stimulates tumor growth. |
| Glycerol | HMDB0000131 | [57] | Glycerol may serve as a biomarker for CRC and be applied to early diagnostic tools. |
| Folate/Folic acid | HMDB0000079 | [58] | Folic acid-related genes were identified as therapeutic targets for CRC. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, H.-W.; Li, W.; Ma, Q.-J.; Zhang, H.-Y.; Quan, Y.; Zhu, Q. Co-Metabolic Network Reveals the Metabolic Mechanism of Host–Microbiota Interplay in Colorectal Cancer. Metabolites 2026, 16, 64. https://doi.org/10.3390/metabo16010064
Wang H-W, Li W, Ma Q-J, Zhang H-Y, Quan Y, Zhu Q. Co-Metabolic Network Reveals the Metabolic Mechanism of Host–Microbiota Interplay in Colorectal Cancer. Metabolites. 2026; 16(1):64. https://doi.org/10.3390/metabo16010064
Chicago/Turabian StyleWang, Han-Wen, Wang Li, Qi-Jun Ma, Hong-Yu Zhang, Yuan Quan, and Qiang Zhu. 2026. "Co-Metabolic Network Reveals the Metabolic Mechanism of Host–Microbiota Interplay in Colorectal Cancer" Metabolites 16, no. 1: 64. https://doi.org/10.3390/metabo16010064
APA StyleWang, H.-W., Li, W., Ma, Q.-J., Zhang, H.-Y., Quan, Y., & Zhu, Q. (2026). Co-Metabolic Network Reveals the Metabolic Mechanism of Host–Microbiota Interplay in Colorectal Cancer. Metabolites, 16(1), 64. https://doi.org/10.3390/metabo16010064

