Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = cagaita

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2057 KiB  
Article
Bioinputs from Eugenia dysenterica DC. (Myrtaceae): Optimization of Ultrasound-Assisted Extraction and Assessment of Antioxidant, Antimicrobial, and Antibiofilm Activities
by Fernando Gomes Barbosa, Gabriel Fernandes Silva, Valter Lúcio Pereira de Oliveira, Lorrainy Alves Cassemiro Kubijan, Leonardo Gomes Costa, Anielly Monteiro de Melo, Monatha Nayara Guimarães Teófilo, Cristiane Maria Ascari Morgado, André José de Campos, Josana de Castro Peixoto, Leonardo Luiz Borges, Carlos de Melo e Silva Neto, Eliete Souza Santana and Joelma Abadia Marciano de Paula
Molecules 2025, 30(5), 1115; https://doi.org/10.3390/molecules30051115 - 28 Feb 2025
Cited by 1 | Viewed by 958
Abstract
By-products of fruit processing may contain bioactive compounds with potential application as bioinputs. This study optimized the ultrasound-assisted extraction (UAE) of phenolic compounds from the by-products of Eugenia dysenterica DC (Myrtaceae) fruit to obtain bioinputs with antioxidant, antimicrobial, and antibiofilm activities. The fruit [...] Read more.
By-products of fruit processing may contain bioactive compounds with potential application as bioinputs. This study optimized the ultrasound-assisted extraction (UAE) of phenolic compounds from the by-products of Eugenia dysenterica DC (Myrtaceae) fruit to obtain bioinputs with antioxidant, antimicrobial, and antibiofilm activities. The fruit by-products (seeds and peels) were subjected to UAE optimization using the Box–Behnken design and response surface methodology. Two optimal conditions were defined: 1-plant material/solvent ratio of 0.01 g/mL, time of 40 min, and ethanol content of 30%; 2–0.19 g/mL, 39 min, and 46%. The bioinputs (liquid extract—LQE; lyophilized extract—LYE), obtained under the optimal conditions, were tested for antioxidant activity (ABTS, FRAP, and DPPH). LQE: 1633.13 µM Trolox/g, 1633.60 µM FeSO4/g and 73.35 g sample/g DPPH; LYE: 1379.75 µM Trolox/g, 1692.09 µM FeSO4/g and 83.35 g sample/g DPPH. For antimicrobial activity, both extracts presented MBC < 62.5 mg/mL and MIC and MBC of 2.5 mg/mL for P. aeruginosa. LQE presented antibiofilm action for S. coagulase (50 mg/mL) and Streptococcus spp. (12.5 mg/mL); LYE for P. aeruginosa (50 mg/mL; 12.5 mg/mL), E. coli (25 mg/mL). The bioinputs obtained by UAE under optimized conditions for phenolic compounds present antioxidant, antimicrobial, and antibiofilm activities. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Products in Food—2nd Edition)
Show Figures

Figure 1

17 pages, 1773 KiB  
Article
Influence of Intercropping on Eugenia dysenterica (Mart.) DC. Fruit Quality
by Micael Jose de Almeida, Paulo Dornelles, Thaisa Alves Matos de Rezende, Ludiele de Lima da Silva, Fabiano Guimarães Silva, Larissa Graziele Rauber Duarte, Josemar Gonçalves de Oliveira Filho and Mariana Buranelo Egea
Horticulturae 2024, 10(10), 1028; https://doi.org/10.3390/horticulturae10101028 - 27 Sep 2024
Cited by 1 | Viewed by 1159
Abstract
Intercropping to integrate cover crops with fruit trees in the Brazilian Cerrado is an innovative strategy for creating a more sustainable food system. This agricultural practice contributes to maintaining soil quality and improves fruits’ chemical and technological properties, such as those of Eugenia [...] Read more.
Intercropping to integrate cover crops with fruit trees in the Brazilian Cerrado is an innovative strategy for creating a more sustainable food system. This agricultural practice contributes to maintaining soil quality and improves fruits’ chemical and technological properties, such as those of Eugenia dysenterica (Mart.) DC. (cagaita). Given the significant fruit production potential of the Brazilian Cerrado, this study aimed to investigate the impact of an intercropping system involving cagaita trees and various cover crops, specifically Calopogonium mucunoides Desv. (CA), Crotalaria juncea (CR), Lablab purpureus (L.) Sweet (LA), brachiaria (Brachiaria decumbens L.) + nitrogen source (urea) (BRN), and brachiaria (Brachiaria decumbens L.) (BR), on the chemical composition, technological properties, and morphological characteristics of cagaita fruits. Treatments involving leguminous cover crops (CA, LA, and CR) significantly increased nitrogen (N) levels in cagaita fruits, comparable to those observed with the BRN treatment. However, the treatment utilizing BR resulted in the highest levels of macrominerals (Ca, Mg, and K), which are essential for meeting the Recommended Dietary Intake (RDI) and demonstrated a notable positive impact on pulp yield (>78%). Additionally, the antioxidant potential and phenolic content were the highest in the BR, CA, and LA treatments, with the lowest levels recorded for the CR treatment. This study underscores the importance of sustainable agricultural practices in the Brazilian Cerrado, demonstrating their potential to enhance the nutritional quality (both micro and macronutrients), technological properties, and overall development of Eugenia dysenterica DC. fruits, thereby adding value to food and contributing to a more resilient and productive food system. Full article
Show Figures

Figure 1

20 pages, 7604 KiB  
Article
Post-Harvest Fruit Conservation of Eugenia dysenterica DC., Spondias purpurea L., Hancornia speciosa Gomes and Talisia esculenta Radlk
by Raquel Rodrigues Soares Sobral, Gisele Polete Mizobutsi, Edson Hiydu Mizobutsi, Flávia Soares Aguiar, Luciele Barboza de Almeida, Lucicleia Borges Almeida, Rayane Carneiro dos Santos, Lucas Maciel de Oliveira, Diego Batista Souza and Jéfferson de Oliveira Costa
AgriEngineering 2024, 6(3), 2306-2325; https://doi.org/10.3390/agriengineering6030135 - 19 Jul 2024
Viewed by 1575
Abstract
The high rate of perishability of fruits such as cagaita (Eugenia dysenterica DC.), seriguela (Spondias purpurea L.), mangaba (Hancornia speciosa Gomes) and pitomba (Talisia esculenta Radlk.) makes it necessary to develop adequate conservation techniques to increase post-harvest shelf life. [...] Read more.
The high rate of perishability of fruits such as cagaita (Eugenia dysenterica DC.), seriguela (Spondias purpurea L.), mangaba (Hancornia speciosa Gomes) and pitomba (Talisia esculenta Radlk.) makes it necessary to develop adequate conservation techniques to increase post-harvest shelf life. The aim of this research was to evaluate the post-harvest quality attributes of cagaita, seriguela, mangaba and pitomba fruits stored in different types of packaging during certain periods. The treatments were defined by the combination of three types of packaging (low-density polyethylene (LDPE), polyvinyl chloride (PVC) and without packaging) and seven storage periods. Total soluble solids, titratable acidity, hydrogen potential (pH), fruit firmness and loss of fresh mass were analyzed. Fruits packaged with LDPE presented the lowest values of fresh mass loss: 2.7, 2.3, 4.2 and 1.1% for cagaita, seriguela, mangaba and pitomba, respectively. Furthermore, LPDE packaging maintained the quality attributes in all fruits analyzed. PVC packaging was more efficient in maintaining fruit firmness, with average values of 0.03 N. Atmospheric modification techniques, such as LDPE and PVC packaging, make it possible to reduce metabolic activity, ensuring better post-harvest quality and increasing the storage period of fruits that occur in the semiarid region of Minas Gerais. Full article
(This article belongs to the Section Pre and Post-Harvest Engineering in Agriculture)
Show Figures

Figure 1

11 pages, 1227 KiB  
Article
Acetic Fermentation of Cagaita Pulp: Technological and Chemical Characteristics
by Jeisa Farias De Sousa Santana, Guilherme Freitas de Lima Hercos, Josemar Gonçalves de Oliveira Filho, Daiane Costa dos Santos, Marilene Silva Oliveira, Bheatriz Silva Morais de Freitas, Fabiano Guimarães Silva and Mariana Buranelo Egea
Beverages 2024, 10(2), 28; https://doi.org/10.3390/beverages10020028 - 12 Apr 2024
Cited by 2 | Viewed by 1903
Abstract
The Brazilian Cerrado region has a rich plant diversity, with fruits that have peculiar and unique sensory characteristics. For these reasons, using these fruits for biotechnological production is a promising alternative, mainly to protect this biome from deforestation and degradation. The production of [...] Read more.
The Brazilian Cerrado region has a rich plant diversity, with fruits that have peculiar and unique sensory characteristics. For these reasons, using these fruits for biotechnological production is a promising alternative, mainly to protect this biome from deforestation and degradation. The production of fermented acetic acid is an option to add value to native fruits and offer the market beverages with better nutritional quality and bioactive compounds. This work aimed to characterize fruits and to develop cagaita (Eugenia dysenterica DC.) acetic fermented beverage. The fruits were subjected to physical-chemical analyses in the first part. Subsequently, different treatments for fermentation were tested using two types of enzymes (amylase and pectinase), two subspecies of Saccharomyces cerevisiae yeast (UFLA CA11 and thermoresistant LNF Angel), and the chaptalization of the must with sucrose (16 °Brix). Alcoholic fermentation was carried out in an incubator with temperature control at 34 ± 1 °C. The pH, total soluble solids, titratable acidity, alcohol content, and density of the fermented products were monitored daily. The chaptalized must with amylase addition and thermoresistant yeast had the best performance during alcoholic fermentation, demonstrating that thermoresistant yeast is an economically advantageous and efficient alternative for the cagaita juice fermentation process. Subsequently, acetic fermentation was carried out using the slow method. Heat-resistant yeast without added enzymes was used to produce cagaita acetic fermented beverages within the parameters of the Brazilian legislation. Furthermore, phenolic compounds and antioxidant activity in the final product were observed. The work demonstrated the possibility of using cagaita fruits in biotechnological processes to produce new food products. Full article
(This article belongs to the Section Beverage Technology Fermentation and Microbiology)
Show Figures

Figure 1

19 pages, 1775 KiB  
Review
Nutraceutic Potential of Bioactive Compounds of Eugenia dysenterica DC in Metabolic Alterations
by Lidiani Figueiredo Santana, Sandramara Sasso, Diana Figueiredo Santana Aquino, Karine de Cássia Freitas, Rita de Cássia Avellaneda Guimarães, Arnildo Pott, Valter Aragão do Nascimento, Danielle Bogo, Patrícia de Oliveira Figueiredo and Priscila Aiko Hiane
Molecules 2022, 27(8), 2477; https://doi.org/10.3390/molecules27082477 - 12 Apr 2022
Cited by 5 | Viewed by 3181
Abstract
The fruit and leaves of Eugenia dysenterica DC., locally known as cagaita, are rich in antioxidant glycosylated quercetin derivatives and phenolic compounds that have beneficial effects on diabetes mellitus, hypertension and general inflammation. We conducted a literature search to investigate the nutraceutical [...] Read more.
The fruit and leaves of Eugenia dysenterica DC., locally known as cagaita, are rich in antioxidant glycosylated quercetin derivatives and phenolic compounds that have beneficial effects on diabetes mellitus, hypertension and general inflammation. We conducted a literature search to investigate the nutraceutical potentials of these phenolic compounds for treating obesity, diabetes mellitus and intestinal inflammatory disease. The phenolic compounds in E. dysenterica have demonstrated effects on carbohydrate metabolism, which can prevent the development of these chronic diseases and reduce LDL (low-density lipoprotein) cholesterol and hypertension. E. dysenterica also improves intestinal motility and microbiota and protects gastric mucosa, thereby preventing inflammation. However, studies are necessary to identify the mechanism by which E. dysenterica nutraceutical compounds act on such pathological processes to support future research. Full article
(This article belongs to the Special Issue Discovery of Bioactive Ingredients from Natural Products, 2nd Edition)
Show Figures

Figure 1

10 pages, 645 KiB  
Article
The Active Aroma of “Cerrado” Cashew and Cagaita Fruits: Comparison between Two Extraction Methods
by Nathalia Horrana Santos, Julian Zapata, Juan David Dereix, Jhonathan Escobar, Adrielle Borges de Almeida, Fabiano Guimarães Silva and Mariana Buranelo Egea
Appl. Sci. 2022, 12(7), 3330; https://doi.org/10.3390/app12073330 - 25 Mar 2022
Cited by 5 | Viewed by 2377
Abstract
The objective of the present work is to characterize the aroma of “Cerrado” cashew (Anacardium othonianum Rizz.) and cagaita (Eugenia dysenterica) pulps. For this, we used headspace (HS) and two extraction methods (solid-phase extraction, SPE and solid-phase microextraction, SPME), as [...] Read more.
The objective of the present work is to characterize the aroma of “Cerrado” cashew (Anacardium othonianum Rizz.) and cagaita (Eugenia dysenterica) pulps. For this, we used headspace (HS) and two extraction methods (solid-phase extraction, SPE and solid-phase microextraction, SPME), as well as gas chromatography-olfactometry (GC-O) and gas chromatography-mass spectrometry (GC-MS) for identification of aroma compounds. While SPME was more efficient and extracted 17 and 21 compounds for “Cerrado” cashew and cagaita pulps, respectively, the SPE method extracted 13 compounds for both pulps. SPME showed higher modified frequency (MF), that is, compounds perceived with higher intensity and by number of judges during olfactometry. On the other hand, the results obtained in this work showed that the extraction techniques seem complementary, since some compounds were not identified by SPE, but were identified by SPME, and vice versa. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

19 pages, 3307 KiB  
Article
Growth, Physiology and Nutrient Use Efficiency in Eugenia dysenterica DC under Varying Rates of Nitrogen and Phosphorus
by Daniele Nogueira dos Reis, Fabiano Guimarães Silva, Reginaldo da Costa Santana, Thales Caetano de Oliveira, Mariângela Brito Freiberger, Fábia Barbosa da Silva, Elídio Monteiro Júnior and Caroline Müller
Plants 2020, 9(6), 722; https://doi.org/10.3390/plants9060722 - 8 Jun 2020
Cited by 2 | Viewed by 3667
Abstract
The production of high-quality seedlings and their use in commercial planting reduce pressure on natural areas. Eugenia dysenterica DC is a native fruit tree from the Brazilian Cerrado, whose nutritional requirements are still unclear. This study aimed to evaluate the effects of nitrogen [...] Read more.
The production of high-quality seedlings and their use in commercial planting reduce pressure on natural areas. Eugenia dysenterica DC is a native fruit tree from the Brazilian Cerrado, whose nutritional requirements are still unclear. This study aimed to evaluate the effects of nitrogen (N) and phosphorus (P) supplementation on the physiology, growth and nutrient uptake, and use efficiencies of E. dysenterica seedlings grown in glasshouse conditions. The following rates were used in separate experiments: 0, 50, 100, 200, and 400 mg dm−3 N and 0, 100, 200, 400, and 600 mg dm−3 P. The experiment was conducted in a randomized block with four replications. The lowest N rate (50 mg dm−3) increased the stomatal conductance (gS) and, consequently, resulted in the highest transpiration (E), electron transport (ETR), and photosynthetic (A) rates. Also, rates of 50 mg dm−3 and 100 mg dm−3 N increased the Root Uptake Efficiency (RUE) and plant Nutrient Use Efficiency (NUE) for macronutrients and the RUE for micronutrients, stimulating plant growth. Phosphorous fertilization resulted in the maximum values for photosynthesis, electron transport rate, total dry mass, and NUE at the 200 mg dm−3 rate. The results of this study suggest that fertilization with 50 mg dm−3 N and 200 mg dm−3 P is suitable for the development of E. dysenterica seedlings. Full article
Show Figures

Graphical abstract

15 pages, 2528 KiB  
Article
Tolerance of Eugenia dysenterica to Aluminum: Germination and Plant Growth
by Arthur Almeida Rodrigues, Sebastião Carvalho Vasconcelos Filho, Caroline Müller, Douglas Almeida Rodrigues, Juliana de Fátima Sales, Jacson Zuchi, Alan Carlos Costa, Cássia Lino Rodrigues, Adinan Alves da Silva and Danilo Pereira Barbosa
Plants 2019, 8(9), 317; https://doi.org/10.3390/plants8090317 - 31 Aug 2019
Cited by 17 | Viewed by 4337
Abstract
Native Cerrado plants are exposed to soils with low pH and high availability of Al. In this study, we measured the Al content in adult plants, and investigated the effects of various Al doses on germination and early development of Eugenia dysenterica plants. [...] Read more.
Native Cerrado plants are exposed to soils with low pH and high availability of Al. In this study, we measured the Al content in adult plants, and investigated the effects of various Al doses on germination and early development of Eugenia dysenterica plants. For germination tests, the seeds were soaked in Al solution and evaluated for twenty days in growth chambers. In a second experiment, young plants were cultivated in hydroponic systems with various Al concentrations to evaluate the morphological, anatomical and physiological characteristics of E. dysenterica. Anatomical changes and low germinative vigor were observed in seeds germinated in 600 and 800 μmol Al3+ L−1. In the hydroponic system, 200 μmol Al3+ L−1 stimulated root growth in young plants. The activity of antioxidant enzymes and the accumulation of phenolic compounds were greatest at the highest Al doses, preventing changes in gas exchange and chlorophyll a fluorescence. Starch grain accumulation was noted in plant cells exposed to 200 and 400 μmol Al3+ L−1. Adult E. dysenterica trees also accumulated Al in leaves, bark and seeds. These data suggest that E. dysenterica is tolerant to Al. Full article
Show Figures

Graphical abstract

24 pages, 780 KiB  
Review
Bioactive Compounds Found in Brazilian Cerrado Fruits
by Elisa Flávia Luiz Cardoso Bailão, Ivano Alessandro Devilla, Edemilson Cardoso Da Conceição and Leonardo Luiz Borges
Int. J. Mol. Sci. 2015, 16(10), 23760-23783; https://doi.org/10.3390/ijms161023760 - 9 Oct 2015
Cited by 121 | Viewed by 15664
Abstract
Functional foods include any natural product that presents health-promoting effects, thereby reducing the risk of chronic diseases. Cerrado fruits are considered a source of bioactive substances, mainly phenolic compounds, making them important functional foods. Despite this, the losses of natural vegetation in the [...] Read more.
Functional foods include any natural product that presents health-promoting effects, thereby reducing the risk of chronic diseases. Cerrado fruits are considered a source of bioactive substances, mainly phenolic compounds, making them important functional foods. Despite this, the losses of natural vegetation in the Cerrado are progressive. Hence, the knowledge propagation about the importance of the species found in Cerrado could contribute to the preservation of this biome. This review provides information about Cerrado fruits and highlights the structures and pharmacologic potential of functional compounds found in these fruits. Compounds detected in Caryocar brasiliense Camb. (pequi), Dipteryx alata Vog. (baru), Eugenia dysenterica DC. (cagaita), Eugenia uniflora L. (pitanga), Genipa americana L. (jenipapo), Hancornia speciosa Gomes (mangaba), Mauritia flexuosa L.f. (buriti), Myrciaria cauliflora (DC) Berg (jabuticaba), Psidium guajava L. (goiaba), Psidium spp. (araçá), Solanum lycocarpum St. Hill (lobeira), Spondias mombin L. (cajá), Annona crassiflora Mart. (araticum), among others are reported here. Full article
Show Figures

Graphical abstract

Back to TopTop