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Abstract: Native Cerrado plants are exposed to soils with low pH and high availability of Al. In this
study, we measured the Al content in adult plants, and investigated the effects of various Al doses on
germination and early development of Eugenia dysenterica plants. For germination tests, the seeds were
soaked in Al solution and evaluated for twenty days in growth chambers. In a second experiment,
young plants were cultivated in hydroponic systems with various Al concentrations to evaluate the
morphological, anatomical and physiological characteristics of E. dysenterica. Anatomical changes
and low germinative vigor were observed in seeds germinated in 600 and 800 µmol Al3+ L−1. In the
hydroponic system, 200 µmol Al3+ L−1 stimulated root growth in young plants. The activity of
antioxidant enzymes and the accumulation of phenolic compounds were greatest at the highest Al
doses, preventing changes in gas exchange and chlorophyll a fluorescence. Starch grain accumulation
was noted in plant cells exposed to 200 and 400 µmol Al3+ L−1. Adult E. dysenterica trees also
accumulated Al in leaves, bark and seeds. These data suggest that E. dysenterica is tolerant to Al.
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1. Introduction

Aluminum (Al) toxicity is a limiting abiotic stress factor for many plants worldwide [1,2]. In soils
with pH values below 5, Al becomes soluble by modifying its Al(OH)3 hydroxide form to toxic forms
such as Al3+ [3,4]. In addition to being naturally abundant in acid soils, gradual increases in Al
content in soils and waters have been reported, attributed to intense industrial metallurgy, packaging,
transportation, construction, electrical, and chemical plant activities. These industries discard about
5 million tonnes aluminum-rich wastes per year worldwide [5–7]. Consequently, agricultural areas
close to industries and use of industrial wastewater rich in aluminum are concerns for the cultivation
of agricultural crops and the development of native species in these regions [7,8].

Among Al-sensitive species, some trees, including Fraxinus excelsior and Acer pseudoplatanus, are
not able to complex Al via organic acids released by the root system [2]. In these species, Al inhibits root
growth and secondary root formation [9] and damages mesophyll leaf cells [10], leading to inhibition of
photosynthesis [11,12]. Some native plants from tropical regions with acidic and nutrient-poor soils have
evolved survival strategies to deal with high Al saturation, in addition to acid and nutritional conditions;
these species include some belonging to the Rubiaceae (Melaleuca cajuputi and Coccocypselum sp.) [13],
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Melastomataceae (Melastoma malabathricum) [14], and Vochysiaceae (Qualea grandiflora, Callisthene major
and Vochysia pyramidalis) [15] families that can accumulate up to 10,000 mg Al Kg−1 in their leaves [14].
These species possess mechanisms for Al exclusion and/or internal complexation, permitting survival
even at high Al concentrations [16,17]. Some Al-tolerant plants may accumulate between 1000 and
15,000 mg of Al3+ per kg of dry matter [18,19]. For these species, plant cultivation at concentrations
between 320 and 530 µM Al3+ can stimulate root growth [20,21].

Industrial activity has gradually modified soil and water conditions in the vicinity of factories.
There are a few studies on the relationship between Al and seed germination, as well as physiological
and anatomical characteristics of native Brazilian Cerrado plants [22,23]. However, even plants
considered to be Al-tolerant and Al-accumulators may suffer Al toxicity effects in conditions of
continuous exposure to Al released by industrial processes [22].

Eugenia dysenterica DC is a native Brazilian Cerrado species from the Myrtaceae family, popularly
known as cagaita [24,25]. The fruit of the plant has substantial economic potential [26]. Investigation of
native Cerrado species with potential for high tolerance to Al is essential to understand these tolerance
mechanisms. Such knowledge is also useful for the preservation of species under excessive Al conditions,
in natural or even in contaminated environments [27,28]. Therefore, the study aimed to evaluate
various Al concentrations (i) on seed germination and seed anatomical traits and, (ii) morphoanatomical
and physiological traits in young plants of Eugenia dysenterica grown under a hydroponic system.

2. Material and Methods

2.1. Plant Material, Growth Conditions and Al Treatments

E. dysenterica seeds were obtained from the fruits of 15 adult plants in full production in an
uncultivated area of the Cerrado, located in the rural area of the municipality of Montes Claros, Goiás,
Brazil (latitude 16◦ 06′20” S - longitude 51◦ 17′ 11” W, altitude of 592 m). A specimen was deposited at
the Goiano Federal Institute Herbarium, Rio Verde Campus under number 630/2017.

2.2. Germination Test

The seeds of the pulped fruit were separated and arranged in a linear and alternate manner on two
Germitest paper sheets moistened with a solution containing five Al concentrations (0 (control), 200,
400, 600 and 800 µmol L−1 of Al2(SO4)3·18H2O) in a calcium chloride solution (CaCl2 0.1 mM, pH 4.0).
Calcium chloride solution only was used as the control. The Germitest paper was moistened with
2.5 times its dry weight, and the rolls were then packed in transparent plastic bags and maintained in a
Mangelsdorf-type germinator at the constant temperature of 25 ◦C (±0.5 ◦C) and photoperiod of 12 h.

The seeds were recorded as germinated when root protrusion achieved 2 mm. Readings were
performed daily to calculate the germination percentages and germination rate index (GRI) [29],
according to the formula: GRI = G1/N1 + G2/N2 + . . . + Gn/Nn; where G is the number of normal
seedlings observed each day and, N is the number of days.

Root diameter measurements on germination were performed at 35 days after sowing (DAS) at
a height of one centimeter at the base of the stem. The experiment comprised five treatments (Al3+

concentrations) and four replicates, each replicate consisting of 25 E. dysenterica seeds.

2.3. Morphoanatomical Seed Characterization

E. dysenterica seeds were treated as described in Section 2.2, in a completely randomized design.
On the 20th day of treatment, 3 cm2 samples from the endosperm region of three seeds per replicate
(n = 4) were collected per treatment (n = 5). The samples were first fixed in Karnovsky solution [30] for
24 h. Subsequently, they were prewashed in a phosphate buffer (0.1 M, pH 7.2) and dehydrated in
an increasing ethanol series (30% to 100%), pre-infiltrated and historesin infiltrated (Leica, Germany)
according to manufacturer’s recommendations. Subsequently, the samples were cross-sectioned at
5 µm thickness using a rotary microtome (Model 1508R, Logen Scientific, China) and stained with
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toluidine blue polychromatic coloration (0.05% 0.1 M phosphate buffer, pH 6.8) [31]. Starch detection
was performed using histochemical staining with Lugol solution at 10 g L−1 [32]. Images were obtained
under an Olympus microscope (BX61, Tokyo, Japan), coupled to a DP-72 camera, using the clear
field option.

2.4. Hydroponic Young Plant Growth

Initially E. dysenterica seeds were sown in beds containing washed sand as the substrate.
Approximately 40 days after emergence, two seedlings of standard height (~14 cm) were transplanted
per plastic vat containing 1.5 L of a calcium chloride solution (CaCl2 0.1 mM, pH 4.0) at low ionic
strength. The solution pH was adjusted to 4.0 using 1 M HCl and 0.1 M NaOH solutions. After 10 days
of acclimation in a greenhouse, the plants were exposed to five Al concentrations (0 (control), 200,
400, 600 and 800 µmol L−1), in the form of aluminum sulphate (Al2(SO4)3·18H2O) as described by
Tolrà et al. [33] and Rodrigues et al. [34]. The solution was maintained under aeration of 100 cm3 min−1

air pressure and was renewed every three days.
The experiment was performed for 20 days, in a completely randomized design, with controlled

conditions, monitored by an SKDL-32 data logger containing a temperature and relative humidity
sensor, at a mean relative humidity of 65% (±5) and mean temperatures of 27 ◦C (±5, day) and 22 ◦C
(±5, night) in a greenhouse at the Laboratory of Ecophysiology and Plant Productivity.

2.4.1. Visible Root and Leaf Symptoms

Visible symptoms were recorded photographically. Fully expanded leaf surfaces and the root
system of the plants at the end of the experimental period were photographed with a digital
camera (Cyber-Shot SONY HX100V, Japan). Images covered the leaf and root that best represented
each treatment.

2.4.2. Root Growth Measurements

Root measurements were performed daily during the 20 days of Al plant exposure. At the end of
the exposure period, measurements of the main root were taken and the total root growth rate (TRG)
was calculated as (TRG = [(Cf/Ci)*100]-100, where Ci and Cf indicate the initial and final root lengths,
respectively). Relative root elongation (RRE%) was calculated according to the equation proposed
by Vasconcelos et al. [35]: (RRE = [(CfAlx − CiAlx)*100]/(Cf Al0 − CiAl0). Where CiAlx: initial root
length measured before exposure to the nutrient solution at an “x” level of Al; CfAlx: final root length
measured after n days of exposure to the nutrient solution at an “x” level of Al; CiAl0: initial root
length before exposure to the solution without any Al; and CfAl0: final root length measured after n
days of exposure to the nutrient solution without Al.

2.4.3. Chlorophyll a Fluorescence

Chlorophyll a fluorescence variables were determined in the last fully expanded leaf using
a fluorometer (6400-40, Li-color, Nebraska, USA) coupled to an IRGA (IRGA, LI-6400xt, Li-Cor,
Nebraska, USA). Initially, the leaves were adapted to the dark for at least 30 min (when the
photosystem II (PSII) reaction centers were open), followed by the application of the measurement light
(~0.03 µmol m−2 s−1) and a saturation pulse (>3000 µmol m−2 s−1), used to obtain the minimum (F0)
and maximum (Fm) fluorescence, respectively. The potential quantum yield of the PSII was determined
as Fv/Fm = (Fm-F0)/Fm [36]. After lighting with a continuous actinic light source (~1000 µmol m−2 s−1)
for 40 s, a saturation pulse was applied to determine the maximum fluorescence (Fm

′) and steady
state (Fs) in light-adapted leaves. The data were used to calculate the effective quantum yield of
the PSII (∆F/Fm

′= [Fm
′-Fs]/Fm

′), the photochemical extinction coefficient (qP = [Fm
′-F]/[Fm

′-Fo
′]),

the non-photochemical extinction coefficient (NPQ = [Fm-Fm
′]/Fm

′), the apparent rate of electron
transport (ETR = Φ PSII x RFA x 0.5 × 0.84), and the maximum photochemical PSII efficiency in
light-adapted leaves (Fv

′/Fm
′ = [(Fm

′–Fo
′)/Fm

′]) [37].
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2.4.4. Gas Exchange

Gas exchange was assessed on the same leaf as the chlorophyll a fluorescence data to determine
photosynthetic rate (A, µmol m−2 s−1), stomatal conductance (gs, mol H2O m−2 s−1), transpiration
rate (E, mmol m−2 s−1), ratio of internal to external CO2 (Ci/Ca), and the ratio of photosynthetic
rate to internal CO2 concentration (A/Ci). Measurements were performed using an infrared gas
analyzer (IRGA, LI-6400xt, Li-cor, Nebraska, EUA). Assessments were performed between 9:00 AM and
11:00 AM under constant photosynthetically-active radiation (PAR, 1000 µmol of photons m−2 s−1) and
CO2 concentration (~415 µmol mol−1), ambient temperature (~25.5 ◦C), and relative humidity (~74%).

2.4.5. Morphoanatomical Root and Leaf Characterization

For the morphoanatomical analyses, 3–5-cm root and 3 cm2 leaflet E. dysenterica samples were
collected from the root tip and from the last fully expanded leaf of all replicates (n = 4) from each
treatment (n = 5) after 20 days of hydroponic cultivation in Al-containing solutions. The material was
washed and processed as described in Item 2.3. The plant material was stained with toluidine blue to
obtain epidermis images for morphoanatomical observations, i.e., the adaxial and abaxial surfaces,
palisade and spongy parenchyma, other mesophyll tissues and the meristematic root region. Starch
staining was performed using histochemistry with Lugol solution at 10 g L−1 [32].

2.5. Al Content Quantification

Al content was determined in both adult trees from which fruits and seeds were collected and from
experimental plants. Leaf and bark samples were collected from five adult plants in full production.
Al content was also evaluated in E. dysenterica seeds after twenty days of exposure to various Al
concentrations and in young leaves and roots after twenty days of growth in a nutrient solution
containing various Al concentrations.

The collected material was previously washed in distilled water to remove adhered Al, dried
in a circulation oven, heated at 70 ◦C for 78 h, and ground in a Wiley mill (3383-L10, Thomas
Scientific, USA). Plant samples (500 mg) were added to tubes containing a nitroperchloric solution
(2:1) and were digested in a digester block at 160 ◦C. Subsequently, the tube volume was brought to
25 mL with deionized water, as described by Malavolta et al. [38] and Al contents were determined
on a plasma-coupled optical emission spectrometer (OPTMA 7300 DV, Perkin Elmer). Aluminum
concentrations were expressed as mg kg−1.

2.6. Hydroponic culture: antioxidant enzyme activity

Superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6) and peroxidase (POX,
EC1.11.1.7) activities were determined by preparing plant extracts using maceration of approximately
300 mg of roots in 2 mL of an extraction medium, consisting of 0.1 M potassium phosphate buffer,
pH 6.8; 0.1 mM ethylenediaminetetraacetic acid (EDTA); 1 mM phenylmethylsulfonic fluoride
(PMSF) and 1% (w/v) polyvinylpolypyrrolidone (PVPP). The maceration solution was subjected
to centrifugation at 12,000 x g for 15 min at 4 ◦C and the supernatant (enzyme extract) was used for the
enzymatic determinations.

SOD activity was determined by adding 40 µL of the enzyme extract to 5 mL of the reaction
medium, consisting of a 50 mM sodium phosphate buffer, pH 7.8, containing 13 mM methionine,
p-nitro tetrazolium blue (NBT) 75 µM, 0.1 mM EDTA and 2 µM riboflavin. The reaction was conducted
at 25 ◦C in a chamber under illumination of a 15 W fluorescent lamp for 10 min. Blue formazan
absorbance produced by the NBT photoreduction was determined at 560 nm [39]. The results were
expressed as units of SOD (U SOD) min−1 mg−1 protein. One unit of SOD was defined as the amount
of enzyme required to inhibit NBT photoreduction by 50% [40].

Catalase activity was determined by adding 0.1 mL of the enzyme extract to 2.9 mL of the
reaction medium, consisting of a 50 mM potassium phosphate buffer pH 7.0 and 12.5 mM H2O2 [41].
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The decrease in absorbance by H2O2 degradation was determined at 240 nm in the first minute of
the reaction at 25 ◦C. Enzymatic activity was calculated using the molar extinction coefficient of
36 M−1 cm−1 [42] and was expressed as µmol min−1 mg−1 protein.

Peroxidase activity was determined by the addition of 0.1 mL of the enzyme extract to 4.9 mL of
the reaction medium, consisting of a 25 mM potassium phosphate buffer pH 6.8, 20 mM pyrogallol and
20 mM H2O2 [43]. Purpurogallin production was determined by the increasing absorbances during
the first minute of the reaction at 420 nm at 25 ◦C. Enzymatic activity was calculated using a molar
extinction coefficient of 2.47 mM−1 cm−1 [44] and was expressed as µmol min−1 mg−1 protein.

The protein content in the enzymatic extracts was quantified according to the methodology
proposed by Bradford [45] at 595 nm. The results were compared to a standard bovine serum albumin
(BSA) curve and used to express enzymatic activity on a protein basis.

2.7. Statistical Analyses

The quantitative data were first subjected to homogeneity analysis (Levene test) and error
normality assessment (Shapiro-Wilk test). Because data normality was confirmed, ANOVA was
performed, followed by Dunnett’s test, to determine significant differences between the Al treatments
and the control (p < 0.05). All statistical analyses were performed using ASSISTAT v. 7.7 software.

3. Results

3.1. Germination

The germination rate index (GRI) and germination percentages in E. dysenterica decreased with
increasing Al3+ concentrations (Table 1). The highest Al3+ dose led to a 70.25% decrease in the GRI and
30% decrease in germination percentage compared to the control (Table 1).

Table 1. Germination rate index (GRI) and germination percentage (%) in Eugenia dysenterica seeds
after the application of a liquid calcium chloride solution containing different Al doses (0, 200, 400, 600
and 800 µmol L−1).

Al3+ Concentration (Al2(SO4)3 GRI Germination (%)

0 µmol L−1 1.21 ± 0.09 80 ± 3.65
200 µmol L−1 1.14 ± 0.06 75 **

± 2.52
400 µmol L−1 1.08 ± 0.03 64 **

± 1.63
600 µmol L−1 0.87 **

± 0.05 61 **
± 3.79

800 µmol L−1 0.85 **
± 0.09 56 **

± 2.83

F ** **
CV% 6.39 4.29

Means ± SE (n = 4), Asterisks indicate significant differences at 5% (*) and 1% (**) probability, relative to the control
as indicated by Dunnett’s test.

3.2. Germination: Anatomical Seed Changes

Increasing Al3+ doses caused endosperm region cell destruction in E. dysenterica (Figure 1C,G,E–I)
when compared to the control (Figure 1A). The green coloration revealed by toluidine blue indicated
the presence of phenolic content in some endosperm region cells at 400, 600 and 800 µmol L−1 Al3+

(Figure 1E,G–I). Regarding starch accumulation, the control cells presented large areas marked by
Lugol stain in the endosperm region of the seeds (Figure 1B), while increasing Al3+ doses at 400,
600 and 800 µmol L−1 led to starch grain extrusion through the cells, via endosperm cell disruption
and collapse.
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Figure 1. Eugenia dysenterica seed endosperms after the germination test. (A,B) control treatment, 
(C,D) 200 μmol L−1 Al3+, (E,F) 400 μmol L−1 Al3+, (G,H) 600 μmol L−1 Al3+, (I–J) 800 μmol L−1 Al3+. White 
arrows indicate phenolic compound production, red arrows indicate starch accumulation and yellow 
arrows indicate cell disruption. (First column) Scale bar 50 μm. (Second column) Scale bar 100 μm. 

Figure 1. Eugenia dysenterica seed endosperms after the germination test. (A,B) control treatment,
(C,D) 200 µmol L−1 Al3+, (E,F) 400 µmol L−1 Al3+, (G,H) 600 µmol L−1 Al3+, (I–J) 800 µmol L−1 Al3+.
White arrows indicate phenolic compound production, red arrows indicate starch accumulation and
yellow arrows indicate cell disruption. (First column) Scale bar 50 µm. (Second column) Scale bar
100 µm.
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3.3. Hydroponic Culture: Visible Morphological Symptoms

Visual leaf assessments in response to the various Al treatments did not show toxicity or nutritional
deficiency symptoms (Figure 2A–E). Greater root growth was observed with 200 µmol L−1 Al3+ than
control and other Al treatments (Figure 2F–G). Although no growth changes were observed in the
other treatments, stimulation of secondary root formation was noted (Figure 2).
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Figure 2. Visual appearance of Eugenia dysenterica leaves and roots after 20 days exposure to various Al
concentrations: (A–F) control, (B–G) 200, (C–H) 400, (D–I) 600 and (E–J) 800 µmol L−1 AL. Bar = 2 cm.

The seedlings subjected to 200 µmol L−1 of Al3+ displayed increased mean root length (36%), root
growth rate (58%) and relative root length (30%) than the control seedlings (Table 2), also observed for
the 600 and 800 µmol L−1 treatments (Table 2).

3.4. Hydroponic Culture: Anatomical Seedling Changes

The E. dysenterica epidermis is unstratified on both surfaces. The stomata are present only on
the abaxial surface, characterizing leaves as hypostomatic. In addition, they are located at the same
level as other epidermal cells. The chlorophyllic parenchyma is typically dorsiventral, the palisadic
parenchyma consists of only one cell layer and the spongy parenchyma consists of about six layers.
The greenish coloration revealed by toluidine blue indicates the presence of phenolic content in some
cells in the filling parenchyma region, mainly for the 600 and 800 µmol L−1 Al3+ treatments. Al did not
affect root meristem and differentiation zone (Figure 3A,D,G), and leaf mesophyll cells (Figure 3C,F).
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Table 2. Mean root length (RL), total root growth rate (TRG%) and relative root elongation (RRE%) of
the Eugenia dysenterica root system after 20 days grown in solution at various Al concentrations (0, 200,
400, 600 and 800 µmol L−1).

Al3+ Concentration (Al2(SO4)3 RL TRG% RRE%

0 µmol L−1 4.05 ± 0.24 18.92 ± 0.28 100.00 ± 0.00
200 µmol L−1 5.51 *

± 0.35 29.87 **
± 1.15 130.22 **

± 5.09
400 µmol L−1 4.17 ± 0.37 19.52 ± 0.69 103.57 ± 4.17
600 µmol L−1 4.23 ± 0.31 24.30 **

± 0.94 109.73 ± 4.23
800 µmol L−1 4.74 ± 0.36 25.42 **

± 1.51 85.06 ± 4.74

F * ** **
CV% 16.21 9.51 11.53

Means ± SE (n = 5), Asterisks indicate significant differences at 5% (*) and 1% (**) probability, relative to the control
as indicated by Dunnett’s test.
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Figure 3. Eugenia dysenterica root and leaf anatomy after 20 days of growth at various Al concentrations.
(A–C) control treatment, (D–F) 200 µmol L−1 Al3+, (G–I) 400 µmol L−1 Al3+, (J–L) 600 µmol L−1 Al3+,
(M,N,O) 800 µmol L−1 Al3+. (AdEp) adaxial epidermis. (AbEp) abaxial epidermis. (PP) palisade
parenchyma. (SP) spongy parenchyma. (A,B,D,E,G,H,J,K,M,N) root meristem and differentiation
zone. (C,F,I,L,O) leaf mesophyll cells. White arrows indicate the production of phenolic compounds
and yellow arrows indicate starch accumulation. (First column) Scale bar = 50 µm. (Second and third
columns) Scale bar = 100 µm.
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Regarding root system starch accumulation, control cells displayed small Lugol-stained areas
(Figure 3B). Starch grain accumulation was noted in plant cells exposed to 200 and 400 µmol L−1

Al3+ (Figure 3E–H). The 600 and 800 µmol L−1 treatments led to lower levels starch cell accumulation
(Figure 3K–N).

3.5. Hydroponic Culture: Chlorophyll a Fluorescence and Gas Exchanges

Regarding E. dysenterica chlorophyll a fluorescence parameters, only the effective quantum yield
of the PSII (∆F/Fm

′) was altered, with a 16.07% increase observed for the 200 µmol L−1 Al3+ treatment
in relation to the control (Table 3).

Table 3. Photosystem II (PSII) quantum potential yield (Fv/Fm), effective quantum yield of the PSII when
reaction centers are reduced (∆F/Fm

′), and non-photochemical dissipation (NPQ). Net photosynthetic
rate (A), stomatal conductance (gs), transpiration rate (E) and relation between the internal and
external CO2 concentrations (Ci/Ca) in Eugenia dysenterica plants, after 20 days of growth at different Al
concentrations (0, 200, 400, 600 and 800 µmol L−1). Electron transport (ETR).

Chlorophyll a Fluorescence Traits

Al3+

Concentration
(Al2(SO4)3

Fv/Fm ∆F/Fm
′ ETR NPQ

0 0.74 ± 0.024 0.56 ± 0.01 245.24 ± 8.02 0.72 ± 0.05
200 0.68 ± 0.040 0.65 **

± 0.02 275.43 ± 13.37 0.52 ± 0.18
400 0.62 ± 0.060 0.60 ± 0.3 272.82 ± 20.58 0.65 ± 0.28
600 0.71 ± 0.040 0.63 ± 0.00 282.73 ± 9.95 0.64 ± 0.23
800 0.71 ± 0.027 0.51 ± 0.01 245.10 ± 17.21 1.01 ± 0.27

F NS ** NS NS
CV (%) 13.15 8.24 12.33 68.82

Gas Exchange Traits

Al3+

Concentration
(Al2(SO4)3

A gs E Ci/Ca

0 9.12 ± 0.62 0.14 ± 0.02 1.39 ± 0.21 0.73 ± 0.021
200 7.55 ± 0.99 0.18 ± 0.03 1.72 ± 0.24 0.78 ± 0.020
400 7.23 ± 1.00 0.14 ± 0.03 1.37 ± 0.24 0.73 ± 0.053
600 7.98 ± 0.58 0.16 ± 0.04 1.49 ± 0.34 0.70 ± 0.015
800 7.67 ± 0.98 0.15 ± 0.04 1.36 ± 0.28 0.70 ± 0.039

F NS NS NS NS

CV (%) 24.20 47.56 40.27 10.12

Means ± SE (n = 5), Asterisks indicate significant differences at 5% (*) and 1% (**) probability, relative to the control
as indicated by Dunnett’s test. (NS) non-significant.

Net photosynthetic rate (A), stomatal conductance (gs), transpiration rate (E), internal to external
CO2 concentration ratio (Ci/Ca) and photosynthetic rate to internal CO2 concentration (Ci) ratio (A/Ci)
were not affected by Al in E. dysenterica plants (Table 3).

3.6. Hydroponic Culture: Antioxidant Enzyme Activity

Antioxidant enzyme activities were differentially modulated by Al in E. dysenterica seedling roots.
Increasing Al concentrations increased CAT and POX activity, mainly at 200 and 400 µmol L−1 Al3+

(Table 4). SOD activity was increased by 36.66% compared to the control at 800 µmol L−1 Al3+ (Table 4).
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Table 4. Antioxidant Eugenia dysenterica root system superoxide dismutase (SOD), catalase (CAT),
peroxidase (POX) enzyme activities after 20 days of growth in a hydroponic culture at different Al
concentrations (0, 200, 400, 600 and 800 µmol L−1).

Al3+ Concentration (Al2(SO4)3 SOD CAT POX

0 µmol L−1 43.02 ± 1.85 25.58 ± 2.55 0.52 ± 0.25
200 µmol L−1 58.79 ± 3.28 74.74 **

± 3.61 3.03 **
± 0.27

400 µmol L−1 40.31 ± 3.27 57.48 **
± 9.80 3.13 **

± 0.29
600 µmol L−1 30.37 ± 7.09 15.97 ± 0.85 2.33 **

± 0.32
800 µmol L−1 62.50 *

± 6.53 30.32 ± 4.41 2.26 **
± 0.09

F * ** **
CV% 30.39 59.12 46.30

Means ± SE (n = 5), Asterisks indicate significant differences at 5% (*) and 1% (**) probability, relative to the control
as indicated by Dunnett’s test.

3.7. Al Content

Adult E. dysenterica trees were found to be Al accumulators, accumulating Al in bark
(≥1000 mg kg−1), and also able to accumulate high Al content in leaves (≥552.64 mg kg−1). Seeds
inherited Al in their tissues (111.07 mg kg−1) from their parent plants and increasing Al doses in the
germination test led to higher Al content found in seeds, although this was significantly different only
for 800 µmol L−1 Al3+ (Table 5). In the hydroponic cultivation experiment, E. dysenterica plants were
shown to contain Al in roots (521.04 mg kg−1) and leaves (140.94 mg kg−1), even in the absence of Al in
the growth solution. Roots abundantly accumulated Al in all treatments, reaching 2332.46 mg kg−1

in the 800 µmol L−1 Al treatment. Similar results were verified for leaves; however, the amount of
accumulated Al was much lower compared to the values in roots.

Table 5. Eugenia dysenterica Al content in seedlings (Al-Bark and root), seeds from the germination test
(Al-Seeds), hydroponic roots grown in solution (Al-Root), leaves grown in solution (Al-Leaf) after 20
days of hydroponic growth at different Al concentrations (0, 200, 400, 600 and 800 µmol L−1).

Al-Bark from Adult
Trees (mg kg−1)

Al-Leaves from Adult
Trees (mg kg−1)

Plant 1 1188.25 588.05
Plant 2 1027.25 543.80
Plant 3 1080.95 549.02
Plant 4 1433.32 515.23
Plant 5 1356.87 567.21

Al3+ Concentration
(Al2(SO4)3

Al-Seeds
Germination Test

Al-root Hydroponic
Cultivation

Al-Leaves Hydroponic
Cultivation

0 µmol L−1 111.07 ± 6.81 521.04 ± 13.66 140.94 ± 1.96
200 µmol L−1 123.33 ± 4.85 1984.23 **

± 15.78 195.14 **
± 2.84

400 µmol L−1 130.08 ± 14.13 2146.13 **
± 60.40 210.10 **

± 5.21
600 µmol L−1 132.60 ± 9.58 2300.67 **

± 54.13 228.39 **
± 10.20

800 µmol L−1 180.82 **
± 12.95 2332.46 **

± 37.70 239.62 **
± 2.47

F ** ** **
CV% 21.31 37.91 17.54

Means ± SE (n = 5), Asterisks indicate significant differences at 5% (*) and 1% (**) probability, relative to the control
as indicated by Dunnett’s test.

4. Discussion

The phytotoxic action of Al on E. dysenterica seeds altered the germination process, compromising
embryo development through endosperm cell destruction and solute extrusion. Despite the fact
that E. dysenterica matrix plants store Al in seeds, external contact with high Al concentrations may
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interfere with germination and may impair root growth and seedling establishment. The hypothesis
we proposed was that seeds would not present Al cell detoxification mechanisms or complexation
processes against absorption, greatly increasing the direct interference of Al on cell division, inhibiting
germination. In this manner, direct environmental Al contact with E. dysenterica seeds would lead to
impaired germination processes.

The low seed germination levels in the presence of Al suggests that the amount of Al accumulated
in seeds is sufficient to inhibit embryo growth resumption and seedling formation [22]. In this sense,
exogenous application of Al may have led to a certain degree of embryonic toxicity to E. dysenterica,
affecting cell division and/or elongation and root protrusion. Toxic effects of Al have also been
observed in Conyza seeds, with a 35% decrease in Conyza canadensis and 60% in Conyza bonariensis
seed germination [46]. Moreover, similar to our results, Koszo et al. [47] found that Al compromised
processes that preceded the primary root protrusion in the Erythrina speciosa and Eugenia brasiliensis
seeds. This suggests that Al compromises seed vigor, even in tolerant species, resulting in seedlings
with less robust root systems, as observed in the present study.

E. dysenterica plants grown at various Al concentrations did not display morphological, anatomical
or physiological damage; rather, root growth was stimulated by the 200 µmol L−1 Al treatment.
This root growth increment under low Al concentrations was previously reported for E. dysenterica
by Rodrigues et al. [21], who postulated that this was an adaptation to Al-rich acid soils. When toxic
to plants, Al is associated with abrupt root morphology changes characterized by the production of
smaller, thick apices with a darker coloration and low formation of secondary roots [48]. This suggests
that Al concentrations were not toxic to E. dysenterica roots in the hydroponic assay. Corroborating
the findings of the present study, Rodrigues et al. [34], when assessing the tolerance potential of
Hancornia speciosa grown in a nutrient solution, observed root growth stimulation at 300 µmol L−1

Al. These responses may be associated with Al detoxification via phenolic compounds and starch
accumulation, increased root nutrient uptake and the formation of Al detoxification mechanisms.

The greater starch accumulation in E. dysenterica root system cells is a result of the inhibition
of carbohydrate translocation, an energy source for plants that stimulates greater root growth.
Påhlsson [49] reported starch content increases in Fagus sylvatica roots during 31 days of growth under
Al treatment, with no root growth decreases. These data suggest that carbohydrate accumulation is
associated with root growth stimulation caused by Al, attributable to the greater availability of energy
sources such as starch and sucrose.

E. dysenterica mesophyll cell and root system integrity suggests that Al does not affect anatomical
characteristics, because Al stress in sensitive plants usually leads to changes in leaf and root
structures [10,50,51], while on the other hand, cellular structure preservation is associated with Al stress
tolerance. Rodrigues et al. [21] reported that E. dysenterica absorbs Al by the root system; therefore, cell
walls and vacuoles are the primary storage sites for accumulation, suggesting that the tolerance system
is based on internal chelation and Al compartmentalization, instead of absorption restriction [33].
Reinforcing this theory, E. dysenterica phenol accumulation suggests an Al detoxification strategy and
subsequent complexation with these metabolites [52]. Phenolic compounds act as antioxidants in
plants under stress [53], and play a potential role in the exclusion of Al3+ [28].

In sensitive species, Al affects plant physiological characteristics such as net photosynthetic rate
and stomatal conductance [11,54]. In the present study, E. dysenterica did not present changes to
chlorophyll a fluorescence or gas exchange. Al-tolerant species may exhibit stimulated growth over
a wide range of Al concentrations [12] with high photosynthetic activity and PSII photochemical
efficiency and electron transport rate maintenance [55]. In addition, NPQ, a thermal dissipation
indicator under stressful conditions [56] was not altered during Al cultivation, suggesting that the
plants were not under stress.

The increase of the antioxidant capacity of E. dysenterica plants is related to the activation of a
defense mechanism to protect plants against the formation of reactive oxygen species by the action
of SOD, CAT and POX enzymes [57]. Increases in CAT and POX were observed in E. dysenterica
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cultivated with Al, mainly at 200 and 400 µmol L−1 Al3+, when root growth was stimulated. Similar
results were reported by Ghanati et al. [58] in Camellia sinensis plants, where SOD and CAT activities in
roots increased in the presence of Al, suggesting that these antioxidant enzymes are beneficial for tea
plants and for stimulating root growth. SOD activity is associated with increased superoxide radical
production, which is metabolized into hydrogen peroxide (H2O2) [59]. Several enzymes regulate
intracellular H2O2 levels in plants; however, CAT and POX have higher affinities for H2O2 removal [60].

This species naturally accumulates Al in its tissues (roots, bark, leaves and seeds) when it is
grown in soils containing Al. Metal accumulation, predominantly heavy metals, is a characteristic
present in over 450 species of vascular plant families, orders and genera [61]. Native communities in
savannas and tropical forests are rich in species that have evolved survival strategies to cope with
restrictive edaphoclimatic conditions such as high soil acidity, high Al saturation and low nutrient
availability [15]. Therefore, our results confirm that E. dysenterica can be characterized as an Al-tolerant
species as demonstrated by root growth stimulation, anatomical integrity and maintenance of gas
exchange and chlorophyll fluorescence parameters. Furthermore, Al promotes plant growth, primarily
at lower concentrations.

5. Conclusions

E. dysenterica germination was affected by exposure to various Al concentrations. Nevertheless,
young E. dysenterica plants showed Al tolerance. Anatomical and physiological traits were not changed
by increasing Al doses. The accumulation of phenolic compounds and the activation of antioxidant
enzymes system acted as Al-detoxification mechanisms in cells. Starch accumulation may be related
with the highest root growth observed at 200 µmol L−1 Al3+.
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