Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = cable fires

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3785 KiB  
Article
Experimental Investigation of Flame Spread Characteristics in Cable Fires Within Covered Trays Under Different Tilt Angles
by Changkun Chen, Yipeng Bao, Boyuan Zuo, Jia Zhang and Yuhuai Wang
Fire 2025, 8(7), 272; https://doi.org/10.3390/fire8070272 - 11 Jul 2025
Viewed by 465
Abstract
In the actual installation of cables, inclined cable laying within covered cable trays is a relatively common method. To investigate the effects of different tilt angles on the combustion behavior of cables within covered cable trays, aluminum conductor polyethylene-insulated power cables were used [...] Read more.
In the actual installation of cables, inclined cable laying within covered cable trays is a relatively common method. To investigate the effects of different tilt angles on the combustion behavior of cables within covered cable trays, aluminum conductor polyethylene-insulated power cables were used as the test cables. The flame morphology, temperature distribution, and fire spread rate during the cable combustion process were analyzed for experimental scenarios for which the cable laying angles and the ignition positions changed. The results indicate that the inclination angle of the covered cable tray has a significant impact on flame propagation and temperature distribution. For the ignition located at the lowest part of the cable, the fire spread rate increases significantly with the tilt angle. In contrast, for the ignition located at the highest part of the cable, the fire spread rate initially decreases slightly and then increases, with a relatively smaller overall change in magnitude. Under both ignition positions, the flame spread rate significantly increases at 15–30°. Therefore, in actual cable installation processes, cables within covered troughs should avoid large-angle inclinations. Full article
(This article belongs to the Special Issue Fire Detection and Public Safety, 2nd Edition)
Show Figures

Figure 1

12 pages, 3319 KiB  
Article
Research on the Thermal Decomposition Characteristics of PE Outer Sheath of High-Voltage Cables Under Different Humidity Levels
by Zhaoguo Wu, Qian Wang, Huixian Huang, Yong Li, Yulai Kuang, Hong Xiang, Junwei Liu and Zhengqin Cao
Energies 2025, 18(13), 3537; https://doi.org/10.3390/en18133537 - 4 Jul 2025
Viewed by 295
Abstract
Gas sensors can provide early warning of fires by detecting pyrolysis gas components in the sheaths of high-voltage cables. However, air humidity significantly affects the thermal decomposition gas production characteristics of the outer sheath of high-voltage cables, which in turn affects the accuracy [...] Read more.
Gas sensors can provide early warning of fires by detecting pyrolysis gas components in the sheaths of high-voltage cables. However, air humidity significantly affects the thermal decomposition gas production characteristics of the outer sheath of high-voltage cables, which in turn affects the accuracy of this warning method. In this paper, the thermal decomposition and gas production characteristics of the polyethylene (PE) outer jacket of high-voltage cables under different air humidities (20–100%) are studied, and the corresponding density functional theory (DFT) simulation calculations are performed using Gaussian 09W software. The results show that with the increase in humidity, the thermal decomposition gas yield of the PE outer jacket of high-voltage cables exhibits a decreasing trend. Under high-humidity conditions (≥68.28%RH), the generation of certain thermal decomposition gases is significantly reduced or even ceases. Meanwhile, the influence of moisture on the thermal decomposition characteristics of PE was analyzed at the micro level through simulation, indicating that the H-free radicals generated by moisture promote the initial decomposition of PE, but the subsequent combination of hydroxyl groups with terminal chain C forms a relatively stable alkoxy structure, increasing the activation energy of the reaction (by up to 44.7 kJ/mol) and thus inhibiting the generation of small-molecule gases. An experimental foundation is laid for the final construction of a fire warning method for high-voltage cables based on the information of thermal decomposition gas of the outer sheath. Full article
Show Figures

Figure 1

19 pages, 3827 KiB  
Article
Pyrolysis Kinetics and Gas Evolution of Flame-Retardant PVC and PE: A TG-FTIR-GC/MS Study
by Wen-Wei Su, Yang Li, Peng-Rui Man, Ya-Wen Sheng and Jian Wang
Fire 2025, 8(7), 262; https://doi.org/10.3390/fire8070262 - 30 Jun 2025
Viewed by 482
Abstract
The insulation layer of flame-retardant cables plays a critical role in mitigating fire hazards by influencing toxic gas emissions and the accuracy of fire modeling. This study systematically explores the pyrolysis kinetics and volatile gas evolution of flame-retardant polyvinyl chloride (PVC) and polyethylene [...] Read more.
The insulation layer of flame-retardant cables plays a critical role in mitigating fire hazards by influencing toxic gas emissions and the accuracy of fire modeling. This study systematically explores the pyrolysis kinetics and volatile gas evolution of flame-retardant polyvinyl chloride (PVC) and polyethylene (PE) insulation materials using advanced TG-FTIR-GC/MS techniques. Distinct pyrolysis stages were identified through thermogravimetric analysis (TGA) at heating rates of 10–40 K/min, while the KAS model-free method and Málek fitting function quantified activation energies and reaction mechanisms. Results revealed that flame-retardant PVC undergoes two major stages: (1) dehydrochlorination, characterized by the rapid release of HCl and low activation energy, and (2) main-chain scission, producing aromatic compounds that contribute to fire toxicity. In contrast, flame-retardant PE demonstrates a more stable pyrolysis process dominated by random chain scission and the formation of a dense char layer, significantly enhancing its flame-retardant performance. FTIR and GC/MS analyses further highlighted distinct gas evolution behaviors: PVC primarily generates HCl and aromatic hydrocarbons, whereas PE releases olefins and alkanes with significantly lower toxicity. Additionally, the application of a classification and regression tree (CART) model accurately predicted mass loss behavior under various heating rates, achieving exceptional fitting accuracy (R2 > 0.98). This study provides critical insights into the pyrolysis mechanisms of flame-retardant cable insulation and offers a robust data framework for optimizing fire modeling and improving material design. Full article
Show Figures

Figure 1

15 pages, 4884 KiB  
Article
Influence of Cable Spacing on Flame Interaction and Combustion Characteristics of Parallel Thermoplastic Cables
by Rongshui Qin, Xiangxiang Zhang, Yuyao Li, Jinchao Wei, Chao Ding and Yan Jiao
Fire 2025, 8(7), 258; https://doi.org/10.3390/fire8070258 - 30 Jun 2025
Viewed by 357
Abstract
Cable fires pose significant risks to electrical infrastructures, and cable spacing plays a crucial role in influencing fire propagation behaviors. In this study, the combustion characteristics of two parallel thermoplastic cables under varying spacing conditions were systematically investigated through controlled experiments. Key parameters, [...] Read more.
Cable fires pose significant risks to electrical infrastructures, and cable spacing plays a crucial role in influencing fire propagation behaviors. In this study, the combustion characteristics of two parallel thermoplastic cables under varying spacing conditions were systematically investigated through controlled experiments. Key parameters, including flame merging behavior, flame morphology, mass loss rate, flame spread rate, flame temperature, and radiant heat flux, were analyzed. The results revealed that cable spacing critically affects flame interaction, with three distinct flame merging modes—continuous merging, intermittent merging, and non-merging—identified as spacing increases. A critical spacing of 2.5 mm was found, at which the flame spread rate and mass loss rate reached their maximum, approximately 1.7 times higher than that of a single cable. At intermediate spacings (2.5–12.5 mm), enhanced flame interaction and radiative feedback significantly intensified combustion, leading to higher flame temperatures and radiant heat peaks. Conversely, insufficient oxygen supply at zero spacing and reduced flame interaction at large spacings (15 mm) resulted in diminished combustion efficiency. These findings highlight the importance of cable spacing as a key design parameter for mitigating fire hazards in electrical installations, providing valuable insights for fire safety engineering and risk assessment. Full article
(This article belongs to the Special Issue Cable and Wire Fires)
Show Figures

Figure 1

20 pages, 6214 KiB  
Article
Inner Thermal Structure Evolution of Fire-Resistant Medium-Voltage Cable Under External Heat Flux with Varying Conductor Radius
by Moayad S. M. Sedahmed and Mohmmed Mun ELseed Hassaan
Fire 2025, 8(5), 204; https://doi.org/10.3390/fire8050204 - 20 May 2025
Viewed by 531
Abstract
Ensuring the fire resistance and thermal stability of power cables is crucial for their reliable performance in fire environments, essential for sustainable power distribution, and allowing for more time to extinguish fires and for evacuation. This study utilises numerical simulation to analyse the [...] Read more.
Ensuring the fire resistance and thermal stability of power cables is crucial for their reliable performance in fire environments, essential for sustainable power distribution, and allowing for more time to extinguish fires and for evacuation. This study utilises numerical simulation to analyse the thermal behaviour of fire-resistant medium-voltage cable, focusing on the impact of conductor radius and material properties under external heat flux. A heat transfer model of cables with conductor radii of 3 mm, 5 mm, and 7 mm under a localised external heat flux of 750 °C was developed. The results show that smaller conductors stabilise faster (reaching the steady state at 45 min for 3 mm vs. 79 min for 7 mm) but experience higher thermal stress, with conductor temperatures peaking at 692.5 °C. Larger conductors enhance axial heat conduction, reduce steady-state temperature by up to 25%, and improve heat dissipation by over 360%. The 5 mm conductor radius provided balanced performance, lowering the temperature by 65 °C compared to 3 mm, although it remained 20.1% hotter than the 7 mm. The ceramic layer played a crucial role in reducing heat flux in the heat source section. Optimised polyethylene insulation and ceramic material improved heat retention and surface temperature control in non-heat source sections. Also, thermal resistance analysis decreased from 1.00 K/W (3 mm) to 0.65 K/W (7 mm). Among material properties, increasing ceramic thermal conductivity had a more significant impact on reducing core temperature than improving insulation. These findings provide practical recommendations for optimising conductor geometry and material properties for more fire-resistant cables. Full article
Show Figures

Figure 1

15 pages, 3677 KiB  
Article
Unveiling Thermal Degradation and Fire Behavior of 110 kV Ultra-High-Voltage Flame-Retardant Cable Sheath After Thermal Aging
by Yaqiang Jiang, Wei He, Xinke Huo, Xuelian Lu, Kaiyuan Li and Fei Xiao
Polymers 2025, 17(9), 1273; https://doi.org/10.3390/polym17091273 - 6 May 2025
Viewed by 575
Abstract
To evaluate the fire safety of 110 kV ultra-high-voltage flame-retardant polyvinyl chloride (PVC) cables in the service process, the effects of thermal aging on the pyrolysis and combustion behavior of the cable sheaths were studied using thermogravimetric (TG), limiting oxygen index (LOI), UL-94 [...] Read more.
To evaluate the fire safety of 110 kV ultra-high-voltage flame-retardant polyvinyl chloride (PVC) cables in the service process, the effects of thermal aging on the pyrolysis and combustion behavior of the cable sheaths were studied using thermogravimetric (TG), limiting oxygen index (LOI), UL-94 vertical burning, cone calorimeter, open flame, and muffle furnace tests. The results showed that thermal aging causes a slight decrease in the LOI value of the cable sheath (28.3% vs. 28.5%), but it also passed the UL-94 V-0 test. The butane torch test showed that the cable sheath was more easily ignited after aging; however, a better char layer was formed in the later stage of burning, which led to a longer failure time. Interestingly, the aging treatment prolonged the ignition time of the cable sheaths and reduced the peak heat release rate (pHRR) and total heat release (THR) by 17.5% and 24.4%, respectively, in the cone calorimeter test, indicating that aging resulted in a reduction in the fire hazard of the cable sheaths. Moreover, aging mechanisms were proposed based on the composition and structural evolution of the cable sheaths. In summary, this work comprehensively evaluated the fire hazard of 110 kV ultra-high-voltage cables and provided theoretical support for the formulation improvement, durability enhancement, and fire protection design of cable sheath materials. Full article
(This article belongs to the Special Issue Advances in Fire-Safe Polymer Materials)
Show Figures

Figure 1

20 pages, 10441 KiB  
Article
Optimization and Analysis of Electrical Heating Ice-Melting Asphalt Pavement Models
by Jiguo Liu, Kai Xu, Zhi Chen, Wenbo Peng and Longhai Wei
Energies 2025, 18(9), 2207; https://doi.org/10.3390/en18092207 - 26 Apr 2025
Viewed by 443
Abstract
Electrical heating ice removal pavement represents a promising technology for pavement ice melting. Existing studies primarily focus on optimizing cable-heated asphalt pavement through indoor model tests or finite element results. To obtain more accurate and reasonable temperature rise processes and heat transfer results, [...] Read more.
Electrical heating ice removal pavement represents a promising technology for pavement ice melting. Existing studies primarily focus on optimizing cable-heated asphalt pavement through indoor model tests or finite element results. To obtain more accurate and reasonable temperature rise processes and heat transfer results, we propose a new evaluation metric for heat transfer capability and optimization in electric heating asphalt pavement. Firstly, a three-dimensional heat transfer model considering environmental heat exchange is established, and the accuracy of the model is verified by outdoor measured data. A dual-variable control experiment was carried out between the cable buried depth and insulation layer configuration to specifically analyze their influence on the temperature field of the asphalt layer. We further investigated heat transfer performance metrics (entransy dissipation and entransy dissipation thermal resistance), with results indicating that shallower cable burial depths reduce environmental interference on pavement heat transfer; the thermal insulation layer most significantly enhances pavement surface temperature (35.66% improvement) when cables are embedded in the lower asphalt layer. Placing cables within corresponding pavement layers according to burial depth reduces heat transfer loss capacity and thermal resistance, and positioning cables in the lower asphalt layer with a thermal insulation layer significantly decreases thermal resistance in both concrete and lower asphalt layers while reducing heat transfer capacity loss, demonstrating that installing thermal insulation layers under this structure improves heat transfer efficiency. The combined experimental and simulation verification method and fire dissipation evaluation system proposed in this study provide a new theoretical tool and design criterion for the optimization of electric heating road systems. Full article
Show Figures

Figure 1

21 pages, 12189 KiB  
Article
Experimental Investigation and Modelling of the Incipient Fault of Low-Voltage XLPE Cables in Wet Environments
by Chen Zeng, Yunhe Wang, Miaomiao Wu, Yanru Lei, Jing Yong and Xiaojing Wang
Appl. Sci. 2025, 15(8), 4524; https://doi.org/10.3390/app15084524 - 19 Apr 2025
Viewed by 381
Abstract
The study of incipient faults due to insulation defects in cables is crucial for preventing electrical fires and ensuring personal safety. However, research on incipient faults in low-voltage cables remains relatively underexplored compared to that on medium-voltage cables. This paper focuses on low-voltage [...] Read more.
The study of incipient faults due to insulation defects in cables is crucial for preventing electrical fires and ensuring personal safety. However, research on incipient faults in low-voltage cables remains relatively underexplored compared to that on medium-voltage cables. This paper focuses on low-voltage cross-linked polyethylene (XLPE) cables and investigates the changes in voltage and current caused by insulation defects in different wet conditions. The main findings are that the voltage applied to the cable with defective insulation shows sub-cycle disturbances that become more frequent. The current in the cable conductor shows a pulsed shape, coincident with the voltage disturbances. Over time, the sub-cycle disturbances gradually disappear, instead, the steady-state leakage current emerges. The wet conditions affect waveforms of the voltage/current disturbance and the frequency of occurrence. The findings provide detailed and unique characteristics of the voltage and current during the cable incipient fault, which are different from those of the incipient fault in the medium-voltage cables. The simulation and analysis support the experimental results. Based on the experimental results, a model is developed for further research on LV-cable incipient fault detection and protection. Full article
Show Figures

Figure 1

44 pages, 4223 KiB  
Review
Classification and Prevention of Electrical Fires: A Comprehensive Review
by Guohui Li, Jiapu Guo, Yanhao Kang, Que Huang, Junchao Zhao and Changcheng Liu
Fire 2025, 8(4), 154; https://doi.org/10.3390/fire8040154 - 10 Apr 2025
Cited by 2 | Viewed by 1601
Abstract
With the development of society and the advancement of technology, the application of electricity in modern life has become increasingly widespread. However, the risk of electrical fires has also significantly increased. This paper thoroughly investigates the causes, classifications, and challenges of electrical fires [...] Read more.
With the development of society and the advancement of technology, the application of electricity in modern life has become increasingly widespread. However, the risk of electrical fires has also significantly increased. This paper thoroughly investigates the causes, classifications, and challenges of electrical fires in special environments, and summarizes advanced detection and extinguishing technologies. The study reveals that the causes of electrical fires are complex and diverse, including equipment aging, improper installation, short circuits, and overloading. In special environments such as submarines, surface vessels, and aircraft, the risk of electrical fires is higher due to limited space, dense equipment, and difficult rescue operations. This paper also provides a detailed analysis of various types of electrical fires, including cable fires, electrical cabinet fires, transformer fires, battery fires, data center fires, and residential fires, and discusses their characteristics and prevention and control technologies. In terms of detection technology, this paper summarizes the progress of technologies such as arc detection, video detection, and infrared thermography, and emphasizes the importance of selecting appropriate technologies based on specific environments. Regarding extinguishing technologies, this paper discusses various means of extinguishing, such as foam extinguishing agents, dry powder extinguishing agents, and fine water mist technology, and highlights their advantages, disadvantages, and applicable scenarios. Finally, this paper identifies the limitations in the current field of electrical fire prevention and control, emphasizes the importance of interdisciplinary research and the development of advanced risk assessment models, and outlines future research directions. Full article
(This article belongs to the Special Issue Building Fires, Evacuations and Rescue)
Show Figures

Figure 1

11 pages, 3534 KiB  
Article
Arc Fault Location for Photovoltaic Distribution Cables Based on Time Reversal
by Jingang Su, Xingwang Huang, Peng Zhang, Xianhai Pang, Yuwei Liang, Longxiang Zhang, Yanfei Bai and Yan Li
Symmetry 2025, 17(2), 240; https://doi.org/10.3390/sym17020240 - 6 Feb 2025
Viewed by 651
Abstract
The direct current (DC) cable serves as the link for energy output in photovoltaic (PV) systems. Its degradation can cause arcs, which easily lead to fire accidents. Locating arc faults, however, is challenging. To cope with it, this paper proposes an arc location [...] Read more.
The direct current (DC) cable serves as the link for energy output in photovoltaic (PV) systems. Its degradation can cause arcs, which easily lead to fire accidents. Locating arc faults, however, is challenging. To cope with it, this paper proposes an arc location method based on time reversal. The method has been tried to locate system fault. However, its application in the arc fault location of photovoltaic systems is seldom discussed and needs further research. For this purpose, the voltage waveforms of an arc fault collected at one of the cable ends is reversed. This transformation derives a symmetrical arc fault signal. Afterwards, the reversed signal is injected back into the cable to trace the fault location, which is a symmetrical process of the arc fault signal travelling from its origin to the detection point. Utilizing the energy-focusing characteristics of time reversal, the position with the highest energy in the derived waveform corresponds to the actual fault location. To verify the proposed method, a DC arc fault test is performed to obtain the wave characteristics. The Paukert arc model is chosen based on the tested result. A PV system containing a DC cable with an arc fault is simulated with Simulink with the affecting factors, i.e., grounded resistance, cable length, fault location and sampling frequency. The simulated results demonstrate that the localization error is within 5% in the worst case. Full article
(This article belongs to the Special Issue Fault Diagnosis and Electronic Engineering in Symmetry)
Show Figures

Figure 1

35 pages, 1019 KiB  
Article
A New Perspective on Hydrogen Chloride Scavenging at High Temperatures for Reducing the Smoke Acidity of PVC in Fires—III: EN 60754-2 and the Species in Solution Affecting pH and Conductivity
by Iacopo Bassi, Claudia Bandinelli, Francesca Delchiaro and Gianluca Sarti
Fire 2025, 8(1), 18; https://doi.org/10.3390/fire8010018 - 4 Jan 2025
Viewed by 981
Abstract
In the European Union, Regulation (EU) No 305/2011, in force since 2017 as CPR, requires the classification of cables permanently installed in buildings for reaction to fire, smoke, flaming droplets, and acidity. The latter is an additional classification evaluated through EN 60754-2, involving [...] Read more.
In the European Union, Regulation (EU) No 305/2011, in force since 2017 as CPR, requires the classification of cables permanently installed in buildings for reaction to fire, smoke, flaming droplets, and acidity. The latter is an additional classification evaluated through EN 60754-2, involving pH and conductivity measurements. Acidity is the weak point of a PVC cable due to the release of HCl during the combustion. Low-smoke acidity compounds, containing potent acid scavengers at high temperatures, are developed to reduce the acidity of the smoke. In order to design proper HCl scavengers to be used in PVC low-smoke acidity compounds, it becomes essential to evaluate the main actors affecting acidity and conductivity. In this paper, different cable PVC compounds were tested carrying out EN 60754-2 at different temperatures and temperature regimes: measurements of pH and conductivity were compared with ions’ concentration determined by ion chromatography, according to ISO 10304-1 and ISO 14911 for anions and cations, and inductively coupled plasma–optical emission spectrometry, according to ISO 11885. The conclusive results emphasize that HCl from PVC compounds’ thermal decomposition is the primary driver of pH and conductivity, and the contribution from the evaporation and or decomposition of additives and by-products from combustion is found to be negligible in most of the tested PVC compounds for cables. The findings highlight the effectiveness of ion chromatography and inductively coupled plasma–optical emission spectrometry as powerful analytical tools for developing efficient acid scavengers capable of maintaining performance at elevated temperatures. A further outcome regards the experimental demonstration of the limits and incongruencies of EN 60754-2 as an instrument for assessing the additional classification for acidity for cables. Finally, a statistical method to understand through pH and conductivity measurements if the scavenging mechanism acts in the condensed phase is presented. Full article
(This article belongs to the Section Fire Science Models, Remote Sensing, and Data)
Show Figures

Figure 1

11 pages, 5559 KiB  
Article
Effect of Stress Relaxation and Annealing Treatment on the Microstructure and Mechanical Properties of Steel Wire
by Gaoming Du, Ya Ni, Fangchang Shi, Jiqiu Qi and Bolong Xu
Buildings 2024, 14(12), 4044; https://doi.org/10.3390/buildings14124044 - 20 Dec 2024
Viewed by 936
Abstract
Bridge cables composed of 1960 MPa steel wires can be damaged during vehicle fires. Therefore, it is necessary to study the high-temperature mechanical properties of steel wires under load-bearing conditions. In this paper, the mechanical properties and microstructure of 1960 MPa steel wire [...] Read more.
Bridge cables composed of 1960 MPa steel wires can be damaged during vehicle fires. Therefore, it is necessary to study the high-temperature mechanical properties of steel wires under load-bearing conditions. In this paper, the mechanical properties and microstructure of 1960 MPa steel wire after stress relaxation and high-temperature annealing treatment at different temperatures are investigated. The results show that the stress relaxation limit is 422 MPa at 325 °C. The tensile strength of the steel wire after stress relaxation is 1975 MPa, which decreases by 5.73% compared with the initial state. When the annealing temperature is 300 °C, the tensile strength of the steel wire is 2044 MPa, accounting for 98.7% of the strength of the steel wire at room temperature. The tensile strength decreases by 9% when the annealing temperature is 400 °C, the steel wire strength decreases at a significantly higher rate. In addition, the spacing of the pearlitic sheet layers increases from 55 nm to 75 nm at the heat treatment temperature of 300 °C~350 °C. A passive fire protection temperature of 275 °C is recommended for cable wires if safer protection standards are considered. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

19 pages, 8152 KiB  
Article
Experimental Investigation of Pollutant—Luminous Environment Relation Under Tunnel Fire Condition Based on Spectral Analysis
by Yani Quan, Peng Xue, Junwei Chen, Shaofeng Wang, Yuwei Zhang, Zhikai Ni, Yanfeng Li, Junmei Li, Nan Zhang and Jingchao Xie
Sustainability 2024, 16(24), 11162; https://doi.org/10.3390/su162411162 - 19 Dec 2024
Viewed by 793
Abstract
The mature theory of safety assessment and system operation is crucial to ensure the safety and property of commuters under the tunnel fire condition, but the relationship between pollutants and the quality of the luminous environment is still the weakest link in this [...] Read more.
The mature theory of safety assessment and system operation is crucial to ensure the safety and property of commuters under the tunnel fire condition, but the relationship between pollutants and the quality of the luminous environment is still the weakest link in this research area. To establish this close relation, this study adopted three different scaled experiments to investigate the pollutant-visibility model based on spectral analysis. The first scaled tunnel model fire experiment, conducted on a 20.5-m-long experimental platform, utilized three combustion sources to analyze the light attenuation of natural gas, PVC-insulated cables, and smoke cakes based on the APE index. Then the spectrum selective contrast experiment collected several typical spectral data from coloured transparent panels, and the compared results advocated that there is no much different impact on luminous environment with these combustion sources under smoky conditions. At last, the acrylic box pollutant experiment was conducted with different CO/NO2 concentrations, and the results provided quantitative relationship between the light average attenuation rate and CO/NO2 concentrations. The findings of this study could be able to further establish the connection between pollutants and safety evacuation, as well as ventilation and luminous environment by combining the relatively mature research of tunnel fire. Full article
Show Figures

Figure 1

13 pages, 5044 KiB  
Article
Study on Smoke Characteristics in Cavern Complexes of Pumped-Storage Power Stations
by Peifeng Hu, Tong Xu, Chang Liu, Kai Wang, Fazheng Chong, Fengju Shang and Jiansong Wu
Fire 2024, 7(12), 453; https://doi.org/10.3390/fire7120453 - 2 Dec 2024
Cited by 1 | Viewed by 774
Abstract
The underground power houses of pumped-storage power stations (PSPSs) are highly complex, with interconnected and multidimensional structures, including various tunnels, such as the main and auxiliary power houses (MAPH), main transformer tunnel (MTT), tailrace gate tunnel (TGT), access tunnels (ATs), cable tunnels (CTs) [...] Read more.
The underground power houses of pumped-storage power stations (PSPSs) are highly complex, with interconnected and multidimensional structures, including various tunnels, such as the main and auxiliary power houses (MAPH), main transformer tunnel (MTT), tailrace gate tunnel (TGT), access tunnels (ATs), cable tunnels (CTs) etc. During intensive civil construction and electromechanical installation, fire risk becomes particularly prominent. Current research mainly examines fire incidents within individual tunnels, lacking comprehensive analyses of smoke spread across the entire cavern network. Therefore, in this study, a numerical model of a cavern complex in a PSPS was established to analyze smoke behavior and temperature distribution under various fire scenarios. The results indicated that when a fire occurred in the MAPH, the fire risk was relatively higher compared to fires in other places. Using the example of smoke spread from the MAPH to the MTT, the smoke spread process through key connecting caverns was analyzed. Initially, the temperature and velocity were stable, and the CTs and traffic cable tunnel in the auxiliary powerhouse (TCTAP) were the main smoke paths. After 7 min, the heat release rate (HRR) became stable, and CTs and ATs became the main paths for smoke spread, which could provide a reference for improving fire design in underground cavern systems. Full article
(This article belongs to the Special Issue Modeling, Experiment and Simulation of Tunnel Fire)
Show Figures

Figure 1

25 pages, 7513 KiB  
Article
Lateral–Torsional Buckling of Externally Prestressed I-Section Steel Beams Subjected to Fire
by Abdellah Mahieddine, Noureddine Ziane, Giuseppe Ruta, Rachid Zahi, Mohamed Zidi and Sid Ahmed Meftah
CivilEng 2024, 5(4), 1110-1134; https://doi.org/10.3390/civileng5040054 - 29 Nov 2024
Viewed by 1164
Abstract
We develop a new analytical and numerical approach, based on existing models, to describe the onset of lateral–torsional buckling (LTB) for simply supported thin-walled steel members. The profiles have uniform I cross-sections with variable lengths of the flanges, to describe also H cross-sections, [...] Read more.
We develop a new analytical and numerical approach, based on existing models, to describe the onset of lateral–torsional buckling (LTB) for simply supported thin-walled steel members. The profiles have uniform I cross-sections with variable lengths of the flanges, to describe also H cross-sections, they are prestressed by external tendons, and they are subjected to fire and various loadings. Our approach manages to update the value of the prestressing force, accounting for thermal and loads; the critical multipliers result from an eigenvalue problem obtained applying Galërkin’s approach to a system of nonlinear equilibrium equations. Our results are compared to buckling, steady state, and transient state analyses of a Finite Element Method (FEM) simulation, in which an original expression for an equivalent thermal expansion coefficient for the beam–tendon system that accounts for both mechanical and thermal strains is introduced. Our aim is to find estimates for the critical conditions with no geometric imperfections and accounting for the decay of material properties due to fire, thus providing limit values useful for conservative design. This approach can surpass others in the literature and in the existing technical norms. Full article
(This article belongs to the Special Issue "Stability of Structures", in Memory of Prof. Marcello Pignataro)
Show Figures

Figure 1

Back to TopTop