Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (127)

Search Parameters:
Keywords = cIAP1/2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3619 KiB  
Article
Crebanine Induces Cell Death and Alters the Mitotic Process in Renal Cell Carcinoma In Vitro
by Hung-Jen Shih, Hsuan-Chih Hsu, Chien-Te Liu, Ya-Chuan Chang, Chia-Ying Yu and Wen-Wei Sung
Int. J. Mol. Sci. 2025, 26(14), 6896; https://doi.org/10.3390/ijms26146896 - 18 Jul 2025
Viewed by 278
Abstract
Advanced renal cell carcinoma (RCC) has a poor prognosis; this drives the exploration of alternative systemic therapies to identify more effective treatment options. Recent research has revealed that crebanine, an alkaloid derivative of the Stephania genus, induces apoptotic effects in various cancers; however, [...] Read more.
Advanced renal cell carcinoma (RCC) has a poor prognosis; this drives the exploration of alternative systemic therapies to identify more effective treatment options. Recent research has revealed that crebanine, an alkaloid derivative of the Stephania genus, induces apoptotic effects in various cancers; however, a thorough investigation of the role of crebanine in RCC has not been conducted thus far. For this study, we evaluated tumor cell viability, clonogenicity, cell-cycle distributions, morphological changes, and cell mortality with the aim of exploring the antitumor effects of crebanine in RCC. Furthermore, we compared gene and protein expressions using RNA sequencing analysis and Western blotting. The findings indicated that crebanine significantly inhibited RCC colonies and caused G1-phase cell-cycle arrest with sub-G1-phase accumulation, thus leading to suppressed cell proliferation and cell death. In addition, Hoechst 33342 staining was used to observe apoptotic cells, which revealed chromatin condensation and a reduction in the nuclear volume associated with apoptosis. Further, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that differentially expressed genes are involved in the initiation of DNA replication, centrosome duplication, chromosome congression, and mitotic processes in the cell cycle along with signaling pathways, such as I-kappaB kinase/NF-kappaB signaling, Hippo signaling, and intrinsic apoptotic pathways. Consistent with GO and KEGG analyses, increased levels of cleaved caspase-3, cleaved caspase-7, and cleaved PARP, and decreased levels of cIAP1, BCL2, survivin, and claspin were observed. Finally, the expressions of G1/S phase transition cyclin D1, cyclin E/CDK2, and cyclin A2/CDK2 complexes were downregulated. Overall, these findings supported the potential of crebanine as an adjuvant therapy in RCC. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

16 pages, 4911 KiB  
Article
Tazarotene-Induced Gene 3 (TIG3) Induces Apoptosis in Melanoma Cells Through the Modulation of Inhibitors of Apoptosis Proteins
by Chun-Hua Wang, Lu-Kai Wang and Fu-Ming Tsai
Biomedicines 2025, 13(7), 1749; https://doi.org/10.3390/biomedicines13071749 - 17 Jul 2025
Viewed by 298
Abstract
Background/Objectives: Retinoic acid has been shown to inhibit melanoma progression; however, its underlying mechanisms remain unclear. In this study, we investigated the role of the retinoic acid-inducible gene TIG3 in regulating melanoma cell growth, as well as elucidating its involvement in apoptosis. Methods: [...] Read more.
Background/Objectives: Retinoic acid has been shown to inhibit melanoma progression; however, its underlying mechanisms remain unclear. In this study, we investigated the role of the retinoic acid-inducible gene TIG3 in regulating melanoma cell growth, as well as elucidating its involvement in apoptosis. Methods: The expression of TIG3 in melanoma tissues was analyzed using a cDNA microarray. Cell viability and cell death were measured using the WST-1 and LDH assay kits, respectively. The gene expression changes that were induced by TIG3 were identified through RNA sequencing, while apoptosis-related pathways were examined using a human apoptosis protein array. The protein expression levels were further validated using Western blot analysis. Results: TIG3 expression was significantly downregulated in melanoma tissues. The overexpression of TIG3 in melanoma cells led to reduced cell viability and increased cell death. TIG3 suppressed the expression of several apoptosis-regulating proteins, including PON2, Fas, cIAP-1, Claspin, Clusterin, HTRA2, and Livin, while promoting the expression of cleaved Caspase-3. Supplementation with cIAP-1, HTRA2, or Livin partially reversed TIG3-induced Caspase-3 expression and cell death. Conclusions: Our findings suggest that TIG3 may contribute to the anti-melanoma effects of retinoic acid, with IAP family proteins playing a key role in the TIG3-mediated regulation of melanoma cell survival. Full article
(This article belongs to the Special Issue Molecular Research and New Therapy in Melanoma)
Show Figures

Figure 1

18 pages, 4899 KiB  
Review
Targeting the Undruggable: Recent Progress in PROTAC-Induced Transcription Factor Degradation
by Hyein Jung and Yeongju Lee
Cancers 2025, 17(11), 1871; https://doi.org/10.3390/cancers17111871 - 3 Jun 2025
Viewed by 1581
Abstract
Transcription factors (TFs) play central roles in gene regulation and disease progression but have long been considered undruggable due to the absence of well-defined binding pockets and their reliance on protein–protein or protein–DNA interactions. Proteolysis-targeting chimeras (PROTACs) offer a novel strategy to overcome [...] Read more.
Transcription factors (TFs) play central roles in gene regulation and disease progression but have long been considered undruggable due to the absence of well-defined binding pockets and their reliance on protein–protein or protein–DNA interactions. Proteolysis-targeting chimeras (PROTACs) offer a novel strategy to overcome these limitations by inducing selective degradation of TFs via the ubiquitin–proteasome system. This review highlights recent advances in TF-targeting PROTACs, focusing on key oncogenic TFs such as androgen receptor (AR), estrogen receptor alpha (ERα), BRD4, c-Myc, and STAT family members. Strategies for ligand design—including small molecules, peptides, and nucleic acid-based elements—are discussed alongside the use of various E3 ligases such as VHL, CRBN, and IAP. Several clinically advanced PROTACs, including ARV-110 and ARV-471, demonstrate the therapeutic potential of this technology. Despite challenges in pharmacokinetics and E3 ligase selection, emerging data suggest that PROTACs can successfully target TFs, paving the way for new treatment strategies across oncology and other disease areas. Full article
(This article belongs to the Special Issue Recent Advances in PROteolysis TArgeting Chimeras (PROTACs))
Show Figures

Figure 1

26 pages, 2433 KiB  
Article
Effects of Spinal Cord Stimulation in Patients with Small Fiber and Associated Comorbidities from Neuropathy After Multiple Etiologies
by Ángeles Canós-Verdecho, Ara Bermejo, Beatriz Castel, Rosa Izquierdo, Ruth Robledo, Elisa Gallach, Teresa Sevilla, Pilar Argente, Ismael Huertas, Isabel Peraita-Costa and María Morales-Suarez-Varela
J. Clin. Med. 2025, 14(2), 652; https://doi.org/10.3390/jcm14020652 - 20 Jan 2025
Cited by 2 | Viewed by 1920
Abstract
Objectives: The aim of this study was to evaluate the effects of spinal cord stimulation (SCS) on pain, neuropathic symptoms, and other health-related metrics in patients with chronic painful peripheral neuropathy (PN) from multiple etiologies. Methods: A prospective single center observational longitudinal cohort [...] Read more.
Objectives: The aim of this study was to evaluate the effects of spinal cord stimulation (SCS) on pain, neuropathic symptoms, and other health-related metrics in patients with chronic painful peripheral neuropathy (PN) from multiple etiologies. Methods: A prospective single center observational longitudinal cohort study assessed SCS efficacy from April 2023 to May 2024, with follow-ups at 2, 4, 6, and 12 months in 19 patients suffering from the painful polyneuropathy of diverse etiologies: diabetic (DPN), idiopathic (CIAP), chemotherapy-induced (CIPN), and others. Patients were implanted with a neurostimulator (WaveWriter AlphaTM, Boston Scientific Corporation, Valencia, CA, USA) and percutaneous leads targeting the lower limbs (T10–T11) and, if necessary, the upper limbs (C4–C7). Stimulation programming was individualized based on patient preference and best response. Assessments were performed before and after implantation and included pain intensity (VAS and DN4), neuropathic pain symptoms (NPSI and SF-MPQ-2), autonomic symptoms (SFN-SIQ and SAS), sensory and small fiber nerve injury (UENS), functionality (GAF), sleep (CPSI), global impression of change (CGI and PGI), and quality of life (EQ-VAS and EQ-5D). Intra-epidermal nerve fiber density (IENFD) via skin biopsy was also performed at baseline (diagnostic) and after 12 months to assess potential small fiber re-growth. Statistical analyses were conducted to determine the evolution of treatment success. Results: To date, 19 patients have undergone implantation and completed follow-up. SCS produced a significant consistent and sustained improvement in pain intensity by 49% in DN4 and 76% in VAS, in neuropathic pain symptoms by 73%, in autonomic symptoms by 26–30%, in the sensorimotor physical exam by 8%, in functionality by 44%, in sleep by 74%, and in quality of life (69% for EQ-VAS and 134% EQ-5D). Both clinicians and patients had a meaningful global impression of change, at 1.1 and 1.3, respectively. Distal intra-epidermal nerve fiber density improved by 22% at 12 months while proximal intra-epidermal nerve fiber density decreased by 18%. Conclusions: SCS is an effective therapy for managing various types of PN. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

11 pages, 1752 KiB  
Article
Temporal RAGE Over-Expression Disrupts Lung Development by Modulating Apoptotic Signaling
by Derek M. Clarke, Madison N. Kirkham, Logan B. Beck, Carrleigh Campbell, Hayden Alcorn, Benjamin T. Bikman, Juan A. Arroyo and Paul R. Reynolds
Curr. Issues Mol. Biol. 2024, 46(12), 14453-14463; https://doi.org/10.3390/cimb46120867 - 21 Dec 2024
Viewed by 906
Abstract
Receptors for advanced glycation end products (RAGE) are multiligand cell surface receptors found most abundantly in lung tissue. This study sought to evaluate the role of RAGE in lung development by using a transgenic (TG) mouse model that spatially and temporally controlled RAGE [...] Read more.
Receptors for advanced glycation end products (RAGE) are multiligand cell surface receptors found most abundantly in lung tissue. This study sought to evaluate the role of RAGE in lung development by using a transgenic (TG) mouse model that spatially and temporally controlled RAGE overexpression. Histological imaging revealed that RAGE upregulation from embryonic day (E) 15.5 to E18.5 led to a thickened alveolar parenchyma and reduced alveolar surface area, while RAGE overexpression from E0 to E18.5 caused a significant loss of tissue and decreased architecture. Mitochondrial dysfunction was a hallmark of RAGE-mediated disruption, with decreased levels of anti-apoptotic BCL-W and elevated pro-apoptotic BID, SMAC, and HTRA2, indicating compromised mitochondrial integrity and increased intrinsic apoptotic activity. Extrinsic apoptotic signaling was similarly dysregulated, as evidenced by the increased expression of TNFRSF21, Fas/FasL, and Trail R2 in E0-18.5 RAGE TG mice. Additionally, reductions in IGFBP-3 and IGFBP-4, coupled with elevated p53 and decreased p27 expression, highlighted disruptions in the cell survival and cycle regulatory pathways. Despite the compensatory upregulation of inhibitors of apoptosis proteins (cIAP-2, XIAP, and Survivin), tissue loss and structural damage persisted. These findings underscore RAGE’s role as a pivotal modulator of lung development. Specifically, the timing of RAGE upregulation significantly impacts lung development by influencing pathways that cause distinct histological phenotypes. This research may foreshadow how RAGE signaling plausibly contributes to developmental lung diseases. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

19 pages, 5421 KiB  
Article
Modulation of TNFR 1-Triggered Inflammation and Apoptosis Signals by Jacaranone in Cancer Cells
by Jie Liu, Yang Xu, Guobin Xie, Bingjie Geng, Renjing Yang, Wenjing Tian, Haifeng Chen and Guanghui Wang
Int. J. Mol. Sci. 2024, 25(24), 13670; https://doi.org/10.3390/ijms252413670 - 20 Dec 2024
Cited by 1 | Viewed by 1196
Abstract
Jacaranone derived from Senecio scandens, a traditional Chinese medicine used for centuries, has been documented to exhibit anti-inflammatory and antiproliferative properties in various tumor cell lines. However, the mechanism of action and relationship between inflammation and apoptosis induced by jacaranone remain inadequately [...] Read more.
Jacaranone derived from Senecio scandens, a traditional Chinese medicine used for centuries, has been documented to exhibit anti-inflammatory and antiproliferative properties in various tumor cell lines. However, the mechanism of action and relationship between inflammation and apoptosis induced by jacaranone remain inadequately elucidated. In this study, the targets of jacaranone and cancer were identified from various databases, while potential targets and pathways were predicted through the analysis of the protein–protein interactions (PPI) network and pathway enrichment. Through a comprehensive network pharmacology analysis and corroborating experimental findings, we revealed that jacaranone induces tumor cell death by fine-tuning the tumor necrosis factor receptor 1 (TNFR1) downstream signaling pathway. TNFR1 serves as a key node that assembles into complexes I and II, regulating pathways including the nuclear factor (NF)-κB signaling pathway and the cell apoptosis pathway, which play crucial roles in cellular life activities. Jacaranone successfully guides survival signaling pathways to apoptotic mechanisms by inhibiting the assembly of complex I and promoting the formation of complex II. In particular, the main action mechanism of jacaranone lies in inducing the degradation of the inhibitor of apoptosis protein (cIAP)-2. cIAP-2 serves as an E3 ubiquitin ligase that ubiquitinates receptor-interacting serine/threonine-protein kinase 1 (RIPK1), thereby hindering the formation of complex I and effectively reducing the phosphorylation of Inhibitor of κB kinase (IKK) β. When the deubiquitylation process of RIPK1 is triggered, it may promote the formation of complex II, which ultimately leads to cell apoptosis. This fully demonstrates the key role of jacaranone in regulating TNFR1 complexes, especially through the degradation of cIAP-2. Taken together, jacaranone hinders the assembly of TNFR1 complex I and promotes the formation of complex II to induce apoptosis of cancer cells. Our findings unveil a novel mechanism underlying jacaranone, while also presenting a fresh approach for the development of new pharmaceuticals. Full article
(This article belongs to the Special Issue Apoptosis and Cell Signaling in Disease)
Show Figures

Figure 1

30 pages, 13074 KiB  
Article
An Azomethine Derivative, BCS3, Targets XIAP and cIAP1/2 to Arrest Breast Cancer Progression Through MDM2-p53 and Bcl-2-Caspase Signaling Modulation
by Reetuparna Acharya, Pran Kishore Deb, Katharigatta N. Venugopala and Shakti Prasad Pattanayak
Pharmaceuticals 2024, 17(12), 1645; https://doi.org/10.3390/ph17121645 - 6 Dec 2024
Cited by 4 | Viewed by 1391
Abstract
Background: Breast cancer influences more than 2 million women worldwide annually. Since apoptotic dysregulation is a cancer hallmark, targeting apoptotic regulators encompasses strategic drug development for cancer therapy. One such class of apoptotic regulators is inhibitors of apoptosis proteins (IAP) which are [...] Read more.
Background: Breast cancer influences more than 2 million women worldwide annually. Since apoptotic dysregulation is a cancer hallmark, targeting apoptotic regulators encompasses strategic drug development for cancer therapy. One such class of apoptotic regulators is inhibitors of apoptosis proteins (IAP) which are a class of E3 ubiquitin ligases that actively function to support cancer growth and survival. Methods: The current study reports design, synthesis, docking analysis (based on binding to IAP-BIR3 domains), anti-proliferative and anti-tumor potential of the azomethine derivative, 1-(4-chlorophenyl)-N-(4-ethoxyphenyl)methanimine (BCS3) on breast cancer (in vitro and in vivo) and its possible mechanisms of action. Results: Strong selective cytotoxic activity was observed in MDA-MB-231, MCF-7, and MDA-MB-468 breast cancer cell lines that exhibited IC50 values, 1.554 µM, 5.979 µM, and 6.462 µM, respectively, without affecting normal breast cells, MCF-10A. For the evaluation of the cytotoxic potential of BCS3, immunofluorescence, immunoblotting, and FACS (apoptosis and cell cycle) analyses were conducted. BCS3 antagonized IAPs, thereby causing MDM2-p53 and Bcl-2-Caspase-mediated intrinsic and extrinsic apoptosis. It also modulated p53 expression causing p21-CDK1/cyclin B1-mediated cell cycle arrest at S and G2/M phases. The in vitro findings were consistent with in vivo findings as observed by reduced tumor volume and apoptosis initiation (TUNEL assay) by IAP downregulation. BCS3 also produced potent synergistic effects with doxorubicin on tumor inhibition. Conclusions: Having witnessed the profound anti-proliferative potential of BCS3, the possible adverse effects related to anti-cancer therapy were examined following OECD 407 guidelines which confirmed its systemic safety profile and well tolerability. The results indicate the promising effect of BCS3 as an IAP antagonist for breast cancer therapy with fewer adverse effects. Full article
(This article belongs to the Special Issue Potential Therapeutic Targets for the Treatment of Pathological Pain)
Show Figures

Figure 1

15 pages, 4015 KiB  
Article
In Silico Prediction of Alkaline Phosphatase Interaction with the Natural Inhibitory 5-Azaindoles Guitarrin C and D
by Aleksandra Seitkalieva, Yulia Noskova, Marina Isaeva, Alla Guzii, Tatyana N. Makarieva, Sergey Fedorov and Larissa Balabanova
Molecules 2024, 29(23), 5701; https://doi.org/10.3390/molecules29235701 - 3 Dec 2024
Viewed by 1327
Abstract
The natural 5-azaindoles, marine sponge guitarrin C and D, were observed to exert inhibitory activity against a highly active alkaline phosphatase (ALP) CmAP of the PhoA family from the marine bacterium Cobetia amphilecti, with IC50 values of 8.5 and 110 µM, [...] Read more.
The natural 5-azaindoles, marine sponge guitarrin C and D, were observed to exert inhibitory activity against a highly active alkaline phosphatase (ALP) CmAP of the PhoA family from the marine bacterium Cobetia amphilecti, with IC50 values of 8.5 and 110 µM, respectively. The superimposition of CmAP complexes with p-nitrophenyl phosphate (pNPP), a commonly used chromogenic aryl substrate for ALP, and the inhibitory guitarrins C, D, and the non-inhibitory guitarrins A, B, and E revealed that the presence of a carboxyl group at C6 together with a hydroxyl group at C8 is a prerequisite for the inhibitory effect of 5-azaindoles on ALP activity. The 10-fold more active guitarrin C could compete with pNPP for binding sites in the ALP active site due to similarities in size, three-dimensional structure, and the orientation of the COOH group along the phosphate group. However, the inhibition of CmAP and calf intestinal ALP (CIAP) by guitarrin C was observed to occur via a non-competitive mode of action, as evidenced by a twofold decrease in Vmax and an unchanged Km. In contrast, the kinetic model with guitarrin D, with an additional OH group at C7, reflected a mixed type of inhibition, with a decrease in both values. The sensitivity of CIAP to guitarrins C and D was shown to be slightly lower than that of CmAP, with IC50 values of 195 and 230 µM, respectively. Nevertheless, these findings prompted the prediction of complexes of human ALP isoenzymes with guitarrins C and D. Full article
Show Figures

Figure 1

12 pages, 1203 KiB  
Article
Implications of the STAT5B and C1QBP Genes of Grain Aphid Sitobion avenae in the Transmission of Barley Yellow Dwarf Virus
by Chiping Liu, Manwen Zhang, Chen Luo and Zuqing Hu
Agronomy 2024, 14(12), 2787; https://doi.org/10.3390/agronomy14122787 - 23 Nov 2024
Viewed by 779
Abstract
Many plant viruses are transmitted by insect vectors, and the transmission process is regulated by key genes within the vector. However, few of these genes have been reported. Previous studies in our laboratory have shown that the expression of the signal transducer and [...] Read more.
Many plant viruses are transmitted by insect vectors, and the transmission process is regulated by key genes within the vector. However, few of these genes have been reported. Previous studies in our laboratory have shown that the expression of the signal transducer and activator of transcription 5B (STAT5B) in viruliferous vector aphids carrying barley yellow dwarf virus (BYDV) was upregulated, and the complement component 1 Q subcomponent binding protein (C1QBP) within the aphid interacted with the coat protein (CP) and aphid transmission protein (ATP) of BYDV. In this study, we examined the expression levels of STAT5B and C1QBP in the vector aphid Sitobion avenae (Fabricius) (Hemiptera: Aphididae) using the qPCR method. We conducted this analysis during the acquisition accession periods (AAPs) and inoculation accession periods (IAPs) of the BYDV species GAV (BYDV-GAV). Furthermore, the effects of STAT5B and C1QBP on the acquisition, retention, and transmission of BYDV-GAV in S. avenae were verified using the RNA interference (RNAi) method. The results show the following: (1) the expression levels of STAT5B and C1QBP were significantly upregulated during the AAPs and IAPs of BYDV-GAV; (2) the silencing of STAT5B led to a significant increase in BYDV-GAV retention during IAPs; and (3) the silencing of C1QBP resulted in a notable decrease in BYDV-GAV acquisition during the AAPs, as well as a significant increase in BYDV-GAV retention during the IAPs. These results suggest that STAT5B and C1QBP in S. avenae play a role in BYDV-GAV transmission. These findings highlight the functions of the STAT5B and C1QBP genes and identify C1QBP as a potential target gene for further RNAi-based studies to control the transmission of BYDV-GAV. Full article
Show Figures

Figure 1

14 pages, 641 KiB  
Article
Biocontrol Potential of the New Codling Moth Granulovirus (CpGV) Strains
by Aleksandra A. Tsygichko, Anzhela M. Asaturova, Tatiana N. Lakhova, Alexandra I. Klimenko, Sergey A. Lashin and Gennady V. Vasiliev
Microorganisms 2024, 12(10), 1991; https://doi.org/10.3390/microorganisms12101991 - 30 Sep 2024
Cited by 1 | Viewed by 1128
Abstract
The use of CpGV strains as the basis for bioinsecticides is an effective and safe way to control Cydia pomonella. The research is aimed at the identification and study of new CpGV strains. Objects of identification and bioinformatic analysis: 18 CpGV strains. [...] Read more.
The use of CpGV strains as the basis for bioinsecticides is an effective and safe way to control Cydia pomonella. The research is aimed at the identification and study of new CpGV strains. Objects of identification and bioinformatic analysis: 18 CpGV strains. Sequencing was carried out on a NextSeq550. Genome assembly and annotation were carried out using Spades, Samtools 1.9, MinYS, Pilon, Gfinisher, Quast, and Prokka. Comparative genomic analysis was carried out in relation to the reference genome present in the «Madex Tween» strain-producer (biological standard) according to the average nucleotide identity (ANI) criterion. The presence/absence of IAP, cathepsin, MMP, and chitinase in the genetic sequences of the strains was determined using simply phylogeny. Entomopathogenic activity was assessed against C. pomonella according to the criterion of biological efficacy. Thus, molecular genetic identification revealed that 18 CpGV strains belong to a genus of Betabaculovirus. For all the strains under study ANI values of 99% or more were obtained, and the presence of the cathepsin, chitinase, IAP, and MMP genes was noted. The strains BZR GV 1, BZR GV 3, BZR GV 7, BZR GV 10, and BZR GV L-8 showed the maximum biological efficacy: 100% on the 15th day of observation. Strains BZR GV 4, BZR GV 8, and BZR GV 13 showed efficacy at the level of the «Madex Tween» preparation: 89.5% on the 15th day of observation. The strains with the highest mortality rate of the host insect were identified: BZR GV 9, BZR GV 10, BZR GV L-6, and BZR GV L-8. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

20 pages, 4232 KiB  
Article
Molecular Insights into the Anticancer Activity of Withaferin-A: The Inhibition of Survivin Signaling
by Renu Wadhwa, Jia Wang, Seyad Shefrin, Huayue Zhang, Durai Sundar and Sunil C. Kaul
Cancers 2024, 16(17), 3090; https://doi.org/10.3390/cancers16173090 - 5 Sep 2024
Cited by 3 | Viewed by 2502
Abstract
Survivin, a member of the IAP family, functions as a homodimer and inhibits caspases, the key enzymes involved in apoptosis. Several Survivin inhibitors, including YM-155, Debio1143, EM1421, LQZ-7I, and TL32711, have emerged as potential anticancer drugs awaiting validation in clinical trials. Due to [...] Read more.
Survivin, a member of the IAP family, functions as a homodimer and inhibits caspases, the key enzymes involved in apoptosis. Several Survivin inhibitors, including YM-155, Debio1143, EM1421, LQZ-7I, and TL32711, have emerged as potential anticancer drugs awaiting validation in clinical trials. Due to the high cost and adverse side effects of synthetic drugs, natural compounds with similar activity have also been in demand. In this study, we conducted molecular docking assays to evaluate the ability of Wi-A and Wi-N to block Survivin dimerization. We found that Wi-A, but not Wi-N, can bind to and prevent the homodimerization of Survivin, similar to YM-155. Therefore, we prepared a Wi-A-rich extract from Ashwagandha leaves (Wi-AREAL). Experimental analyses of human cervical carcinoma cells (HeLa and ME-180) treated with Wi-AREAL (0.05–0.1%) included assessments of viability, apoptosis, cell cycle, migration, invasion, and the expression levels (mRNA and protein) of molecular markers associated with these phenotypes. We found that Wi-AREAL led to growth arrest mediated by the upregulation of p21WAF1 and the downregulation of several proteins (CDK1, Cyclin B, pRb) involved in cell cycle progression. Furthermore, Wi-AREAL treatment activated apoptosis signaling, as evidenced by reduced PARP-1 and Bcl-2 levels, increased procaspase-3, and elevated Cytochrome C. Additionally, treating cells with a nontoxic low concentration (0.01%) of Wi-AREAL inhibited migration and invasion, as well as EMT (epithelial–mesenchymal transition) signaling. By combining computational and experimental approaches, we demonstrate the potential of Wi-A and Wi-AREAL as natural inhibitors of Survivin, which may be helpful in cancer treatment. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

19 pages, 3393 KiB  
Article
Anti-Cancer Potential of Isoflavone-Enriched Fraction from Traditional Thai Fermented Soybean against Hela Cervical Cancer Cells
by Amonnat Sukhamwang, Sirinada Inthanon, Pornngarm Dejkriengkraikul, Tistaya Semangoen and Supachai Yodkeeree
Int. J. Mol. Sci. 2024, 25(17), 9277; https://doi.org/10.3390/ijms25179277 - 27 Aug 2024
Cited by 2 | Viewed by 1649
Abstract
Cervical cancer is a leading cause of gynecological malignancies and cancer-related deaths among women worldwide. This study investigates the anti-cancer activity of Thua Nao, a Thai fermented soybean, against HeLa cervical carcinoma cells, and explores its underlying mechanisms. Our findings reveal that the [...] Read more.
Cervical cancer is a leading cause of gynecological malignancies and cancer-related deaths among women worldwide. This study investigates the anti-cancer activity of Thua Nao, a Thai fermented soybean, against HeLa cervical carcinoma cells, and explores its underlying mechanisms. Our findings reveal that the ethyl acetate fraction of Thua Nao (TN-EA) exhibits strong anti-cancer potential against HeLa cells. High-performance liquid chromatography (HPLC) analysis identified genistein and daidzein as the major isoflavones in TN-EA responsible for its anti-cancer activity. TN-EA and genistein reduced cell proliferation and induced G2/M phase arrest, while daidzein induced G1 arrest. These responses were associated with the downregulation of cell cycle regulators, including Cyclin B1, cycle 25C (Cdc25C), and phosphorylated cyclin-dependent kinase 1 (CDK-1), and the upregulation of the cell cycle inhibitor p21. Moreover, TN-EA and its active isoflavones promoted apoptosis in HeLa cells through the intrinsic pathway, evidenced by increased levels of cleaved Poly (ADP-ribose) polymerase (PARP) and caspase-3, loss of mitochondrial membrane potential, and the downregulation of anti-apoptotic proteins B-cell leukemia/lymphoma 2 (Bcl-2), B-cell lymphoma-extra-large (Bcl-xL), cellular inhibitor of apoptosis proteins 1 (cIAP), and survivin. Additionally, TN-EA and its active isoflavones effectively reduced cell invasion and migration by downregulating extracellular matrix degradation enzymes, including Membrane type 1-matrix metalloproteinase (MT1-MMP), urokinase-type plasminogen activator (uPA), and urokinase-type plasminogen activator receptor (uPAR), and reduced the levels of the mesenchymal marker N-cadherin. At the molecular level, TN-EA suppressed STAT3 activation via the regulation of JNK and Erk1/2 signaling pathways, leading to reduced proliferation and invasion of HeLa cells. Full article
(This article belongs to the Special Issue Anticancer Activity of Natural Products and Related Compounds)
Show Figures

Figure 1

11 pages, 896 KiB  
Article
High Prevalence of Virulence-Associated Genes and Length Polymorphism in actA and inlB Genes Identified in Listeria monocytogenes Isolates from Meat Products and Meat-Processing Environments in Poland
by Iwona Kawacka and Agnieszka Olejnik-Schmidt
Pathogens 2024, 13(6), 444; https://doi.org/10.3390/pathogens13060444 - 23 May 2024
Cited by 4 | Viewed by 1559
Abstract
Listeria monocytogenes is a human pathogen that has the ability to cause listeriosis, a disease with possible fatal outcomes. The typical route of infection is ingestion of the bacteria with contaminated food. In this study, 13 virulence-associated genes were examined with PCR in [...] Read more.
Listeria monocytogenes is a human pathogen that has the ability to cause listeriosis, a disease with possible fatal outcomes. The typical route of infection is ingestion of the bacteria with contaminated food. In this study, 13 virulence-associated genes were examined with PCR in the genomes of 153 L. monocytogenes isolates collected from meat products and processing environments in Poland. All isolates possessed genes from LIPI-1—hly, actA, plcA, plcB and mpl—as well as four internalins: inlA, inlB, inlC, inlJ. Invasion-associated protein iap, as well as genes prfA and sigB, encoding regulatory proteins, were also detected in all isolates. Gene flaA, encoding flagellin, was detected in 113 (74%) isolates. This was the only gene that was not detected in all isolates, as its presence is serotype-dependent. Gene actA showed polymorphism with longer and shorter variants in PCR amplicons. Two isolates were characterized by truncated inlB genes, lacking 141 bp in their sequence, which was confirmed by gene sequencing. All isolates were positive in hemolysis assays, proving the synthesis of functional PrfA and Hly proteins. Four genotypes of L. monocytogenes based on actA polymorphism and two genotypes based on inlB polymorphism were distinguished within the isolates’ collection. Full article
Show Figures

Figure 1

13 pages, 1541 KiB  
Article
Differential Effects of Intra-Abdominal Hypertension and ARDS on Respiratory Mechanics in a Porcine Model
by Benjamin Seybold, Anna M. Deutsch, Barbara Luise Deutsch, Emilis Simeliunas, Markus A. Weigand, Mascha O. Fiedler-Kalenka and Armin Kalenka
Medicina 2024, 60(6), 843; https://doi.org/10.3390/medicina60060843 - 22 May 2024
Viewed by 1763
Abstract
Background and Objectives: Intra-abdominal hypertension (IAH) and acute respiratory distress syndrome (ARDS) are common concerns in intensive care unit patients with acute respiratory failure (ARF). Although both conditions lead to impairment of global respiratory parameters, their underlying mechanisms differ substantially. Therefore, a [...] Read more.
Background and Objectives: Intra-abdominal hypertension (IAH) and acute respiratory distress syndrome (ARDS) are common concerns in intensive care unit patients with acute respiratory failure (ARF). Although both conditions lead to impairment of global respiratory parameters, their underlying mechanisms differ substantially. Therefore, a separate assessment of the different respiratory compartments should reveal differences in respiratory mechanics. Materials and Methods: We prospectively investigated alterations in lung and chest wall mechanics in 18 mechanically ventilated pigs exposed to varying levels of intra-abdominal pressures (IAP) and ARDS. The animals were divided into three groups: group A (IAP 10 mmHg, no ARDS), B (IAP 20 mmHg, no ARDS), and C (IAP 10 mmHg, with ARDS). Following induction of IAP (by inflating an intra-abdominal balloon) and ARDS (by saline lung lavage and injurious ventilation), respiratory mechanics were monitored for six hours. Statistical analysis was performed using one-way ANOVA to compare the alterations within each group. Results: After six hours of ventilation, end-expiratory lung volume (EELV) decreased across all groups, while airway and thoracic pressures increased. Significant differences were noted between group (B) and (C) regarding alterations in transpulmonary pressure (TPP) (2.7 ± 0.6 vs. 11.3 ± 2.1 cmH2O, p < 0.001), elastance of the lung (EL) (8.9 ± 1.9 vs. 29.9 ± 5.9 cmH2O/mL, p = 0.003), and elastance of the chest wall (ECW) (32.8 ± 3.2 vs. 4.4 ± 1.8 cmH2O/mL, p < 0.001). However, global respiratory parameters such as EELV/kg bodyweight (−6.1 ± 1.3 vs. −11.0 ± 2.5 mL/kg), driving pressure (12.5 ± 0.9 vs. 13.2 ± 2.3 cmH2O), and compliance of the respiratory system (−21.7 ± 2.8 vs. −19.5 ± 3.4 mL/cmH2O) did not show significant differences among the groups. Conclusions: Separate measurements of lung and chest wall mechanics in pigs with IAH or ARDS reveals significant differences in TPP, EL, and ECW, whereas global respiratory parameters do not differ significantly. Therefore, assessing the compartments of the respiratory system separately could aid in identifying the underlying cause of ARF. Full article
(This article belongs to the Special Issue Current Concepts and Advances in Respiratory and Emergency Medicine)
Show Figures

Figure 1

16 pages, 617 KiB  
Article
Listeria monocytogenes from Marine Fish and the Seafood Market Environment in Northern Greece: Prevalence, Molecular Characterization, and Antibiotic Resistance
by Pantelis Peratikos, Anestis Tsitsos, Alexandros Damianos, Maria A. Kyritsi, Christos Hadjichristodoulou, Nikolaos Soultos and Vangelis Economou
Appl. Sci. 2024, 14(7), 2725; https://doi.org/10.3390/app14072725 - 25 Mar 2024
Cited by 11 | Viewed by 2805
Abstract
The occurrence of Listeria monocytogenes in marine fish and fish market areas was investigated. Two hundred and eighty-eight samples (123 environmental samples—siphons, knives, cutting boards, floor, sinks, water, and ice—and 165 marine fish samples) were examined. Twenty-four isolates were characterized as Listeria monocytogenes [...] Read more.
The occurrence of Listeria monocytogenes in marine fish and fish market areas was investigated. Two hundred and eighty-eight samples (123 environmental samples—siphons, knives, cutting boards, floor, sinks, water, and ice—and 165 marine fish samples) were examined. Twenty-four isolates were characterized as Listeria monocytogenes (five from environmental samples (4.0%) and 19 from fish samples (11.5%)). The strains were further characterized according to their antibiotic resistance, pathogenicity, and biofilm formation ability. They were molecularly serotyped as IIc (n = 22) and IVb (n = 2) and possessed all the virulence genes tested (inlA, inlB, inlC, inlJ, actA, hlyA, iap, plcA, and prfA), except for two strains lacking the hlyA and iap genes, respectively. All strains showed strong (41.7%) or moderate biofilm-producing ability (58.3%) and almost all showed resistance to at least one antibiotic, with the highest rates being observed against clindamycin and vancomycin. The proteomic analysis by MALDI-TOF revealed two distinct clusters that involved strains from fish only and those from both fish and the environment. The presence of Listeria monocytogenes in the fish-market environment and marine fish, along with the pathogenicity and persistence characteristics of the seafood-related strains, emphasize the need for vigilance concerning the spread of this notorious foodborne pathogen. Full article
(This article belongs to the Special Issue Detection and Control of Foodborne and Waterborne Pathogenic Bacteria)
Show Figures

Figure 1

Back to TopTop