Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (14,598)

Search Parameters:
Keywords = buildings and structures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1907 KiB  
Article
A Wideband Magneto-Electric (ME) Dipole Antenna Enabled by ME Resonance and Aperture-Coupled Excitation
by Hyojin Jang, Seyeon Park, Junghyeon Kim, Kyounghwan Kim and Sungjoon Lim
Micromachines 2025, 16(8), 853; https://doi.org/10.3390/mi16080853 - 24 Jul 2025
Abstract
In this study, we propose a novel wideband aperture-coupled magneto-electric (ME) dipole antenna that achieves enhanced bandwidth by simultaneously leveraging ME resonance and aperture-coupled excitation. Building upon the conventional ME dipole architecture, the antenna integrates a pair of horizontal metal patches forming the [...] Read more.
In this study, we propose a novel wideband aperture-coupled magneto-electric (ME) dipole antenna that achieves enhanced bandwidth by simultaneously leveraging ME resonance and aperture-coupled excitation. Building upon the conventional ME dipole architecture, the antenna integrates a pair of horizontal metal patches forming the electric dipole and a pair of vertical metal patches forming the magnetic dipole. A key innovation is the aperture-coupled feeding mechanism, where electromagnetic energy is transferred from a tapered microstrip line to the dipole structure through a slot etched in the ground plane. This design not only excites the characteristic ME resonances effectively but also significantly improves impedance matching, delivering a markedly broader impedance bandwidth. To validate the proposed concept, a prototype antenna was fabricated and experimentally characterized. Measurements show an impedance bandwidth of 84.48% (3.61–8.89 GHz) for S11 ≤ −10 dB and a maximum in-band gain of 7.88 dBi. The antenna also maintains a stable, unidirectional radiation pattern across the operating band, confirming its potential for wideband applications such as 5G wireless communications. Full article
(This article belongs to the Special Issue RF Devices: Technology and Progress)
18 pages, 425 KiB  
Article
A Nested Named Entity Recognition Model Robust in Few-Shot Learning Environments Using Label Description Information
by Hyunsun Hwang, Youngjun Jung, Changki Lee and Wooyoung Go
Appl. Sci. 2025, 15(15), 8255; https://doi.org/10.3390/app15158255 - 24 Jul 2025
Abstract
Nested named entity recognition (NER) is a task that identifies hierarchically structured entities, where one entity can contain other entities within its span. This study introduces a nested NER model for few-shot learning environments, addressing the difficulty of building extensive datasets for general [...] Read more.
Nested named entity recognition (NER) is a task that identifies hierarchically structured entities, where one entity can contain other entities within its span. This study introduces a nested NER model for few-shot learning environments, addressing the difficulty of building extensive datasets for general named entities. We enhance the Biaffine nested NER model by modifying its output layer to incorporate label semantic information through a novel label description embedding (LDE) approach, improving performance with limited training data. Our method replaces the traditional biaffine classifier with a label attention mechanism that leverages comprehensive natural language descriptions of entity types, encoded using BERT to capture rich semantic relationships between labels and input spans. We conducted comprehensive experiments on four benchmark datasets: GENIA (nested NER), ACE 2004 (nested NER), ACE 2005 (nested NER), and CoNLL 2003 English (flat NER). Performance was evaluated across multiple few-shot scenarios (1-shot, 5-shot, 10-shot, and 20-shot) using F1-measure as the primary metric, with five different random seeds to ensure robust evaluation. We compared our approach against strong baselines including BERT-LSTM-CRF with nested tags, the original Biaffine model, and recent few-shot NER methods (FewNER, FIT, LPNER, SpanNER). Results demonstrate significant improvements across all few-shot scenarios. On GENIA, our LDE model achieves 45.07% F1 in five-shot learning compared to 30.74% for the baseline Biaffine model (46.4% relative improvement). On ACE 2005, we obtain 44.24% vs. 32.38% F1 in five-shot scenarios (36.6% relative improvement). The model shows consistent gains in 10-shot (57.19% vs. 49.50% on ACE 2005) and 20-shot settings (64.50% vs. 58.21% on ACE 2005). Ablation studies confirm that semantic information from label descriptions is the key factor enabling robust few-shot performance. Transfer learning experiments demonstrate the model’s ability to leverage knowledge from related domains. Our findings suggest that incorporating label semantic information can substantially enhance NER models in low-resource settings, opening new possibilities for applying NER in specialized domains or languages with limited annotated data. Full article
(This article belongs to the Special Issue Applications of Natural Language Processing to Data Science)
25 pages, 831 KiB  
Article
An Interpretive Structural Modeling Approach for Biomedical Innovation Strategy Models with Sustainability
by Mu-Hsun Tseng, Jian-Yu Lian, An-Shun Liu and Peng-Ting Chen
Sustainability 2025, 17(15), 6740; https://doi.org/10.3390/su17156740 - 24 Jul 2025
Abstract
In recent years, the biomedical startup industry has flourished, and yet, it still faces challenges in adapting to changing market demands. Meanwhile, the widespread use of single-use medical devices generates significant waste, posing threats to environmental sustainability. Addressing this issue has become a [...] Read more.
In recent years, the biomedical startup industry has flourished, and yet, it still faces challenges in adapting to changing market demands. Meanwhile, the widespread use of single-use medical devices generates significant waste, posing threats to environmental sustainability. Addressing this issue has become a critical challenge for humanity today. The study aimed to delve into the specific difficulties faced by Taiwanese biomedical entrepreneurs during the innovation and development of medical devices from a sustainability perspective and to explore solutions. This study collected first-hand experiences and insights from Taiwanese biomedical entrepreneurs through a literature review and expert questionnaires. It employed Interpretive Structural Modeling to analyze the development stages and interrelationships of biomedical device startups for building sustainable biomedical innovation. The Clinical Needs Assessment is revealed as the most influential factor, shaping Regulatory Feasibility Evaluation, Clinical Trial Execution, and Market Access Compliance. Our findings provide a structured problem-solving framework to assist biomedical startups in overcoming challenges while incorporating energy-saving and carbon reduction processes to achieve environment sustainability goals. The results of this study show that biomedical innovation practitioners should prioritize integrating sustainability considerations directly into the earliest stage of a Clinical Needs Assessment. Full article
(This article belongs to the Special Issue Advances in Business Model Innovation and Corporate Sustainability)
Show Figures

Figure 1

21 pages, 2084 KiB  
Article
The Analysis of Fire Protection for Selected Historical Buildings as a Part of Crisis Management: Slovak Case Study
by Jana Jaďuďová, Linda Makovická Osvaldová, Stanislava Gašpercová and David Řehák
Sustainability 2025, 17(15), 6743; https://doi.org/10.3390/su17156743 - 24 Jul 2025
Abstract
Historical buildings are exposed to an increased risk of fire. The direct influence comes from the buildings’ structural design and the fire protection level. The fundamental principle for reducing the loss of heritage value in historical buildings due to fire is fire protection, [...] Read more.
Historical buildings are exposed to an increased risk of fire. The direct influence comes from the buildings’ structural design and the fire protection level. The fundamental principle for reducing the loss of heritage value in historical buildings due to fire is fire protection, as part of crisis management. This article focuses on selected castle buildings from Slovakia. Three castle buildings were selected based on their location in the country. All of them are currently used for museum purposes. Using an analytical form, we assessed fire hazards and fire safety measures in two parts, calculated the fire risk index, and proposed solutions. Qualitative research, which is more suitable for the issue at hand, was used to evaluate the selected objects. The main methods used in the research focused on visual assessment of the current condition of the objects and analysis of fire documentation and its comparison with currently valid legal regulations. Based on the results, we can conclude that Kežmarok Castle (part of the historical city center) has a small fire risk (fire risk index = 13 points). Trenčín Castle (situated on a rock above the city) and Stará Ľubovňa Castle (situated on a limestone hill outside the city, surrounded by forest) have an increased risk of fire (fire risk index = 50–63). Significant risk sources identified included surrounding forest areas, technical failures related to outdated electrical installations, open flames during cultural events, the concentration of highly flammable materials, and complex evacuation routes for both people and museum collections. Full article
27 pages, 4442 KiB  
Article
Rethinking Traditional Playgrounds: Temporary Landscape Interventions to Advance Informal Early STEAM Learning in Outdoors
by Nazia Afrin Trina, Muntazar Monsur, Nilda Cosco, Leehu Loon, Stephanie Shine and Ann Mastergeorge
Educ. Sci. 2025, 15(8), 952; https://doi.org/10.3390/educsci15080952 - 24 Jul 2025
Abstract
Traditional playground settings are often less effective in fostering STEAM (Science, Technology, Engineering, Arts, and Mathematics)-related activities, as fixed play structures tend to restrict the diversity of play behaviors and inhibit children’s ability to engage in self-directed, imaginative exploration. Using a research-through-design methodology, [...] Read more.
Traditional playground settings are often less effective in fostering STEAM (Science, Technology, Engineering, Arts, and Mathematics)-related activities, as fixed play structures tend to restrict the diversity of play behaviors and inhibit children’s ability to engage in self-directed, imaginative exploration. Using a research-through-design methodology, this study investigated how playground design (temporary landscape interventions) influences children’s engagement in informal STEAM learning activities and enhances the STEAM learning affordances of the playground. Conducted at an early learning center in Lubbock, Texas, the research involved GIS-based Environment–Behavior Mapping (E-B Mapping) and video analysis of 21 preschool-age children to compare pre- and post-intervention STEAM learning behaviors. The intervention incorporated fourteen nature-based landscape elements—such as sand and water play areas, sensory gardens, loose parts, art areas, etc.—to enhance affordances for informal STEAM activities. The results showed a marked decrease in passive behaviors and a notable rise in constructive play; collaborative interactions; and STEAM-related activities such as building, hypothesizing, observing, and experimenting. Engagement shifted away from fixed play structures to more diverse and naturalized play settings. The findings underscore the critical role of integrating diverse landscape settings and elements into playgrounds in enriching STEAM learning experiences for young children. Full article
(This article belongs to the Special Issue Interdisciplinary Approaches to STEM Education)
15 pages, 2683 KiB  
Article
Mechanical Properties and Fatigue Life Estimation of Selective-Laser-Manufactured Ti6Al4V Alloys in a Comparison Between Annealing Treatment and Hot Isostatic Pressing
by Xiangxi Gao, Xubin Ye, Yuhuai He, Siqi Ma and Pengpeng Liu
Materials 2025, 18(15), 3475; https://doi.org/10.3390/ma18153475 - 24 Jul 2025
Abstract
Selective laser melting (SLM) offers a novel approach for manufacturing intricate structures, broadening the application of titanium alloy parts in the aerospace industry. After the build period, heat treatments of annealing (AT) and hot isostatic pressing (HIP) are often implemented, but a comparison [...] Read more.
Selective laser melting (SLM) offers a novel approach for manufacturing intricate structures, broadening the application of titanium alloy parts in the aerospace industry. After the build period, heat treatments of annealing (AT) and hot isostatic pressing (HIP) are often implemented, but a comparison of their mechanical performances based on the specimen orientation is still lacking. In this study, horizontally and vertically built Ti6Al4V SLM specimens that underwent the aforementioned treatments, together with their microstructural and defect characteristics, were, respectively, investigated using metallography and X-ray imaging. The mechanical properties and failure mechanism, via fracture analysis, were obtained. The critical factors influencing the mechanical properties and the correlation of the fatigue lives and failure origins were also estimated. The results demonstrate that the mechanical performances were determined by the α-phase morphology and defects, which included micropores and fewer large lack-of-fusion defects. Following the coarsening of the α phase, the strength decreased while the plasticity remained stable. With the discrepancy in the defect occurrence, anisotropy and scatter of the mechanical performances were introduced, which was significantly alleviated with HIP treatment. The fatigue failure origins were governed by defects and the α colony, which was composed of parallel α phases. Approximately linear relationships correlating fatigue lives with the X-parameter and maximum stress amplitude were, respectively, established in the AT and HIP states. The results provide an understanding of the technological significance of the evaluation of mechanical properties. Full article
(This article belongs to the Section Metals and Alloys)
42 pages, 2167 KiB  
Systematic Review
Towards Sustainable Construction: Systematic Review of Lean and Circular Economy Integration
by Abderrazzak El Hafiane, Abdelali En-nadi and Mohamed Ramadany
Sustainability 2025, 17(15), 6735; https://doi.org/10.3390/su17156735 - 24 Jul 2025
Abstract
The construction sector significantly contributes to global environmental degradation through intensive resource extraction, high energy consumption, and substantial waste generation. Addressing this unsustainable trajectory requires integrated approaches that simultaneously improve operational efficiency and material circularity. Lean Construction (LC) and Circular Economy (CE) offer [...] Read more.
The construction sector significantly contributes to global environmental degradation through intensive resource extraction, high energy consumption, and substantial waste generation. Addressing this unsustainable trajectory requires integrated approaches that simultaneously improve operational efficiency and material circularity. Lean Construction (LC) and Circular Economy (CE) offer complementary frameworks for enhancing process performance and reducing environmental impacts. However, their combined implementation remains underdeveloped and fragmented. This study conducts a systematic literature review (SLR) of 18 peer-reviewed articles published between 2010 and 2025, selected using PRISMA 2020 guidelines and sourced from Scopus and Web of Science databases. A mixed-method approach combines bibliometric mapping and qualitative content analysis to investigate how LC and CE are jointly operationalized in construction contexts. The findings reveal that LC improves cost, time, and workflow reliability, while CE enables reuse, modularity, and lifecycle extension. Integration is further supported by digital tools—such as Building Information Modelling (BIM), Design for Manufacture and Assembly (DfMA), and digital twins—which enhance traceability and flow optimization. Nonetheless, persistent barriers—including supply chain fragmentation, lack of standards, and regulatory gaps—continue to constrain widespread adoption. This review identifies six strategic enablers for LC-CE integration: crossdisciplinary competencies, collaborative governance, interoperable digital systems, standardized indicators, incentive-based regulation, and pilot demonstrator projects. By consolidating fragmented evidence, the study provides a structured research agenda and practical insights to guide the transition toward more circular, efficient, and sustainable construction practices. Full article
Show Figures

Figure 1

17 pages, 2181 KiB  
Article
Sustainability Analysis of the Global Hydrogen Trade Network from a Resilience Perspective: A Risk Propagation Model Based on Complex Networks
by Sai Chen and Yuxi Tian
Energies 2025, 18(15), 3944; https://doi.org/10.3390/en18153944 - 24 Jul 2025
Abstract
Hydrogen is being increasingly integrated into the international trade system as a clean and flexible energy carrier, motivated by the global energy transition and carbon neutrality objectives. The rapid expansion of the global hydrogen trade network has simultaneously exposed several sustainability challenges, including [...] Read more.
Hydrogen is being increasingly integrated into the international trade system as a clean and flexible energy carrier, motivated by the global energy transition and carbon neutrality objectives. The rapid expansion of the global hydrogen trade network has simultaneously exposed several sustainability challenges, including a centralized structure, overdependence on key countries, and limited resilience to external disruptions. Based on this, we develop a risk propagation model that incorporates the absorption capacity of nodes to simulate the propagation of supply shortage risks within the global hydrogen trade network. Furthermore, we propose a composite sustainability index constructed from structural, economic, and environmental resilience indicators, enabling a systematic assessment of the network’s sustainable development capacity under external shock scenarios. Findings indicate the following: (1) The global hydrogen trade network is undergoing a structural shift from a Western Europe-dominated unipolar configuration to a more polycentric pattern. Countries such as China and Singapore are emerging as key hubs linking Eurasian regions, with trade relationships among nations becoming increasingly dense and diversified. (2) Although supply shortage shocks trigger structural disturbances, economic losses, and risks of carbon rebound, their impacts are largely concentrated in a limited number of hub countries, with relatively limited disruption to the overall sustainability of the system. (3) Countries exhibit significant heterogeneity in structural, economic, and environmental resilience. Risk propagation demonstrates an uneven pattern characterized by hub-induced disruptions, chain-like transmission, and localized clustering. Accordingly, policy recommendations are proposed, including the establishment of a polycentric coordination mechanism, the enhancement of regional emergency coordination mechanisms, and the advancement of differentiated capacity-building efforts. Full article
Show Figures

Figure 1

32 pages, 2043 KiB  
Review
Review on Metal (-Oxide, -Nitride, -Oxy-Nitride) Thin Films: Fabrication Methods, Applications, and Future Characterization Methods
by Georgi Kotlarski, Daniela Stoeva, Dimitar Dechev, Nikolay Ivanov, Maria Ormanova, Valentin Mateev, Iliana Marinova and Stefan Valkov
Coatings 2025, 15(8), 869; https://doi.org/10.3390/coatings15080869 - 24 Jul 2025
Abstract
During the last few years, the requirements for highly efficient, sustainable, and versatile materials in modern biomedicine, aircraft and aerospace industries, automotive production, and electronic and electrical engineering applications have increased. This has led to the development of new and innovative methods for [...] Read more.
During the last few years, the requirements for highly efficient, sustainable, and versatile materials in modern biomedicine, aircraft and aerospace industries, automotive production, and electronic and electrical engineering applications have increased. This has led to the development of new and innovative methods for material modification and optimization. This can be achieved in many different ways, but one such approach is the application of surface thin films. They can be conductive (metallic), semi-conductive (metal-ceramic), or isolating (polymeric). Special emphasis is placed on applying semi-conductive thin films due to their unique properties, be it electrical, chemical, mechanical, or other. The particular thin films of interest are composite ones of the type of transition metal oxide (TMO) and transition metal nitride (TMN), due to their widespread configurations and applications. Regardless of the countless number of studies regarding the application of such films in the aforementioned industrial fields, some further possible investigations are necessary to find optimal solutions for modern problems in this topic. One such problem is the possibility of characterization of the applied thin films, not via textbook approaches, but through a simple, modern solution using their electrical properties. This can be achieved on the basis of measuring the films’ electrical impedance, since all different semi-conductive materials have different impedance values. However, this is a huge practical work that necessitates the collection of a large pool of data and needs to be based on well-established methods for both characterization and formation of the films. A thorough review on the topic of applying thin films using physical vapor deposition techniques (PVD) in the field of different modern applications, and the current results of such investigations are presented. Furthermore, current research regarding the possible methods for applying such films, and the specifics behind them, need to be summarized. Due to this, in the present work, the specifics of applying thin films using PVD methods and their expected structure and properties were evaluated. Special emphasis was paid to the electrical impedance spectroscopy (EIS) method, which is typically used for the investigation and characterization of electrical systems. This method has increased in popularity over the last few years, and its applicability in the characterization of electrical systems that include thin films formed using PVD methods was proven many times over. However, a still lingering question is the applicability of this method for backwards engineering of thin films. Currently, the EIS method is used in combination with traditional techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), and others. There is, however, a potential to predict the structure and properties of thin films using purely a combination of EIS measurements and complex theoretical models. The current progress in the development of the EIS measurement method was described in the present work, and the trend is such that new theoretical models and new practical testing knowledge was obtained that help implement the method in the field of thin films characterization. Regardless of this progress, much more future work was found to be necessary, in particular, practical measurements (real data) of a large variety of films, in order to build the composition–structure–properties relationship. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

20 pages, 3197 KiB  
Article
Residential Buildings Use in Historic Buffer Zone: A Case Study of Nagbahal, Patan
by Sujata Shakya Bajracharya, Sudha Shrestha, Martina Maria Keitsch and Ashim Ratna Bajracharya
Architecture 2025, 5(3), 52; https://doi.org/10.3390/architecture5030052 - 23 Jul 2025
Abstract
Historic cities across the globe have experienced profound changes in their spatial and functional characteristics over time, and the historic core of Patan, Nepal, is no exception. The area surrounding Patan Durbar Square was designated as a UNESCO World Heritage Site in 1979. [...] Read more.
Historic cities across the globe have experienced profound changes in their spatial and functional characteristics over time, and the historic core of Patan, Nepal, is no exception. The area surrounding Patan Durbar Square was designated as a UNESCO World Heritage Site in 1979. Between 2003 and 2007, the Kathmandu Valley was placed on UNESCO’s List of World Heritage in Danger, largely due to various factors, including the rapid and unsympathetic transformation of its buffer zone. This study focuses on the Nagbahal neighborhood, a culturally significant locality within this buffer area, to explore a community-rooted and sustainable approach to conservation. Employing a mixed-methods research design, the study integrates qualitative and quantitative data gathered through interviews and surveys of native residents. It investigates the drivers and impacts of changes in the function, ownership, and physical form of traditional residential buildings, and assesses whether these changes align with principles of sustainable heritage conservation—social, cultural, economic, and environmental. While challenges persist, including the proliferation of reinforced concrete structures and limited enforcement of heritage policies, the findings reveal that Nagbahal remains resilient due to strong local traditions, active religious institutions, and cohesive social practices. The study offers transferable lessons for sustainable conservation in living heritage buffer zones globally. Full article
Show Figures

Figure 1

30 pages, 13869 KiB  
Article
Toward a Sustainable and Efficient Design Process: A BIM-Based Organisational Framework for Public Agencies—An Italian Case Study
by Kavita Raj, Silvia Mastrolembo Ventura, Sara Comai and Angelo Luigi Camillo Ciribini
Sustainability 2025, 17(15), 6716; https://doi.org/10.3390/su17156716 - 23 Jul 2025
Abstract
The implementation of Building Information Modelling (BIM) in public design processes enhances efficiency, transparency, and sustainability. However, public agencies often encounter significant barriers, particularly regarding organisational and managerial readiness. This study develops a BIM implementation framework tailored to the specific needs of an [...] Read more.
The implementation of Building Information Modelling (BIM) in public design processes enhances efficiency, transparency, and sustainability. However, public agencies often encounter significant barriers, particularly regarding organisational and managerial readiness. This study develops a BIM implementation framework tailored to the specific needs of an Italian public agency. The research adopts a qualitative approach, combining 15 semi-structured interviews with process mapping Using (Business Process Modeling Notation) BPMN. The current as-is workflows were analysed and validated by internal stakeholders. Based on this analysis, strategic objectives were defined, relevant (Building Information Modelling) BIM uses were selected, and revised to-be processes were proposed, integrating new roles and responsibilities according to the standards. The framework addresses both technical and organisational dimensions of BIM adoption, highlighting the need for training, coordination, and stakeholder engagement. The main outcomes include a structured process model, a priority-based selection of BIM uses, and a role matrix supporting organisational transformation. The added value for researchers lies in the replicable methodology that combines empirical process mapping with implementation planning. For practitioners, especially consultants in sustainable design, the study offers a practical roadmap for aligning BIM adoption with project goals, regulatory compliance, and environmental performance targets in complex public sector contexts. Full article
Show Figures

Figure 1

29 pages, 759 KiB  
Article
Interpretable Fuzzy Control for Energy Management in Smart Buildings Using JFML-IoT and IEEE Std 1855-2016
by María Martínez-Rojas, Carlos Cano, Jesús Alcalá-Fdez and José Manuel Soto-Hidalgo
Appl. Sci. 2025, 15(15), 8208; https://doi.org/10.3390/app15158208 - 23 Jul 2025
Abstract
This paper presents an interpretable and modular framework for energy management in smart buildings based on fuzzy logic and the IEEE Std 1855-2016. The proposed system builds upon the JFML-IoT library, enabling the integration and execution of fuzzy rule-based systems on resource-constrained IoT [...] Read more.
This paper presents an interpretable and modular framework for energy management in smart buildings based on fuzzy logic and the IEEE Std 1855-2016. The proposed system builds upon the JFML-IoT library, enabling the integration and execution of fuzzy rule-based systems on resource-constrained IoT devices using a lightweight and extensible architecture. Unlike conventional data-driven controllers, this approach emphasizes semantic transparency, expert-driven control logic, and compliance with fuzzy markup standards. The system is designed to enhance both operational efficiency and user comfort through transparent and explainable decision-making. A four-layer architecture structures the system into Perception, Communication, Processing, and Application layers, supporting real-time decisions based on environmental data. The fuzzy logic rules are defined collaboratively with domain experts and encoded in Fuzzy Markup Language to ensure interoperability and formalization of expert knowledge. While adherence to IEEE Std 1855-2016 facilitates system integration and standardization, the scientific contribution lies in the deployment of an interpretable, IoT-based control system validated in real conditions. A case study is conducted in a realistic indoor environment, using temperature, humidity, illuminance, occupancy, and CO2 sensors, along with HVAC and lighting actuators. The results demonstrate that the fuzzy inference engine generates context-aware control actions aligned with expert expectations. The proposed framework also opens possibilities for incorporating user-specific preferences and adaptive comfort strategies in future developments. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
26 pages, 312 KiB  
Article
REN+HOMES Positive Carbon Building Methodology in Co-Design with Residents
by Dorin Beu, Alessio Pacchiana, Elena Rastei, Horaţiu Albu and Theodor Contolencu
Architecture 2025, 5(3), 51; https://doi.org/10.3390/architecture5030051 - 23 Jul 2025
Abstract
This article demonstrates how positioning residents as active co-designers fundamentally transforms both the process and outcomes of carbon-positive building development. Through structured collaborative workshops, shared decision-making protocols, and continuous partnership throughout the building lifecycle, the REN+HOMES Positive Carbon Building methodology challenges the conventional [...] Read more.
This article demonstrates how positioning residents as active co-designers fundamentally transforms both the process and outcomes of carbon-positive building development. Through structured collaborative workshops, shared decision-making protocols, and continuous partnership throughout the building lifecycle, the REN+HOMES Positive Carbon Building methodology challenges the conventional expert-driven approach to sustainable construction. Developed and validated through the H2020 REN+HOMES project, this resident-centered approach achieved remarkable technical performance—65.9% reduction in final energy demand—while simultaneously enhancing community ownership and long-term sustainability practices. By integrating participatory design with Zero Emissions Building (ZEB) criteria, renewable energy systems, and national carbon offset programs, the methodology proves that resident collaboration is not merely beneficial but essential for creating buildings that truly serve both environmental and human needs. This research establishes a new paradigm where technical excellence emerges from authentic partnership between residents and sustainability experts, offering a replicable framework for community-driven environmental regeneration. Full article
50 pages, 21555 KiB  
Article
A Disappearing Cultural Landscape: The Heritage of German-Style Land Use and Pug-And-Pine Architecture in Australia
by Dirk H. R. Spennemann
Land 2025, 14(8), 1517; https://doi.org/10.3390/land14081517 - 23 Jul 2025
Abstract
This paper investigates the cultural landscapes established by nineteenth-century German immigrants in South Australia and the southern Riverina of New South Wales, with particular attention to settlement patterns, architectural traditions and toponymic transformation. German immigration to Australia, though numerically modest compared to the [...] Read more.
This paper investigates the cultural landscapes established by nineteenth-century German immigrants in South Australia and the southern Riverina of New South Wales, with particular attention to settlement patterns, architectural traditions and toponymic transformation. German immigration to Australia, though numerically modest compared to the Americas, significantly shaped local communities, especially due to religious cohesion among Lutheran migrants. These settlers established distinct, enduring rural enclaves characterized by linguistic, religious and architectural continuity. The paper examines three manifestations of these cultural landscapes. A rich toponymic landscape was created by imposing on natural landscape features and newly founded settlements the names of the communities from which the German settlers originated. It discusses the erosion of German toponyms under wartime nationalist pressures, the subsequent partial reinstatement and the implications for cultural memory. The study traces the second manifestation of a cultural landscapes in the form of nucleated villages such as Hahndorf, Bethanien and Lobethal, which often followed the Hufendorf or Straßendorf layout, integrating Silesian land-use principles into the Australian context. Intensification of land use through housing subdivisions in two communities as well as agricultural intensification through broad acre farming has led to the fragmentation (town) and obliteration (rural) of the uniquely German form of land use. The final focus is the material expression of cultural identity through architecture, particularly the use of traditional Fachwerk (half-timbered) construction and adaptations such as pug-and-pine walling suited to local materials and climate. The paper examines domestic forms, including the distinctive black kitchen, and highlights how environmental and functional adaptation reshaped German building traditions in the antipodes. Despite a conservation movement and despite considerable documentation research in the late twentieth century, the paper shows that most German rural structures remain unlisted and vulnerable. Heritage neglect, rural depopulation, economic rationalization, lack of commercial relevance and local government policy have accelerated the decline of many of these vernacular buildings. The study concludes by problematizing the sustainability of conserving German Australian rural heritage in the face of regulatory, economic and demographic pressures. With its layering of intangible (toponymic), structural (buildings) and land use (cadastral) features, the examination of the cultural landscape established by nineteenth-century German immigrants adds to the body of literature on immigrant communities, settler colonialism and landscape research. Full article
Show Figures

Figure 1

36 pages, 4189 KiB  
Review
The Fungus Among Us: Innovations and Applications of Mycelium-Based Composites
by Zahra Parhizi, John Dearnaley, Kate Kauter, Deirdre Mikkelsen, Priya Pal, Tristan Shelley and Paulomi (Polly) Burey
J. Fungi 2025, 11(8), 549; https://doi.org/10.3390/jof11080549 - 23 Jul 2025
Abstract
Mycelium-based composites (MBCs) are an emerging category of cost-effective and environmentally sustainable materials that are attracting significant research and commercial interest across various industries, including construction, manufacturing, agriculture, and biomedicine. These materials harness the natural growth of fungi as a low-energy bio-fabrication method, [...] Read more.
Mycelium-based composites (MBCs) are an emerging category of cost-effective and environmentally sustainable materials that are attracting significant research and commercial interest across various industries, including construction, manufacturing, agriculture, and biomedicine. These materials harness the natural growth of fungi as a low-energy bio-fabrication method, converting abundant agricultural by-products and waste into sustainable alternatives to energy-intensive synthetic construction materials. Their affordability and eco-friendly characteristics make them attractive for both research and commercialisation. Currently, mycelium-based foams and sandwich composites are being actively developed for applications in construction. These materials offer exceptional thermal insulation, excellent acoustic absorption, and superior fire safety compared to conventional building materials like synthetic foams and engineered wood. As a result, MBCs show great potential for applications in thermal and acoustic insulation. However, their foam-like mechanical properties, high water absorption, and limited documentation of material properties restrict their use to non- or semi-structural roles, such as insulation, panelling, and furniture. This paper presents a comprehensive review of the fabrication process and the factors affecting the production and performance properties of MBCs. It addresses key elements such as fungal species selection, substrate choice, optimal growth conditions, dehydration methods, post-processing techniques, mechanical and physical properties, termite resistance, cost comparison, and life cycle assessment. Full article
Back to TopTop