Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = buckling mode shape

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1757 KiB  
Article
Development of a Design Formula for Estimating the Residual Strength of Corroded Stiffened Cylindrical Structures
by Sang-Hyun Park, Byoungjae Park, Sang-Rai Cho, Sung-Ju Park and Kookhyun Kim
J. Mar. Sci. Eng. 2025, 13(7), 1381; https://doi.org/10.3390/jmse13071381 - 21 Jul 2025
Viewed by 302
Abstract
This paper develops a novel design formula to estimate the residual strength of corroded stiffened cylindrical structures. It extends a previously established ultimate strength formulation for intact cylinders by introducing a corrosion-induced strength reduction factor. The foundational formula considers failure mode interactions like [...] Read more.
This paper develops a novel design formula to estimate the residual strength of corroded stiffened cylindrical structures. It extends a previously established ultimate strength formulation for intact cylinders by introducing a corrosion-induced strength reduction factor. The foundational formula considers failure mode interactions like yielding, local buckling, overall buckling, and stiffener tripping. This research utilizes recent experimental and numerical investigations on corroded ring-stiffened cylinder models. Experimental results validate the numerical analysis method, showing good agreement in collapse pressures (2–4% difference) and shapes. The validated numerical method is then subject to an extensive parametric study, systematically varying corrosion characteristics. Results indicate a clear relationship between corrosion volume and strength reduction, with overall buckling being more sensitive. Based on these comprehensive results, a new empirical strength reduction factor (ρc) is derived as a function of the corrosion volume ratio (Vnon). This factor is integrated into the existing ultimate strength formula, allowing direct residual strength estimation for corroded structures. The proposed formula is rigorously verified against experimental and numerical data, showing excellent agreement (mean 1.00, COV 5.86%). This research provides a practical, accurate design tool for assessing the integrity and service life of corroded stiffened cylindrical structures. Full article
Show Figures

Figure 1

18 pages, 1933 KiB  
Article
LTBWTB: A Mathematica Software to Evaluate the Lateral-Torsional Buckling Load of Web-Tapered Mono-Symmetric I-Section Beams
by Tolga Yılmaz
Appl. Sci. 2025, 15(13), 7572; https://doi.org/10.3390/app15137572 - 6 Jul 2025
Viewed by 305
Abstract
Web-tapered beams with I-sections, which are aesthetic and structurally efficient, have been widely used in steel structures. Web-tapered I-section beams bent about the strong axis may undergo out-of-plane buckling through lateral deflection and twisting. This primary stability failure mode in slender beams is [...] Read more.
Web-tapered beams with I-sections, which are aesthetic and structurally efficient, have been widely used in steel structures. Web-tapered I-section beams bent about the strong axis may undergo out-of-plane buckling through lateral deflection and twisting. This primary stability failure mode in slender beams is known as lateral-torsional buckling (LTB). Unlike prismatic I-beams, the complex mode shape of web-tapered I-section beams makes it challenging or even impossible to derive a closed-form expression for the LTB load under certain transverse loading conditions. Therefore, the LTB assessment of web-tapered I-section beams is primarily performed using finite element analysis (FEA). However, this method involves multiple steps, requires specialized expertise, and demands significant computational resources, making it impractical in certain cases. This study proposes an analytical approach based on the Ritz method to evaluate the LTB of simply supported web-tapered beams with doubly or mono-symmetric I-sections. The proposed analytical method accounts for web tapering, I-section mono-symmetry, types and positions of transverse loads, and beam slenderness. The method was implemented in Mathematica to allow the rapid evaluation of the LTB capacity of web-tapered I-beams. The study validates the LTB loads computed using the developed Mathematica package against results from shell-based FEA. An excellent agreement was observed between the analytically and numerically calculated LTB loads. Full article
Show Figures

Figure 1

15 pages, 16118 KiB  
Article
Axial Tensile Experiment of the Lap-Type Asymmetric K-Shaped Square Tubular Joints with Built-In Stiffeners
by Zhihua Zhong, Peiyu Peng, Zheweng Zhu, Xiang Ao, Shiwei Xiong, Jinkun Huang, Lihong Zhou and Xiaochuan Bai
Buildings 2025, 15(10), 1634; https://doi.org/10.3390/buildings15101634 - 13 May 2025
Viewed by 321
Abstract
To study the mechanical properties of asymmetric K-shaped square tubular joints with built-in stiffening rib lap joints, axial tensile tests were carried out on one K-shaped joint without built-in stiffening ribs and four K-shaped joints with built-in stiffening ribs using an electro-hydraulic servo [...] Read more.
To study the mechanical properties of asymmetric K-shaped square tubular joints with built-in stiffening rib lap joints, axial tensile tests were carried out on one K-shaped joint without built-in stiffening ribs and four K-shaped joints with built-in stiffening ribs using an electro-hydraulic servo structural testing system. The effects of the addition of stiffening ribs and the welding method of the stiffening ribs on the mechanical properties were studied comparatively. The failure mode of the K-shaped joint was obtained, and the strain distribution and peak displacement reaction force in the nodal region were analyzed. A finite element analysis of the K-shaped joint was carried out, and the finite element results were compared with the experimental results. The results showed that the addition of transverse reinforcement ribs and more complete welds shared the squeezing effect of the brace on the chord. Arranging more reinforcing ribs in the fittings makes the chord more uniformly stressed and absorbs more energy while increasing the flexural load capacity of the fittings’ side plates. The presence of a weld gives a short-lived temperature increase in the area around the crack, and the buckling of the structure causes the surface temperature in the buckling area to continue to increase for some time. The temperature change successfully localized where the structure was deforming and creating cracks. The addition of the reinforcing ribs resulted in a change in the deformation pattern of the model, and the difference occurred because the flexural capacity of the brace with the added reinforcing ribs was greater than that of the side plate buckling. Full article
(This article belongs to the Special Issue Application of Experiment and Simulation Techniques in Engineering)
Show Figures

Figure 1

19 pages, 8425 KiB  
Article
Effects of Printing Paths on Compressive Strength of 3D-Printed Continuous Fiber-Reinforced Composite Lattice Unit Cell
by Min-Hyeok Jeon, Geun Sik Shin, Jun Yeon Hwang, Thuan Ho-Nguyen-Tan, Minkook Kim and Soon Ho Yoon
Polymers 2025, 17(7), 850; https://doi.org/10.3390/polym17070850 - 22 Mar 2025
Viewed by 775
Abstract
Three-dimensional printing is a highly promising manufacturing technology that enables easy production of complex shapes. Composite lattice structures are highly efficient, having the advantages of fiber-reinforced composites and the excellent structural performance of lattice configurations. Highly efficient structures can be developed by combining [...] Read more.
Three-dimensional printing is a highly promising manufacturing technology that enables easy production of complex shapes. Composite lattice structures are highly efficient, having the advantages of fiber-reinforced composites and the excellent structural performance of lattice configurations. Highly efficient structures can be developed by combining the benefits of 3D printing and composite lattice structures. This study examined the effect of printing path and axial angle in joint areas on the compressive strength of composite lattice unit cells fabricated via continuous fiber 3D printing. Compression tests were conducted to analyze deformation, failure modes, and causes of failure. A finite element model was used to analyze buckling behavior and establish design criteria. Results showed that the printing path significantly influenced failure mode and strength, while a fabrication method without a defect at the joint was important for improving structural performance. Finally, design criteria, in terms of the knockdown factor and in-plane bifurcation buckling behavior, were developed based on experimental and numerical results. Full article
Show Figures

Figure 1

22 pages, 9353 KiB  
Article
Numerical Investigation of the Axial Compressive Behavior of a Novel L-Shaped Concrete-Filled Steel Tube Column
by Fujian Yang, Yi Bao, Muzi Du and Xiaoshuang Li
Materials 2025, 18(4), 897; https://doi.org/10.3390/ma18040897 - 19 Feb 2025
Viewed by 526
Abstract
A novel L-shaped concrete-filled steel tube (CFST) column is proposed in this study. A finite element model of the column is developed using ABAQUS software to analyze its load transfer mechanism and axial compressive behavior. The effects of factors such as the steel [...] Read more.
A novel L-shaped concrete-filled steel tube (CFST) column is proposed in this study. A finite element model of the column is developed using ABAQUS software to analyze its load transfer mechanism and axial compressive behavior. The effects of factors such as the steel strength, steel tube thickness, support plate configuration, and perforation of the support plates on the compressive performance of the column are investigated. The simulation results reveal that the column exhibits robust axial compressive performance. Increasing the steel strength and incorporating support plates (SP) effectively enhance the column’s compressive bearing capacity and positively influence the bearing capacity coefficient (δ). However, increasing the steel tube thickness results in a reduction in δ, indicating that the rate of increase in the bearing capacity diminishes with increasing thickness. The failure mode is primarily characterized by local buckling in the midsection of the steel tube’s concave corner. Measures such as increasing the steel strength and tube thickness and the use of support plates help to mitigate buckling at the concave corner, improve concrete confinement, and enhance the overall compressive performance of the column. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

28 pages, 4802 KiB  
Article
An Analytical Study on the Thermal Post-Buckling Behaviors of Geometrically Imperfect FRC-Laminated Beams Using a Modified Zig-Zag Beam Model
by Zhoumi Wang and Qingchun Meng
Aerospace 2025, 12(2), 138; https://doi.org/10.3390/aerospace12020138 - 12 Feb 2025
Cited by 1 | Viewed by 783
Abstract
An asymptotic analytical method is proposed to study the thermal post-buckling behaviors of fiber-reinforced composite (FRC)-laminated beams with geometric imperfections employing a modified zig-zag beam model. The beam model satisfied the discontinuity of the shear deformation at the interlayer interfaces and the stress [...] Read more.
An asymptotic analytical method is proposed to study the thermal post-buckling behaviors of fiber-reinforced composite (FRC)-laminated beams with geometric imperfections employing a modified zig-zag beam model. The beam model satisfied the discontinuity of the shear deformation at the interlayer interfaces and the stress boundary conditions on the upper and lower surfaces. Each imperfection was assumed to possess the same shape as the buckling mode, and the in-plane boundary conditions were presumed to be immovable. A two-step perturbation method was used to solve the nonlinear governing equations and obtain the equilibrium path. Subsequently, the initial defect sensitivity of the post-buckling behaviors was analyzed. The existence of the bifurcation-type equilibrium path for perfect beams is discussed in depth. Load–deflection curves for beams with various boundary conditions and ply modes were plotted to illustrate these findings. The effects of the slenderness ratio, elastic modulus ratio, thermal expansion coefficient ratio, ply modes, and supported boundaries on the buckling and post-buckling behaviors were also investigated. The numerical results indicate that the slenderness ratio significantly influences the critical buckling temperature, with thicker beams exhibiting higher buckling resistance. The elastic modulus ratio also plays a crucial role, with higher ratios leading to increased buckling strength. Additionally, the thermal expansion coefficient ratio affects the post-buckling load-bearing capacity, with lower ratios resulting in greater stability. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

18 pages, 7928 KiB  
Article
Numerical Study on the Shear Behavior of a Late-Model Cold-Formed Stainless Steel C-Shaped Beam
by Shuang-E Huangfu, Zhong Tao, Zhenglin Zhang, Zihao Wang and Ji Zhang
Materials 2025, 18(1), 91; https://doi.org/10.3390/ma18010091 - 28 Dec 2024
Viewed by 854
Abstract
The failure mode of thin-walled C-channel beams typically manifests as premature local buckling of the compression flange, leading to insufficient utilization of material strength in both the flange and the web. To address this issue, this study adopts the approach of increasing the [...] Read more.
The failure mode of thin-walled C-channel beams typically manifests as premature local buckling of the compression flange, leading to insufficient utilization of material strength in both the flange and the web. To address this issue, this study adopts the approach of increasing the number of bends to reinforce the flange and adding V-shaped stiffeners in the middle of the web to reduce the width-to-thickness ratio of the plate elements, thereby delaying local buckling and allowing for greater plastic deformation. However, the challenge lies in the irregular cross-sectional shape and complex buckling patterns. Therefore, this paper aims to explore a suitable cross-sectional form to expand the application of stainless steel members. Subsequently, three-point bending tests were conducted on the optimally designed stainless C-channel beam with folded flanges and mid-web stiffeners. The finite element simulation results were compared and analyzed with the experimental results to validate the model’s effectiveness. After verifying the correctness of the finite element model, this study conducted numerical parameterization research to investigate the effects of the shear span ratio, complex edge stiffeners, web height–thickness ratio, and V-shaped stiffener size on the shear performance of stainless steel folded flange C-beams. The results show that changing the shear span ratio has a significant impact on the shear capacity and vertical deflection deformation of components; increasing the web height–thickness ratio can enhance the shear capacity of the component; elevating the V-shaped stiffener size can slightly improve the shear capacity of components; and for the stainless steel C-shaped beam with folded flanges and intermediate stiffening webs, adding edge stiffeners cannot remarkably promote the shear capacity of the component. Full article
Show Figures

Figure 1

21 pages, 8384 KiB  
Article
Axial Compression Performance Test and Bearing Capacity Calculation Method of Square Steel Tube–Timber–Concrete Composite L-Shaped Columns
by Weisu Weng, Haonan Lv, Bo Liu, Minli Zhang, Ziteng Jing, Jianghao Hu and Shuqian Hu
Buildings 2024, 14(12), 4001; https://doi.org/10.3390/buildings14124001 - 17 Dec 2024
Cited by 1 | Viewed by 1003
Abstract
The square steel tube–timber–concrete composite L-shaped columns are lighter in weight due to the inclusion of wood and exhibit superior seismic performance. This combination not only reduces transportation and labor costs but also enhances earthquake resistance. The wood contributes lightness and flexibility, the [...] Read more.
The square steel tube–timber–concrete composite L-shaped columns are lighter in weight due to the inclusion of wood and exhibit superior seismic performance. This combination not only reduces transportation and labor costs but also enhances earthquake resistance. The wood contributes lightness and flexibility, the steel provides strength, and the concrete offers excellent compressive performance, thereby achieving an optimized design for performance. To investigate the axial compression performance of square steel tube–timber–concrete composite L-shaped short columns, axial compression tests were conducted on eight groups of L-shaped columns. The study examined ultimate load, failure modes, load–displacement relationships, initial stiffness, ductility, and bearing capacity improvement factors under different slenderness ratios, steel tube wall thicknesses, and wood content rates. The results show that the mechanical performance of the composite columns is excellent. Local buckling of the steel tube is the primary failure mode, with ‘bulging bands’ forming at the middle and ends. When the wood content reaches 25%, the synergy between the steel tube, concrete, and wood is optimal, significantly enhancing ductility and bearing capacity. The ductility of the specimen increased by 31.1%, and the bearing capacity increased by 4.14%. The bearing capacity increases with the steel tube wall thickness but decreases with increasing slenderness ratio. Additionally, based on the Mander principle and considering the partitioned constraint effects of concrete, a simplified calculation method for the axial compressive bearing capacity was proposed using the superposition principle. This method was validated to match well with the test results and can provide a reference for the design and application of these composite L-shaped columns. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 6621 KiB  
Article
The Buckling Behavior and Reliability Evaluation of a Cable-Stayed Bridge with Unique-Shaped Towers
by Yaoxiang Jia, Rujin Ma, Xiaoyu Zhou and Benjin Wang
Materials 2024, 17(24), 6124; https://doi.org/10.3390/ma17246124 - 14 Dec 2024
Viewed by 798
Abstract
Buckling is a significant concern for cable-stayed bridges that incorporate a large number of steel components, particularly those featuring unique-shaped towers that require further examination due to the intricate internal force and stress distribution. This paper investigates the buckling behavior of a cable-stayed [...] Read more.
Buckling is a significant concern for cable-stayed bridges that incorporate a large number of steel components, particularly those featuring unique-shaped towers that require further examination due to the intricate internal force and stress distribution. This paper investigates the buckling behavior of a cable-stayed bridge with inverted V-shaped towers. The cable tower is characterized by its unique design that consists of diagonal bracings and columns in a compression-bending state. A finite element model is established for the nonlinear buckling analysis of the bridge, revealing that the buckling failure mode of the bridge mainly concerns the tower columns that bear large bending moments and axial compressions. The buckling safety factors are analyzed under different loading conditions and design parameters, including the stiffening rib thickness, the width-to-thickness ratio, and the initial cable forces. It indicates that the design optimization can be achieved by using smaller and thinner ribs while maintaining the buckling safety factor above the required level in design specifications. Furthermore, the reliability evaluation of buckling safety is considered using Monte Carlo simulations, which incorporates the long-term effects of corrosion on steel components. Based on the identified buckling failure modes and safety factors, it suggests that the buckling resistance of the bridge is sufficient, though it can be further enhanced by using high-strength weathering steel on critical parts. Additionally, maintenance interventions are shown to be highly beneficial in improving the life-cycle performance of the structure. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

26 pages, 10251 KiB  
Article
Parametric Study of Girders with Sinusoidal Corrugated Web
by Krzysztof Śledziewski, Marcin Górecki, Jakub Gajewski and Michał Rogala
Materials 2024, 17(24), 6079; https://doi.org/10.3390/ma17246079 (registering DOI) - 12 Dec 2024
Cited by 1 | Viewed by 956
Abstract
Recently, steel girders with sinusoidal corrugations have become increasingly popular compared to those with traditional flat webs. This paper presents the second part of the research on the application of corrugated plates with different sinusoidal profiles as webs in girders. Parametric studies have [...] Read more.
Recently, steel girders with sinusoidal corrugations have become increasingly popular compared to those with traditional flat webs. This paper presents the second part of the research on the application of corrugated plates with different sinusoidal profiles as webs in girders. Parametric studies have been carried out in both linear and nonlinear domains, based on a representative numerical model developed and validated by experimental results. The research focused on the influence of the sinusoidal shape of the web on the shear capacity of the girders and the ultimate failure mode. The analyses were carried out using Abaqus software. Based on the results of the numerical analyses, it was concluded that increasing the wavelength of the sinusoidal wave decreases the ultimate shear capacity of the girders. This parameter also influences the failure mode. The results show that the wave amplitude has a small effect on the critical capacity. However, the amplitude influences the increase in the post-critical load and the size of the plastic zones located in the webs during the final phase of failure. With regard to the geometric parameters of the web, it was found that increasing the web thickness significantly improves the performance of the girders, while the web height has a negligible effect. It was also shown that the design guidelines in Eurocode 3 are very conservative in terms of estimating the shear buckling capacity of beams with sinusoidal corrugated webs and significantly underestimate the values. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

11 pages, 2323 KiB  
Article
Investigation of Buckling Behaviors in Carbon Nanorings Using the Chebyshev–Ritz Method
by Xiaobo Wang, Guowen Kuang, Hongmei Tian, Zhibin Shao, Ning Dong, Tao Lin and Li Huang
Nanomaterials 2024, 14(23), 1868; https://doi.org/10.3390/nano14231868 - 21 Nov 2024
Viewed by 1003
Abstract
Carbon nanorings (CNRs) serve as an ideal quantum system for novel electronic and magnetic properties. Although extensive theoretical studies utilizing molecular dynamics (MD) simulations have investigated the formation and structural characteristics of CNRs, systematically analyzing their properties across various toric sizes remains challenging [...] Read more.
Carbon nanorings (CNRs) serve as an ideal quantum system for novel electronic and magnetic properties. Although extensive theoretical studies utilizing molecular dynamics (MD) simulations have investigated the formation and structural characteristics of CNRs, systematically analyzing their properties across various toric sizes remains challenging due to the inherent complexity of this system. In this study, we introduce a novel finite element method, the Chebyshev–Ritz method, as an alternative approach to investigating the structural properties of CNRs. Previous MD simulations demonstrated that stable CNRs adopt a regular buckled shape at specific toric sizes. By meticulously selecting mechanical parameters, we observe that the critical deformation of a CNR with 50 repeated units, as determined by the Chebyshev–Ritz method, aligns with an MD simulation presenting a buckling number of 14. Additionally, the implementation of the Chebyshev–Ritz method with a constant mechanical parameter for 50 repeated units reveals a structural transition at varying toric sizes, leading to the stabilization of buckling numbers 13, 14, and 15. This structural transition across different buckling modes has also been corroborated by MD simulations. Our approach offers a reliable and accurate means of examining the structural properties of large-scale nanomaterials and paves the way for further exploration in nanoscale mechanics. Full article
Show Figures

Figure 1

15 pages, 4576 KiB  
Article
A Method for the Coefficient Superposition Buckling Bearing Capacity of Thin-Walled Members
by Bing Xu, Lang Wang, Qin Liu, Rui Wang, Bing Kong and Bo Xu
Buildings 2024, 14(10), 3236; https://doi.org/10.3390/buildings14103236 - 12 Oct 2024
Cited by 2 | Viewed by 902
Abstract
Axial compression tests were conducted on short rhombic tubes of different cross-sectional shapes. The deformation modes of the rhombic short tubes were obtained. To induce a finite element model with deformation modes consistent with the actual working conditions, buckling modes are introduced into [...] Read more.
Axial compression tests were conducted on short rhombic tubes of different cross-sectional shapes. The deformation modes of the rhombic short tubes were obtained. To induce a finite element model with deformation modes consistent with the actual working conditions, buckling modes are introduced into the model as the initial imperfections of the structure. However, the buckling modes resulting from finite element buckling analyses often do not meet the needs of actual crushing modes. A coefficient superposition method of solution is proposed to derive modal characteristics consistent with the actual deformation modes by linear superposition of the buckling modes. Through the study of three aspects of theory, test, and simulation, and the comparison and verification of this method with the simulation results of related literature, the results show that the indexes derived from this method are closer to the actual circumstances and are more expandable, which provides a reference for the project. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

27 pages, 8781 KiB  
Article
Axial Compression Performance of L-Shaped Partially Encased Steel–Concrete Composite Stub Columns
by Yuansen Qi, Haochuan Zhu, Youwu Xu, Zhibin Xiao and Zhenfen Jin
Buildings 2024, 14(9), 3001; https://doi.org/10.3390/buildings14093001 - 21 Sep 2024
Cited by 1 | Viewed by 1171
Abstract
The L-shaped partially encased steel–concrete composite (PEC) stub column, composed of profile steel, concrete, and transverse links, tends to occupy less space than the rectangle-shaped PEC column when used as side or corner columns. In this study, an axial compression test involving three [...] Read more.
The L-shaped partially encased steel–concrete composite (PEC) stub column, composed of profile steel, concrete, and transverse links, tends to occupy less space than the rectangle-shaped PEC column when used as side or corner columns. In this study, an axial compression test involving three L-shaped PEC stub columns was conducted to investigate the influence of critical factors on axial compression performance. The test results indicated that the axial compression capacity can be effectively enhanced with an increase in material strength. Furthermore, finite element (FE) analysis was carried out with parameters such as material strength, steel thickness, transverse link spacing, transverse link diameter, transverse link distribution, and longitudinal rebar diameter. The results revealed that the primary failure modes of L-shaped PEC columns were concrete spalling and local buckling of the flange. Additionally, it was found that the increase in steel strength, steel thickness, and transverse link diameter, as well as the decrease in transverse link spacing, significantly improved the axial compression capacity and concrete confinement effect. However, an increase in concrete strength diminished the concrete confinement effect. Additionally, the accuracy of the axial compression capacity calculation methods in the Eurocode 4 and T/CECS719-2010 specifications for L-shaped PEC stub columns was verified. Finally, a calculation method based on the superposition principle incorporating the concrete confinement effect was proposed, and validated by comparing with experimental and FE results. Overall, this study could provide a theoretical basis for the engineering application of L-shaped PEC columns. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 5371 KiB  
Article
Low-Cycle Fatigue Properties of Bimetallic Steel Bar with Buckling: Energy-Based Numerical and Experimental Investigations
by Xuanyi Xue, Fei Wang, Neng Wang, Jianmin Hua and Wenjie Deng
Materials 2024, 17(16), 3974; https://doi.org/10.3390/ma17163974 - 9 Aug 2024
Cited by 3 | Viewed by 1063
Abstract
A bimetallic steel bar (BSB) consisting of stainless-steel cladding and carbon steel substrate exhibits excellent corrosion resistance and good mechanical properties. The bimetallic structure of BSBs may affect their low-cycle fatigue performance, and current investigations on the above issue are limited. In this [...] Read more.
A bimetallic steel bar (BSB) consisting of stainless-steel cladding and carbon steel substrate exhibits excellent corrosion resistance and good mechanical properties. The bimetallic structure of BSBs may affect their low-cycle fatigue performance, and current investigations on the above issue are limited. In this study, the low-cycle fatigue properties of bimetallic steel bars (BSBs) with inelastic buckling were investigated. Experiments and numerical studies were conducted to investigate the low-cycle fatigue capacity for BSBs, considering buckling. The buckling mode of BSBs is discussed. The hysteretic loops and energy properties of BSBs with various slenderness ratios (L/D) and fatigue strain amplitudes (εa) are investigated. With increases in the L/D and εa, the original symmetry for hysteresis loops disappears gradually, which is caused by the buckling. A predictive equation revealing the relation between the εa and fatigue life is suggested, which considers the effects of the L/D. A numerical modelling method is suggested to predict the hysteretic curves of BSBs. The effect of buckling on the stress and energy properties of BSBs is discussed through the numerical analysis of 44 models including the effects of the L/D, εa, and cladding ratios. The numerical analysis results illustrate that the hysteresis loops of BSBs with various εa values exhibit similar shapes. The increase in the cladding ratio reduces the peak stress and the dissipated energy properties of BSBs. The hysteresis loop energy density decreases by about 3% with an increase of 0.1 in the cladding ratio. It is recommended that the proportion of stainless steel inBSBs should be minimized once the corrosion resistance requirements are met. Full article
Show Figures

Figure 1

11 pages, 2835 KiB  
Article
Some Unfamiliar Structural Stability Aspects of Unsymmetric Laminated Composite Plates
by Mehdi Bohlooly Fotovat
Materials 2024, 17(15), 3856; https://doi.org/10.3390/ma17153856 - 4 Aug 2024
Cited by 1 | Viewed by 1138
Abstract
It is widely recognized that certain structures, when subjected to static compression, may exhibit a bifurcation point, leading to the potential occurrence of a secondary equilibrium path. Also, there is a tendency of deflection increment without a bifurcation point to occur for imperfect [...] Read more.
It is widely recognized that certain structures, when subjected to static compression, may exhibit a bifurcation point, leading to the potential occurrence of a secondary equilibrium path. Also, there is a tendency of deflection increment without a bifurcation point to occur for imperfect structures. In this paper, some relatively unknown phenomena are investigated. First, it is demonstrated that in some conditions, the linear buckling mode shape may differ from the result of geometrically nonlinear analysis. Second, a mode jumping phenomenon is described as a transition from a secondary equilibrium path to an obscure one as a tertiary equilibrium path or a second bifurcation point. In this regard, some non-square plates with unsymmetric layer arrangements (in the presence of extension–bending coupling) are subjected to a uniaxial in-plane compression. By considering the geometrically linear and nonlinear problems, the bucking modes and post-buckling behaviors, e.g., the out-of-plane displacement of the plate versus the load, are obtained by ANSYS 2023 R1 software. Through a parametric analysis, the possibility of these phenomena is investigated in detail. Full article
(This article belongs to the Special Issue Numerical Methods and Modeling Applied for Composite Structures)
Show Figures

Figure 1

Back to TopTop