Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = bromocriptin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2087 KiB  
Case Report
Recurrent Giant Ovarian Cysts in Biological Sisters: 2 Case Reports and Literature Review—Giant Ovarian Cysts in 2 Sisters
by Shuaibin Liu, Qianru Zeng, Lina Hu, Biao Zeng, Yi Wu, Chenxi Wang, Min Zhou and Xiaoling Gan
Healthcare 2025, 13(6), 656; https://doi.org/10.3390/healthcare13060656 - 17 Mar 2025
Viewed by 758
Abstract
Background: Ovarian follicular cysts often resolve spontaneously, with giant forms being a rarity. Cases of giant ovarian follicular cysts in biological sisters without clear familial predisposition are even exceptional. Cases Presentation: Two biological sisters presented to our hospital with large pelvic masses in [...] Read more.
Background: Ovarian follicular cysts often resolve spontaneously, with giant forms being a rarity. Cases of giant ovarian follicular cysts in biological sisters without clear familial predisposition are even exceptional. Cases Presentation: Two biological sisters presented to our hospital with large pelvic masses in the setting of a clinical and biological hyperandrogenism. After surgical removal, pathology confirmed the diagnosis of ovarian follicular cysts. Recurrence was detected shortly after surgery, with both sisters displaying similar clinical courses. Chromosomal screening showed no abnormalities. Hormonal analysis revealed elevated anti-Müllerian hormone (AMH), prolactin (PRL), and testosterone, alongside low FSH and LH levels. Family exome sequencing also showed no significant findings. After treatment with bromocriptine and short-acting contraceptive pills, the recurrent ovarian cysts resolved spontaneously, and hormonal levels returned to normal ranges. Conclusions: In women of childbearing age, it is important to conduct thorough endocrine evaluations and genetic screenings following the occurrence of large ovarian follicular cysts. Once endocrine levels are balanced, follicular cysts may decrease in size substantially, which helps to avoid unnecessary ovarian surgery. Full article
Show Figures

Figure 1

14 pages, 5241 KiB  
Article
Effects of Prolactin Inhibition on Lipid Metabolism in Goats
by Xiaona Liu, Chunhui Duan, Xuejiao Yin, Xianglong Li, Meijing Chen, Jiaxin Chen, Wen Zhao, Lechao Zhang, Yueqin Liu and Yingjie Zhang
Animals 2024, 14(23), 3364; https://doi.org/10.3390/ani14233364 - 22 Nov 2024
Viewed by 1110
Abstract
Prolactin (PRL) has recently been found to play a role in lipid metabolism in addition to its traditional roles in lactation and reproduction. However, the effects of PRL on lipid metabolism in liver and adipose tissues are unclear. Therefore, we aimed to study [...] Read more.
Prolactin (PRL) has recently been found to play a role in lipid metabolism in addition to its traditional roles in lactation and reproduction. However, the effects of PRL on lipid metabolism in liver and adipose tissues are unclear. Therefore, we aimed to study the role of PRL on lipid metabolism in goats. Twenty healthy eleven-month-old Yanshan cashmere goats with similar body weights (BWs) were selected and randomly divided into a control (CON) group and a bromocriptine (BCR, a PRL inhibitor, 0.06 mg/kg, BW) group. The experiment lasted for 30 days. Blood was collected on the day before BCR treatment (day 0) and on the 15th and 30th days after BCR treatment (days 15 and 30). On day 30 of treatment, all goats were slaughtered to collect their liver, subcutaneous adipose, and perirenal adipose tissues. A portion of all collected tissues was stored in 4% paraformaldehyde for histological observation, and another portion was immediately stored in liquid nitrogen for RNA extraction. The PRL inhibition had inconclusive effects found on BW and average daily feed intake (ADFI) in goats (p > 0.05). PRL inhibition decreased the hormone-sensitive lipase (HSL) levels on day 30 (p < 0.05), but the effects were inconclusive on days 0 and 15. PRL inhibition had inconclusive effects found on total cholesterol (TCH), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), fatty acid synthase (FAS), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), and acetyl-CoA carboxylase (ACC) on days 0, 15, and 30 (p > 0.05). Furthermore, hematoxylin–eosin (HE) staining of the liver, subcutaneous adipose, and perirenal adipose sections showed that PRL inhibition had inconclusive effects on the pathological changes in their histomorphology (p > 0.05), but measuring adipocytes showed that the area of perirenal adipocytes decreased in the BCR group (p < 0.05). The qPCR results showed that PRL inhibition increased the expression of PRL, long-form PRL receptor (LPRLR), and short-form PRL receptor (SPRLR) genes, as well as the expression of genes related to lipid metabolism, including sterol regulatory element binding transcription factor 1 (SREBF1); sterol regulatory element binding transcription factor 2 (SREBF2); acetyl-CoA carboxylase alpha (ACACA); fatty acid synthase (FASN); 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR); 7-dehydrocholesterol reductase (DHCR7); peroxisome proliferator-activated receptor gamma (PPARG); and lipase E, hormone-sensitive type (LIPE) in the liver (p < 0.05). In the subcutaneous adipose tissue, PRL inhibition increased SPRLR gene expression (p < 0.05) and decreased the expression of genes related to lipid metabolism, including SREBF1, SREBF2, ACACA, PPARG, and LIPE (p < 0.05). In the perirenal adipose tissue, the inhibition of PRL decreased the expression of the PRL, SREBF2, and HMGCR genes (p < 0.05). In conclusion, the inhibition of PRL decreases the serum HSL levels in cashmere goats; the effects of PRL on lipid metabolism are different in different tissues; and PRL affects lipid metabolic activity by regulating different PRLRs in liver and subcutaneous adipose tissues, as well as by decreasing the expression of the PRL, SREBF2, and HMGCR genes in perirenal adipose tissue. Full article
(This article belongs to the Special Issue Metabolic and Endocrine Regulation in Ruminants: Second Edition)
Show Figures

Figure 1

18 pages, 9608 KiB  
Article
The Activation of p300 Enhances the Sensitivity of Pituitary Adenomas to Dopamine Agonist Treatment by Regulating the Transcription of DRD2
by Sihan Li, Xingbo Li, Quanji Wang, Qian Jiang, Zihan Wang, Linpeng Xu, Yimin Huang and Ting Lei
Int. J. Mol. Sci. 2024, 25(23), 12483; https://doi.org/10.3390/ijms252312483 - 21 Nov 2024
Viewed by 1494
Abstract
Prolactinomas are commonly treated with dopamine receptor agonists (DAs), such as bromocriptine (BRC) and cabergoline (CAB). However, 10–30% of patients exhibit resistance to DA therapies. DA resistance is largely associated with reduced dopamine D2 receptor (DRD2) expression, potentially regulated by epigenetic modifications, though [...] Read more.
Prolactinomas are commonly treated with dopamine receptor agonists (DAs), such as bromocriptine (BRC) and cabergoline (CAB). However, 10–30% of patients exhibit resistance to DA therapies. DA resistance is largely associated with reduced dopamine D2 receptor (DRD2) expression, potentially regulated by epigenetic modifications, though the underlying mechanisms are still unclear. Clinical samples were assessed for p300 expression. MMQ and AtT-20 cells were engineered to overexpress either wild-type p300 or a histone acetyltransferase (HAT) domain-mutant form of p300. Mechanistic studies included cell proliferation assays, flow cytometry, immunohistochemistry, immunofluorescence, co-immunoprecipitation, chromatin immunoprecipitation followed by quantitative PCR, reverse transcription quantitative PCR, and Western blotting. Additionally, an in vivo nude mouse xenograft model was used to confirm the in vitro findings. DAs downregulated p300 through the cAMP-PKA-CREB pathway. Activation of the HAT domain of p300 increased H3K18/27 acetylation, promoted DRD2 transcription, and worked synergistically with DA to exert anti-tumor effects both in vitro and in vivo. Tanshinone IIA (Tan IIA) upregulated p300 and DRD2, enhancing the therapeutic efficacy of BRC. These findings highlight the role of p300 in regulating DRD2 transcription in DA-resistant prolactinomas. Combining Tan IIA with BRC may offer a promising strategy to overcome DA resistance. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

25 pages, 1578 KiB  
Review
What Do We Know about Peripartum Cardiomyopathy? Yesterday, Today, Tomorrow
by Ratko Lasica, Milika Asanin, Jovanka Vukmirovic, Lidija Maslac, Lidija Savic, Marija Zdravkovic, Dejan Simeunovic, Marija Polovina, Aleksandra Milosevic, Dragan Matic, Stefan Juricic, Milica Jankovic, Milan Marinkovic and Lazar Djukanovic
Int. J. Mol. Sci. 2024, 25(19), 10559; https://doi.org/10.3390/ijms251910559 - 30 Sep 2024
Cited by 1 | Viewed by 3057
Abstract
Peripartum cardiomyopathy is a disease that occurs during or after pregnancy and leads to a significant decline in cardiac function in previously healthy women. Peripartum cardiomyopathy has a varying prevalence among women depending on the part of the world where they live, but [...] Read more.
Peripartum cardiomyopathy is a disease that occurs during or after pregnancy and leads to a significant decline in cardiac function in previously healthy women. Peripartum cardiomyopathy has a varying prevalence among women depending on the part of the world where they live, but it is associated with a significant mortality and morbidity in this population. Therefore, timely diagnosis, treatment, and monitoring of this disease from its onset are of utmost importance. Although many risk factors are associated with the occurrence of peripartum cardiomyopathy, such as conditions of life, age of the woman, nutrient deficiencies, or multiple pregnancies, the exact cause of its onset remains unknown. Advances in research on the genetic associations with cardiomyopathies have provided a wealth of data indicating a possible association with peripartum cardiomyopathy, but due to numerous mutations and data inconsistencies, the exact connection remains unclear. Significant insights into the pathophysiological mechanisms underlying peripartum cardiomyopathy have been provided by the theory of an abnormal 16-kDa prolactin, which may be generated in an oxidative stress environment and lead to vascular and consequently myocardial damage. Recent studies supporting this disease mechanism also include research on the efficacy of bromocriptine (a prolactin synthesis inhibitor) in restoring cardiac function in affected patients. Despite significant progress in the research of this disease, there are still insufficient data on the safety of use of certain drugs treating heart failure during pregnancy and breastfeeding. Considering the metabolic changes that occur in different stages of pregnancy and the postpartum period, determining the correct dosing regimen of medications is of utmost importance not only for better treatment and survival of mothers but also for reducing the risk of toxic effects on the fetus. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapy of Cardiomyopathy)
Show Figures

Figure 1

33 pages, 23252 KiB  
Systematic Review
Non-Ergot Dopamine Agonists and the Risk of Heart Failure and Other Adverse Cardiovascular Reactions in Parkinson’s Disease
by James A. G. Crispo, Nawal Farhat, Yannick Fortin, Santiago Perez-Lloret, Lindsey Sikora, Rebecca L. Morgan, Mara Habash, Priyanka Gogna, Shannon E. Kelly, Jesse Elliott, Dafna E. Kohen, Lise M. Bjerre, Donald R. Mattison, Renée C. Hessian, Allison W. Willis and Daniel Krewski
Brain Sci. 2024, 14(8), 776; https://doi.org/10.3390/brainsci14080776 - 31 Jul 2024
Viewed by 2786
Abstract
Reports suggest possible risks of adverse cardiovascular reactions, including heart failure, associated with non-ergot dopamine agonist (DA) use in Parkinson’s disease (PD). The objectives of our review were to evaluate the risk of heart failure and other adverse cardiovascular reactions in PD patients [...] Read more.
Reports suggest possible risks of adverse cardiovascular reactions, including heart failure, associated with non-ergot dopamine agonist (DA) use in Parkinson’s disease (PD). The objectives of our review were to evaluate the risk of heart failure and other adverse cardiovascular reactions in PD patients who received a non-ergot DA compared with other anti-PD pharmacological interventions, placebo, or no intervention. Studies were identified via searches of six bibliographic databases. Randomized controlled trials (RCTs) and non-randomized studies (NRS) were eligible for study inclusion. Random-effect meta-analyses were performed to estimate adverse cardiovascular reaction risks. Quality of evidence was assessed using GRADE. In total, forty-four studies (thirty-six RCTs and eight NRS) satisfied our inclusion criteria. A single RCT found no significant difference in the risk of heart failure with ropinirole compared with bromocriptine (odds ratio (OR) 0.39, 95% confidence interval (CI) 0.07 to 2.04; low certainty). Conversely, three case–control studies reported a risk of heart failure with non-ergot DA treatment. The quality of evidence for the risk of heart failure was judged as low or very low. Findings suggest that non-ergot DA use may be associated with adverse cardiovascular outcomes, including heart failure. Studies are needed to better understand cardiovascular risks associated with PD treatment. Full article
Show Figures

Figure 1

13 pages, 2208 KiB  
Article
The Effect of Prolactin on Gene Expression and the Secretion of Reproductive Hormones in Ewes during the Estrus Cycle
by Sicong Yue, Jiaxin Chen, Chunhui Duan, Xiangyun Li, Ruochen Yang, Meijing Chen, Yu Li, Zhipan Song, Yingjie Zhang and Yueqin Liu
Animals 2024, 14(13), 1873; https://doi.org/10.3390/ani14131873 - 25 Jun 2024
Cited by 2 | Viewed by 2045
Abstract
Prolactin (PRL) plays an important role in animal follicle development and ovulation. However, its regulatory effects on the different stages of the estrus cycle in ewes are unclear. In this study, bromocriptine (BCR, PRL inhibitor) was used to study the effect of PRL [...] Read more.
Prolactin (PRL) plays an important role in animal follicle development and ovulation. However, its regulatory effects on the different stages of the estrus cycle in ewes are unclear. In this study, bromocriptine (BCR, PRL inhibitor) was used to study the effect of PRL on the secretion of reproductive hormones and gene expressions in order to explore its regulatory effects on the sexual cycle of ewes. Eighty healthy ewes with the same parity and similar weights were randomly assigned to the control group (C, n = 40) and the treatment group (T, n = 40, fed bromocriptine). After estrus synchronization, thirty-one ewes with overt signs of estrus were selected from each group. Six blood samples were randomly obtained by jugular venipuncture to measure the concentration of PRL, estrogen (E2), progesterone (P4), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and gonadotropin-releasing hormone (GnRH) in the proestrus, estrus, metestrus, and diestrus. At the same time, we collected the ovaries of the six ewes in vivo after anesthesia in order to detect follicle and corpus luteum (CL) counts and measure the expression of hormone-receptor and apoptosis-related genes. The results show that PRL inhibition had no significant effects on the length of the estrus cycle (p > 0.05). In proestrus, the number of large and small follicles, the levels of E2, FSH, and GnRH, and the expressions of ER, FSHR, and the apoptotic gene Caspase-3 were increased (p < 0.05); and the number of middle follicles and the expression of anti-apoptotic gene Bcl-2 were decreased (p < 0.05) in the T group. In estrus, the number of large follicles, the levels of E2 and GnRH, and the expressions of the StAR, CYP19A1, and Bcl-2 genes were increased (p < 0.05), and the number of middle follicles was decreased (p < 0.05) in the T group. In metestrus, the number of small follicles and the expression of LHR (p < 0.05) and the pro-apoptotic gene Bax were increased (p < 0.05); the number of middle follicles was decreased (p < 0.05) in the T group. In diestrus, the number of large follicles, middle follicles, and CL, the level of P4, and the expressions of PR, 3β-HSD, StAR, Caspase-3, and Bax were increased (p < 0.05); the number of small follicles and the expression of Bcl-2 were decreased (p < 0.05) in the T group. In summary, PRL inhibition can affect the secretion of reproductive hormones, the follicle count, and the gene expression during the estrus cycle. These results provide a basis for understanding the mechanisms underlying the regulation of the ewe estrus cycle by PRL. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Figure 1

18 pages, 11452 KiB  
Article
Inhibition of Prolactin Affects Epididymal Morphology by Decreasing the Secretion of Estradiol in Cashmere Bucks
by Xiaona Liu, Chunhui Duan, Xuejiao Yin, Lechao Zhang, Meijing Chen, Wen Zhao, Xianglong Li, Yueqin Liu and Yingjie Zhang
Animals 2024, 14(12), 1778; https://doi.org/10.3390/ani14121778 - 13 Jun 2024
Cited by 1 | Viewed by 1484
Abstract
Yanshan Cashmere bucks are seasonal breeding animals and an important national genetic resource. This study aimed to investigate the involvement of prolactin (PRL) in the epididymal function of bucks. Twenty eleven-month-old Cashmere bucks were randomly divided into a control (CON) group and a [...] Read more.
Yanshan Cashmere bucks are seasonal breeding animals and an important national genetic resource. This study aimed to investigate the involvement of prolactin (PRL) in the epididymal function of bucks. Twenty eleven-month-old Cashmere bucks were randomly divided into a control (CON) group and a bromocriptine (BCR, a prolactin inhibitor, 0.06 mg/kg body weight (BW)) treatment group. The experiment was conducted from September to October 2020 in Qinhuangdao City, China, and lasted for 30 days. Blood was collected on the last day before the BCR treatment (day 0) and on the 15th and 30th days after the BCR treatment (days 15 and 30). On the 30th day, all bucks were transported to the local slaughterhouse, where epididymal samples were collected immediately after slaughter. The left epididymis was preserved in 4% paraformaldehyde for histological observation, and the right epididymis was immediately preserved in liquid nitrogen for RNA sequencing (RNA-seq). The results show that the PRL inhibitor reduced the serum PRL and estradiol (E2) concentrations (p < 0.05) and tended to decrease luteinizing hormone (LH) concentrations (p = 0.052) by the 30th day, but no differences (p > 0.05) occurred by either day 0 or 15. There were no differences (p > 0.05) observed in the follicle-stimulating hormone (FSH), testosterone (T), and dihydrotestosterone (DHT) concentrations between the two groups. The PRL receptor (PRLR) protein was mainly located in the cytoplasm and intercellular substance of the epididymal epithelial cells. The PRL inhibitor decreased (p < 0.05) the expression of the PRLR protein in the epididymis. In the BCR group, the height of the epididymal epithelium in the caput and cauda increased, as did the diameter of the epididymal duct in the caput (p < 0.05). However, the diameter of the cauda epididymal duct decreased (p < 0.05). Thereafter, a total of 358 differentially expressed genes (DEGs) were identified in the epididymal tissues, among which 191 were upregulated and 167 were downregulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that ESR2, MAPK10, JUN, ACTL7A, and CALML4 were mainly enriched in the estrogen signaling pathway, steroid binding, calcium ion binding, the GnRH signaling pathway, the cAMP signaling pathway, and the chemical carcinogenesis–reactive oxygen species pathway, which are related to epididymal function. In conclusion, the inhibition of PRL may affect the structure of the epididymis by reducing the expression of the PRLR protein and the secretion of E2. ESR2, MAPK10, JUN, ACTL7A, and CALML4 could be the key genes of PRL in its regulation of epididymal reproductive function. Full article
(This article belongs to the Special Issue Reproductive Endocrinology of Ruminants)
Show Figures

Figure 1

26 pages, 10614 KiB  
Article
Box-Behnken Design-Based Optimization and Evaluation of Lipid-Based Nano Drug Delivery System for Brain Targeting of Bromocriptine
by Asha Spandana K M, Mohit Angolkar, Mohamed Rahamathulla, Kamal Y. Thajudeen, Mohammed Muqtader Ahmed, Syeda Ayesha Farhana, Thippeswamy Boreddy Shivanandappa, Sharanya Paramshetti, Riyaz Ali M. Osmani and Jawahar Natarajan
Pharmaceuticals 2024, 17(6), 720; https://doi.org/10.3390/ph17060720 - 2 Jun 2024
Cited by 9 | Viewed by 2519
Abstract
Bromocriptine (BCR) presents poor bioavailability when administered orally because of its low solubility and prolonged first-pass metabolism. This poses a significant challenge in its utilization as an effective treatment for managing Parkinson’s disease (PD). The utilization of lipid nanoparticles can be a promising [...] Read more.
Bromocriptine (BCR) presents poor bioavailability when administered orally because of its low solubility and prolonged first-pass metabolism. This poses a significant challenge in its utilization as an effective treatment for managing Parkinson’s disease (PD). The utilization of lipid nanoparticles can be a promising approach to overcome the limitations of BCR bioavailability. The aim of the research work was to develop and evaluate bromocriptine-loaded solid lipid nanoparticles (BCR-SLN) and bromocriptine-loaded nanostructured lipid carriers (BCR-NLC) employing the Box-Behnken design (BBD). BCR-SLNs and BCR-NLCs were developed using the high-pressure homogenization method. The prepared nanoparticles were characterized for particle size (PS), polydispersity index (PDI), and entrapment efficiency (EE). In vitro drug release, cytotoxicity studies, in vivo plasma pharmacokinetic, and brain distribution studies evaluated the optimized lipid nanoparticles. The optimized BCR-SLN had a PS of 219.21 ± 1.3 nm, PDI of 0.22 ± 0.02, and EE of 72.2 ± 0.5. The PS, PDI, and EE of optimized BCR-NLC formulation were found to be 182.87 ± 2.2, 0.16 ± 0.004, and 83.57 ± 1.8, respectively. The in vitro release profile of BCR-SLN and BCR-NLC showed a biphasic pattern, immediate release, and then trailed due to the sustained release. Furthermore, a pharmacokinetic study indicated that both the optimized BCR-SLN and BCR-NLC formulations improve the plasma and brain bioavailability of the drug compared to the BCR solution. Based on the research findings, it can be concluded that the BCR-loaded lipid nanoparticles could be a promising carrier by enhancing the BBB penetration of the drug and helping in the improvement of the bioavailability and therapeutic efficacy of BCR in the management of PD. Full article
(This article belongs to the Special Issue Self-Assembled Nanoparticles: An Emerging Delivery Platform for Drugs)
Show Figures

Figure 1

13 pages, 3130 KiB  
Article
A Combination of a Dopamine Receptor 2 Agonist and a Kappa Opioid Receptor Antagonist Synergistically Reduces Weight in Diet-Induced Obese Rodents
by Beatriz Cicuéndez, Javier Pérez-García and Cintia Folgueira
Nutrients 2024, 16(3), 424; https://doi.org/10.3390/nu16030424 - 31 Jan 2024
Cited by 3 | Viewed by 2204
Abstract
As the global obesity rate increases, so does the urgency to find effective anti-obesity drugs. In the search for therapeutic targets, central nervous system (CNS) mechanisms engaged in the regulation of energy expenditure and food intake, such as the opioid and dopamine systems, [...] Read more.
As the global obesity rate increases, so does the urgency to find effective anti-obesity drugs. In the search for therapeutic targets, central nervous system (CNS) mechanisms engaged in the regulation of energy expenditure and food intake, such as the opioid and dopamine systems, are crucial. In this study, we examined the effect on body weight of two drugs: bromocriptine (BC), a D2R receptor agonist, and PF-04455242, a selective κ opioid receptor (KOR) antagonist. Using diet-induced obese (DIO) rats, we aimed to ascertain whether the administration of BC and PF-04455242, independently or in combination, could enhance body weight loss. Furthermore, the present work demonstrates that the peripheral coadministration of BC and PF-04455242 enhances the reduction of weight in DIO rats and leads to a decrease in adiposity in a food-intake-independent manner. These effects were based on heightened energy expenditure, particularly through the activation of brown adipose tissue (BAT) thermogenesis. Overall, our findings indicate that the combination of BC and PF-04455242 effectively induces body weight loss through increased energy expenditure by increasing thermogenic activity and highlight the importance of the combined use of drugs to combat obesity. Full article
(This article belongs to the Special Issue Featured Articles on Nutrition and Obesity Management (2nd Edition))
Show Figures

Figure 1

25 pages, 4258 KiB  
Review
Biomarkers in Peripartum Cardiomyopathy—What We Know and What Is Still to Be Found
by Karolina E. Kryczka, Marcin Demkow and Zofia Dzielińska
Biomolecules 2024, 14(1), 103; https://doi.org/10.3390/biom14010103 - 12 Jan 2024
Cited by 11 | Viewed by 4925
Abstract
Peripartum cardiomyopathy (PPCM) is a form of heart failure, often severe, that occurs in previously healthy women at the end of their pregnancy or in the first few months after delivery. In PPCM, the recovery of heart function reaches 45–50%. However, the all-cause [...] Read more.
Peripartum cardiomyopathy (PPCM) is a form of heart failure, often severe, that occurs in previously healthy women at the end of their pregnancy or in the first few months after delivery. In PPCM, the recovery of heart function reaches 45–50%. However, the all-cause mortality in long-term observation remains high, reaching 20% irrespective of recovery status. The incidence of PPCM is increasing globally; therefore, effort is required to clarify the pathophysiological background of the disease, as well as to discover specific diagnostic and prognostic biomarkers. The etiology of the disease remains unclear, including oxidative stress; inflammation; hormonal disturbances; endothelial, microcirculatory, cardiomyocyte and extracellular matrix dysfunction; fibrosis; and genetic mutations. Currently, antiangiogenic 16-kDa prolactin (PRL), cleaved from standard 23-kDa PRL in the case of unbalanced oxidative stress, is recognized as the main trigger of the disease. In addition, 16-kDa PRL causes damage to cardiomyocytes, acting via microRNA-146a secreted from endothelial cells as a cause of the NF-κβ pathway. Bromocriptine, which inhibits the secretion of PRL from the pituitary gland, is now the only specific treatment for PPCM. Many different phenotypes of the disease, as well as cases of non-responders to bromocriptine treatment, indicate other pathophysiological pathways that need further investigation. Biomarkers in PPCM are not well established. There is a deficiency in specific diagnostic biomarkers. Pro-brain-type natriuretic peptide (BNP) and N-terminal BNP are the best, however unspecific, diagnostic biomarkers of heart failure at the moment. Therefore, more efforts should be engaged in investigating more specific biomolecules of a diagnostic and prognostic manner such as 16-kDa PRL, galectin-3, myeloperoxidase, or soluble Fms-like tyrosine kinase-1/placental growth factor ratio. In this review, we present the current state of knowledge and future directions of exploring PPCM pathophysiology, including microRNA and heat shock proteins, which may improve diagnosis, treatment monitoring, and the development of specific treatment strategies, and consequently improve patients’ prognosis and outcome. Full article
(This article belongs to the Special Issue Molecular Aspect of Cardiovascular Risk Factors)
Show Figures

Figure 1

24 pages, 2910 KiB  
Article
Optimization of Bromocriptine-Mesylate-Loaded Polycaprolactone Nanoparticles Coated with Chitosan for Nose-to-Brain Delivery: In Vitro and In Vivo Studies
by Mohamed M. Badran, Abdulrahman E. Alanazi, Mohamed Abbas Ibrahim, Doaa Hasan Alshora, Ehab Taha and Abdullah H. Alomrani
Polymers 2023, 15(19), 3890; https://doi.org/10.3390/polym15193890 - 26 Sep 2023
Cited by 20 | Viewed by 2222
Abstract
Bromocriptine mesylate (BM), primarily ergocryptine, is a dopamine agonist derived from ergot alkaloids. This study aimed to formulate chitosan (CS)-coated poly ε-caprolactone nanoparticles (PCL NPs) loaded with BM for direct targeting to the brain via the nasal route. PCL NPs were optimized using [...] Read more.
Bromocriptine mesylate (BM), primarily ergocryptine, is a dopamine agonist derived from ergot alkaloids. This study aimed to formulate chitosan (CS)-coated poly ε-caprolactone nanoparticles (PCL NPs) loaded with BM for direct targeting to the brain via the nasal route. PCL NPs were optimized using response surface methodology and a Box–Behnken factorial design. Independent formulation parameters for nanoparticle attributes, including PCL payload (A), D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) concentration (B), and sonication time (C), were investigated. The dependent variables were nanoparticle size (Y1), zeta potential (Y2), entrapment efficiency (EE; Y3), and drug release rate (Y4). The optimal formulation for BM-PCL NPs was determined to be 50 mg PCL load, 0.0865% TPGS concentration, and 8 min sonication time, resulting in nanoparticles with a size of 296 ± 2.9 nm having a zeta potential of −16.2 ± 3.8 mV, an EE of 90.7 ± 1.9%, and a zero-order release rate of 2.6 ± 1.3%/min. The optimized BM-PCL NPs were then coated with CS at varying concentrations (0.25, 0.5, and 1%) to enhance their effect. The CS-PCL NPs exhibited different particle sizes and zeta potentials depending on the CS concentration used. The highest EE (88%) and drug load (DL; 5.5%) were observed for the optimized BM-CS-PCL NPs coated with 0.25% CS. The BM-CS-PCL NPs displayed a biphasic release pattern, with an initial rapid drug release lasting for 2 h, followed by a sustained release for up to 48 h. The 0.25% CS-coated BM-CS-PCL NPs showed a high level of permeation across the goat nasal mucosa, with reasonable mucoadhesive strength. These findings suggested that the optimized 0.25% CS-coated BM-CS-PCL NPs hold promise for successful nasal delivery, thereby improving the therapeutic efficacy of BM. Full article
(This article belongs to the Special Issue Polymers for Biomedical Imaging and Therapy II)
Show Figures

Figure 1

48 pages, 23415 KiB  
Review
Brain Dopamine–Clock Interactions Regulate Cardiometabolic Physiology: Mechanisms of the Observed Cardioprotective Effects of Circadian-Timed Bromocriptine-QR Therapy in Type 2 Diabetes Subjects
by Anthony H. Cincotta
Int. J. Mol. Sci. 2023, 24(17), 13255; https://doi.org/10.3390/ijms241713255 - 26 Aug 2023
Cited by 6 | Viewed by 6528
Abstract
Despite enormous global efforts within clinical research and medical practice to reduce cardiovascular disease(s) (CVD), it still remains the leading cause of death worldwide. While genetic factors clearly contribute to CVD etiology, the preponderance of epidemiological data indicate that a major common denominator [...] Read more.
Despite enormous global efforts within clinical research and medical practice to reduce cardiovascular disease(s) (CVD), it still remains the leading cause of death worldwide. While genetic factors clearly contribute to CVD etiology, the preponderance of epidemiological data indicate that a major common denominator among diverse ethnic populations from around the world contributing to CVD is the composite of Western lifestyle cofactors, particularly Western diets (high saturated fat/simple sugar [particularly high fructose and sucrose and to a lesser extent glucose] diets), psychosocial stress, depression, and altered sleep/wake architecture. Such Western lifestyle cofactors are potent drivers for the increased risk of metabolic syndrome and its attendant downstream CVD. The central nervous system (CNS) evolved to respond to and anticipate changes in the external (and internal) environment to adapt survival mechanisms to perceived stresses (challenges to normal biological function), including the aforementioned Western lifestyle cofactors. Within the CNS of vertebrates in the wild, the biological clock circuitry surveils the environment and has evolved mechanisms for the induction of the obese, insulin-resistant state as a survival mechanism against an anticipated ensuing season of low/no food availability. The peripheral tissues utilize fat as an energy source under muscle insulin resistance, while increased hepatic insulin resistance more readily supplies glucose to the brain. This neural clock function also orchestrates the reversal of the obese, insulin-resistant condition when the low food availability season ends. The circadian neural network that produces these seasonal shifts in metabolism is also responsive to Western lifestyle stressors that drive the CNS clock into survival mode. A major component of this natural or Western lifestyle stressor-induced CNS clock neurophysiological shift potentiating the obese, insulin-resistant state is a diminution of the circadian peak of dopaminergic input activity to the pacemaker clock center, suprachiasmatic nucleus. Pharmacologically preventing this loss of circadian peak dopaminergic activity both prevents and reverses existing metabolic syndrome in a wide variety of animal models of the disorder, including high fat-fed animals. Clinically, across a variety of different study designs, circadian-timed bromocriptine-QR (quick release) (a unique formulation of micronized bromocriptine—a dopamine D2 receptor agonist) therapy of type 2 diabetes subjects improved hyperglycemia, hyperlipidemia, hypertension, immune sterile inflammation, and/or adverse cardiovascular event rate. The present review details the seminal circadian science investigations delineating important roles for CNS circadian peak dopaminergic activity in the regulation of peripheral fuel metabolism and cardiovascular biology and also summarizes the clinical study findings of bromocriptine-QR therapy on cardiometabolic outcomes in type 2 diabetes subjects. Full article
Show Figures

Figure 1

32 pages, 2028 KiB  
Review
Anti-Diabetic Therapy and Heart Failure: Recent Advances in Clinical Evidence and Molecular Mechanism
by Chih-Neng Hsu, Chin-Feng Hsuan, Daniel Liao, Jack Keng-Jui Chang, Allen Jiun-Wei Chang, Siow-Wey Hee, Hsiao-Lin Lee and Sean I. F. Teng
Life 2023, 13(4), 1024; https://doi.org/10.3390/life13041024 - 16 Apr 2023
Cited by 6 | Viewed by 5984
Abstract
Diabetic patients have a two- to four-fold increase in the risk of heart failure (HF), and the co-existence of diabetes and HF is associated with poor prognosis. In randomized clinical trials (RCTs), compelling evidence has demonstrated the beneficial effects of sodium-glucose co-transporter-2 inhibitors [...] Read more.
Diabetic patients have a two- to four-fold increase in the risk of heart failure (HF), and the co-existence of diabetes and HF is associated with poor prognosis. In randomized clinical trials (RCTs), compelling evidence has demonstrated the beneficial effects of sodium-glucose co-transporter-2 inhibitors on HF. The mechanism includes increased glucosuria, restored tubular glomerular feedback with attenuated renin–angiotensin II–aldosterone activation, improved energy utilization, decreased sympathetic tone, improved mitochondria calcium homeostasis, enhanced autophagy, and reduced cardiac inflammation, oxidative stress, and fibrosis. The RCTs demonstrated a neutral effect of the glucagon-like peptide receptor agonist on HF despite its weight-reducing effect, probably due to it possibly increasing the heart rate via increasing cyclic adenosine monophosphate (cAMP). Observational studies supported the markedly beneficial effects of bariatric and metabolic surgery on HF despite no current supporting evidence from RCTs. Bromocriptine can be used to treat peripartum cardiomyopathy by reducing the harmful cleaved prolactin fragments during late pregnancy. Preclinical studies suggest the possible beneficial effect of imeglimin on HF through improving mitochondrial function, but further clinical evidence is needed. Although abundant preclinical and observational studies support the beneficial effects of metformin on HF, there is limited evidence from RCTs. Thiazolidinediones increase the risk of hospitalized HF through increasing renal tubular sodium reabsorption mediated via both the genomic and non-genomic action of PPARγ. RCTs suggest that dipeptidyl peptidase-4 inhibitors, including saxagliptin and possibly alogliptin, may increase the risk of hospitalized HF, probably owing to increased circulating vasoactive peptides, which impair endothelial function, activate sympathetic tones, and cause cardiac remodeling. Observational studies and RCTs have demonstrated the neutral effects of insulin, sulfonylureas, an alpha-glucosidase inhibitor, and lifestyle interventions on HF in diabetic patients. Full article
(This article belongs to the Special Issue Roles of Diabetes in Cardiovascular Disorders and Nephropathy)
Show Figures

Figure 1

14 pages, 945 KiB  
Systematic Review
The Effects of Four Compounds That Act on the Dopaminergic and Serotonergic Systems on Working Memory in Animal Studies; A Literature Review
by Ștefania-Alexandra Grosu, Marinela Chirilă, Florina Rad, Andreea Enache, Claudia-Mariana Handra and Isabel Ghiță
Brain Sci. 2023, 13(4), 546; https://doi.org/10.3390/brainsci13040546 - 25 Mar 2023
Viewed by 2818
Abstract
The dopaminergic and serotonergic systems are two of the most important neuronal pathways in the human brain. Almost all psychotropic medications impact at least one neurotransmitter system. As a result, investigating how they affect memory could yield valuable insights into potential therapeutic applications [...] Read more.
The dopaminergic and serotonergic systems are two of the most important neuronal pathways in the human brain. Almost all psychotropic medications impact at least one neurotransmitter system. As a result, investigating how they affect memory could yield valuable insights into potential therapeutic applications or unanticipated side effects. The aim of this literature review was to collect literature data from animal studies regarding the effects on memory of four drugs known to act on the serotonergic and dopaminergic systems. The studies included in this review were identified in the PubMed database using selection criteria from the PRISMA protocol. We analyzed 29 articles investigating one of four different dopaminergic or serotonergic compounds. Studies conducted on bromocriptine have shown that stimulating D2 receptors may enhance working memory in rodents, whereas inhibiting these receptors could have the opposite effect, reducing working memory performance. The effects of serotonin on working memory are not clearly established as studies on fluoxetine and ketanserin have yielded conflicting results. Further studies with better-designed methodologies are necessary to explore the impact of compounds that affect both the dopaminergic and serotonergic systems on working memory. Full article
(This article belongs to the Special Issue Advances in Working Memory and Emotion Regulation Research)
Show Figures

Figure 1

19 pages, 4110 KiB  
Article
Circulating Dopamine Is Regulated by Dietary Glucose and Controls Glucagon-like 1 Peptide Action in White Adipose Tissue
by Gabriela Tavares, Daniela Rosendo-Silva, Flávia Simões, Hans Eickhoff, Daniela Marques, Joana F. Sacramento, Adriana M. Capucho, Raquel Seiça, Sílvia V. Conde and Paulo Matafome
Int. J. Mol. Sci. 2023, 24(3), 2464; https://doi.org/10.3390/ijms24032464 - 27 Jan 2023
Cited by 9 | Viewed by 4934
Abstract
Dopamine directly acts in the liver and white adipose tissue (WAT) to regulate insulin signaling, glucose uptake, and catabolic activity. Given that dopamine is secreted by the gut and regulates insulin secretion in the pancreas, we aimed to determine its regulation by nutritional [...] Read more.
Dopamine directly acts in the liver and white adipose tissue (WAT) to regulate insulin signaling, glucose uptake, and catabolic activity. Given that dopamine is secreted by the gut and regulates insulin secretion in the pancreas, we aimed to determine its regulation by nutritional cues and its role in regulating glucagon-like peptide 1 (GLP-1) action in WAT. Solutions with different nutrients were administered to Wistar rats and postprandial dopamine levels showed elevations following a mixed meal and glucose intake. In high-fat diet-fed diabetic Goto-Kakizaki rats, sleeve gastrectomy upregulated dopaminergic machinery, showing the role of the gut in dopamine signaling in WAT. Bromocriptine treatment in the same model increased GLP-1R in WAT, showing the role of dopamine in regulating GLP-1R. By contrast, treatment with the GLP-1 receptor agonist Liraglutide had no impact on dopamine receptors. GLP-1 and dopamine crosstalk was shown in rat WAT explants, since dopamine upregulated GLP-1-induced AMPK activity in mesenteric WAT in the presence of the D2R and D3R inhibitor Domperidone. In human WAT, dopamine receptor 1 (D1DR) and GLP-1R expression were correlated. Our results point out a dietary and gut regulation of plasma dopamine, acting in the WAT to regulate GLP-1 action. Together with the known dopamine action in the pancreas, such results may identify new therapeutic opportunities to improve metabolic control in metabolic disorders. Full article
(This article belongs to the Special Issue Molecular Pharmacology in Diabetes)
Show Figures

Figure 1

Back to TopTop