Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = broadband THz pulse

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 2029 KiB  
Communication
A Chirped Characteristic-Tunable Terahertz Source for Terahertz Sensing
by Feilong Gao, Mingzhe Jiang and Shaodong Hou
Sensors 2024, 24(16), 5419; https://doi.org/10.3390/s24165419 - 22 Aug 2024
Cited by 1 | Viewed by 1009
Abstract
In broadband terahertz waves generated by femtosecond lasers, spatial chirp will be simultaneously produced with the introduction of angular dispersion. The chirp characteristics of the terahertz wave will directly affect the frequency response, bandwidth response, and intensity response of the terahertz sensor. To [...] Read more.
In broadband terahertz waves generated by femtosecond lasers, spatial chirp will be simultaneously produced with the introduction of angular dispersion. The chirp characteristics of the terahertz wave will directly affect the frequency response, bandwidth response, and intensity response of the terahertz sensor. To enhance the capability of terahertz sensors, it is necessary to control and improve the chirped characteristics of broadband terahertz sources. We generate a chirped terahertz wave via optical rectification in a LiNbO3 prism using the technique of pulse front tilt. The effect of the pump-beam spot size on THz generation is systematically studied. The pump’s spot size is manipulated using a telescope system. With a pump spot diameter of 1.8 mm, the scanning spectrum of the THz pulse is narrower and is divided into multiple distinct peaks. In contrast, using a pump spot diameter of 3.7 mm leads to increased efficiency in the generation of THz pulses. Also, we investigate the underlying properties governing the generation of chirped terahertz pulses using varying pump pulse spot diameters. Full article
(This article belongs to the Special Issue Terahertz Sensors)
Show Figures

Figure 1

10 pages, 5302 KiB  
Article
Resonant Excitation of the Ferroelectric Soft Mode by a Narrow-Band THz Pulse
by Kirill Brekhov, Vladislav Bilyk, Andrey Ovchinnikov, Oleg Chefonov, Vladimir Mukhortov and Elena Mishina
Nanomaterials 2023, 13(13), 1961; https://doi.org/10.3390/nano13131961 - 28 Jun 2023
Cited by 4 | Viewed by 1685
Abstract
This study investigates the impact of narrow-band terahertz pulses on the ferroelectric order parameter in Ba0.8Sr0.2TiO3 films on various substrates. THz radiation in the range of 1–2 THz with the pulse width of about 0.15 THz was separated [...] Read more.
This study investigates the impact of narrow-band terahertz pulses on the ferroelectric order parameter in Ba0.8Sr0.2TiO3 films on various substrates. THz radiation in the range of 1–2 THz with the pulse width of about 0.15 THz was separated from a broadband pulse with the interference technique. The 375 nm thick BST film on a MgO (001) substrate exhibits enhanced THz-induced second harmonic generation when excited by THz pulses with a central frequency of 1.6 THz, due to the resonant excitation of the soft phonon mode. Conversely, the BST film on a Si (001) substrate shows no enhancement, due to its polycrystalline state. The 800 nm thick BST film on a MgO (111) substrate demonstrates the maximum of a second harmonic generation signal when excited by THz pulses at 1.8 THz, which is close to the soft mode frequency for the (111) orientation. Notably, the frequency spectrum of the BST/MgO (111) film reveals peaks at both the fundamental and doubled frequencies, and their intensities depend, respectively, linearly and quadratically on the THz pulse electric field strength. Full article
Show Figures

Figure 1

8 pages, 2234 KiB  
Communication
Backward THz Emission from Two-Color Laser Field-Induced Air Plasma Filament
by Yuxuan Chen, Yuhang He, Liyuan Liu, Zhen Tian, Jianming Dai and Xi-Cheng Zhang
Sensors 2023, 23(10), 4630; https://doi.org/10.3390/s23104630 - 10 May 2023
Cited by 4 | Viewed by 2722
Abstract
Two-color laser field-induced plasma filaments are efficient broadband terahertz (THz) sources with intense THz waves emitted mainly in the forward direction, and they have been investigated intensively. However, investigations on the backward emission from such THz sources are rather rare. In this paper, [...] Read more.
Two-color laser field-induced plasma filaments are efficient broadband terahertz (THz) sources with intense THz waves emitted mainly in the forward direction, and they have been investigated intensively. However, investigations on the backward emission from such THz sources are rather rare. In this paper, we theoretically and experimentally investigate the backward THz wave radiation from a two-color laser field-induced plasma filament. In theory, a linear dipole array model predicts that the proportion of the backward emitted THz wave decreases with the length of the plasma filament. In our experiment, we obtain the typical waveform and spectrum of the backward THz radiation from a plasma with a length of about 5 mm. The dependence of the peak THz electric field on the pump laser pulse energy indicates that the THz generation processes of the forward and backward THz waves are essentially the same. As the laser pulse energy changes, there is a peak timing shift in the THz waveform, implying a plasma position change caused by the nonlinear-focusing effect. Our demonstration may find applications in THz imaging and remote sensing. This work also contributes to a better understanding of the THz emission process from two-color laser-induced plasma filaments. Full article
(This article belongs to the Special Issue Terahertz Imaging, Sensing and Communications Technologies)
Show Figures

Figure 1

14 pages, 2146 KiB  
Article
Sensitivity of Neuroblastoma and Induced Neural Progenitor Cells to High-Intensity THz Radiation
by Dmitry Sitnikov, Veronika Revkova, Inna Ilina, Rimma Shatalova, Pavel Komarov, Evgenia Struleva, Mikhail Konoplyannikov, Vladimir Kalsin and Vladimir Baklaushev
Int. J. Mol. Sci. 2023, 24(7), 6558; https://doi.org/10.3390/ijms24076558 - 31 Mar 2023
Cited by 6 | Viewed by 2771
Abstract
THz radiation induces a variety of processes in cells and has attracted the attention of researchers in recent decades. Here, data on the effects of high-intensity terahertz (THz) radiation on human directly reprogrammed neural progenitor cells (drNPCs) and on neuroblastoma cells (SK-N-BE (2)) [...] Read more.
THz radiation induces a variety of processes in cells and has attracted the attention of researchers in recent decades. Here, data on the effects of high-intensity terahertz (THz) radiation on human directly reprogrammed neural progenitor cells (drNPCs) and on neuroblastoma cells (SK-N-BE (2)) were obtained for the first time. The results demonstrated that the exposure of non-tumor and tumor cells to broadband (0.1–3 THz) THz pulses with the intensity of 21 GW/cm2 and the electric field strength of 2.8 MV/cm for 30 min induced neither a noticeable genotoxic effect nor a statistically significant change in the proliferative activity and cell differentiation. It was also shown that the combined effect of THz radiation and salinomycin, a promising antitumor agent, on neuroblastoma cells did not enhance the genotoxic effect of this antibiotic. However, further studies involving chemotherapy drugs and other exposure parameters are warranted to introduce this new concept into anti-tumor clinical practice and to enhance the efficacy of the existing approaches. Full article
Show Figures

Figure 1

10 pages, 3711 KiB  
Article
Transient THz Emission and Effective Mass Determination in Highly Resistive GaAs Crystals Excited by Femtosecond Optical Pulses
by Genyu Chen, Debamitra Chakraborty, Jing Cheng, Martin Mikulics, Ivan Komissarov, Roman Adam, Daniel E. Bürgler, Claus M. Schneider, Hilde Hardtdegen and Roman Sobolewski
Crystals 2022, 12(11), 1635; https://doi.org/10.3390/cryst12111635 - 14 Nov 2022
Cited by 6 | Viewed by 2909
Abstract
We present comprehensive studies on the emission of broadband, free-space THz transients from several highly resistive GaAs samples excited by femtosecond optical pulses. Our test samples are characterized by different degrees of disorder, ranging from nitrogen-implanted to semi-insulating and annealed semi-insulating GaAs crystals. [...] Read more.
We present comprehensive studies on the emission of broadband, free-space THz transients from several highly resistive GaAs samples excited by femtosecond optical pulses. Our test samples are characterized by different degrees of disorder, ranging from nitrogen-implanted to semi-insulating and annealed semi-insulating GaAs crystals. In our samples, we clearly observed transient THz emissions due to the optical rectification effect, as well as due to the presence of the surface depletion electrical field. Next, we arranged our experimental setup in such way that we could observe directly how the amplitude of surface-emitted THz optical pulses is affected by an applied, in-plane magnetic field. We ascribe this effect to the Lorentz force that additionally accelerates optically excited carriers. The magnetic-field factor η is a linear function of the applied magnetic field and is the largest for an annealed GaAs sample, while it is the lowest for an N-implanted GaAs annealed at the lowest (300 °C) temperature. The latter is directly related to the longest and shortest trapping times, respectively, measured using a femtosecond optical pump-probe spectroscopy technique. The linear dependence of the factor η on the trapping time enabled us to establish that, for all samples, regardless of their crystalline structure, the electron effective mass was equal to 0.059 of the electron mass m0, i.e., it was only about 6% smaller than the generally accepted 0.063m0 value for GaAs with a perfect crystalline structure. Full article
Show Figures

Figure 1

32 pages, 4578 KiB  
Article
Substance Detection and Identification Using Frequency Doubling of the THz Broadband Pulse
by Vyacheslav A. Trofimov, Svetlana A. Varentsova, Yongqiang Yang and Zihao Cai
Chemosensors 2022, 10(7), 275; https://doi.org/10.3390/chemosensors10070275 - 13 Jul 2022
Cited by 2 | Viewed by 2162
Abstract
We propose and discuss an effective tool for substance detection and identification using a broadband THz pulse that is based on frequency conversion near the substance absorption frequencies. With this aim, we analyze the evolution of spectral intensities at the doubled absorption frequencies [...] Read more.
We propose and discuss an effective tool for substance detection and identification using a broadband THz pulse that is based on frequency conversion near the substance absorption frequencies. With this aim, we analyze the evolution of spectral intensities at the doubled absorption frequencies in order to prove their similarity to those at which the absorption of THz pulse energy occurs. This analysis is provided for both artificial THz signals and the real signals reflected from the substances under consideration. We demonstrate the feasibility of the proposed approach in the detection and identification of substances with an inhomogeneous surface, which is the most difficult case for practice, by using the method of spectral dynamic analysis and integral correlation criteria. Full article
(This article belongs to the Special Issue Machine Learning and Spectral Analysis for Smart Sensing)
Show Figures

Figure 1

20 pages, 23274 KiB  
Review
High-Power Solid-State Near- and Mid-IR Ultrafast Laser Sources for Strong-Field Science
by Andrey Pushkin, Ekaterina Migal, Dina Suleimanova, Evgeniy Mareev and Fedor Potemkin
Photonics 2022, 9(2), 90; https://doi.org/10.3390/photonics9020090 - 2 Feb 2022
Cited by 31 | Viewed by 4812
Abstract
This review highlights the development of ultrafast sources in the near- and middle-IR range, developed in the laboratory of Nonlinear Optics and Superstrong Laser Fields at Lomonosov Moscow State University. The design of laser systems is based on a powerful ultrafast Cr:Forsterite system [...] Read more.
This review highlights the development of ultrafast sources in the near- and middle-IR range, developed in the laboratory of Nonlinear Optics and Superstrong Laser Fields at Lomonosov Moscow State University. The design of laser systems is based on a powerful ultrafast Cr:Forsterite system as a front-end and the subsequent nonlinear conversion of radiation into the mid-IR, THz, and UV spectral range. Various schemes of optical parametric amplifiers based on oxide and non-oxide crystals pumped with Cr:Forsterite laser can receive pulses in the range of 4–6 µm with gigawatt peak power. Alternative sources of mid-IR ultrashort laser pulses at a relatively high (MHz) repetition rate are also proposed as difference frequency generators and as a femtosecond mode-locked oscillator based on an Fe:ZnSe crystal. Iron ion-doped chalcogenides (Fe:ZnSe and Fe:CdSe) are shown to be effective gain media for broadband high-peak power mid-IR pulses in this spectral range. The developed sources pave the way for advanced research in strong-field science. Full article
(This article belongs to the Special Issue High-Power Lasers and Amplifiers)
Show Figures

Figure 1

11 pages, 964 KiB  
Communication
Low-Frequency Content of THz Emission from Two-Color Femtosecond Filament
by Daniil E. Shipilo, Nikolay A. Panov, Irina A. Nikolaeva, Alexander A. Ushakov, Pavel A. Chizhov, Kseniia A. Mamaeva, Vladimir V. Bukin, Sergey V. Garnov and Olga G. Kosareva
Photonics 2022, 9(1), 17; https://doi.org/10.3390/photonics9010017 - 29 Dec 2021
Cited by 9 | Viewed by 2421
Abstract
We experimentally investigate the low-frequency (below 1 THz) spectral content of broadband terahertz (THz) emission from two-color femtosecond filament formed by the 2.7-mJ, 40-fs, 800+400-nm pulse focused into air. For incoherent detection, we screened the Golay cell by the bandpass [...] Read more.
We experimentally investigate the low-frequency (below 1 THz) spectral content of broadband terahertz (THz) emission from two-color femtosecond filament formed by the 2.7-mJ, 40-fs, 800+400-nm pulse focused into air. For incoherent detection, we screened the Golay cell by the bandpass filters and measured the THz angular distributions at the selected frequencies ν=0.5, 1, 2 and 3 THz. The measured distributions of THz fluence were integrated over the forward hemisphere taking into account the transmittance of the filters, thus providing the estimation of spectral power at the frequencies studied. The spectral power decreases monotonically with the frequency increasing from 0.5 to 3 THz, thus showing that the maximum of THz spectrum is attained at ν0.5 THz. The THz waveform measured by electro-optical sampling (EOS) based on ZnTe crystal and transformed into the spectral domain shows that there exists the local maximum of the THz spectral power at ν1 THz. This disagrees with monotonic decrease of THz spectral power obtained from the filter-based measurements. We have introduced the correction to the spectral power reconstructed from EOS measurements. This correction takes into account different focal spot size for different THz frequencies contained in the broadband electromagnetic pulse. The corrected EOS spectral power is in semi-quantitative agreement with the one measured by a set of filters. Full article
(This article belongs to the Special Issue Terahertz (THz) Science in Advanced Materials, Devices and Systems)
Show Figures

Figure 1

10 pages, 828 KiB  
Communication
Superposition of 2ω and Electrostatic Field Induced Terahertz Waveforms in DC-Biased Two-Color Filament
by Aleksandr Ushakov, Pavel Chizhov, Irina Nikolaeva, Daniil Shipilo, Nikolay Panov, Vladimir Bukin, Kseniia Mamaeva, Olga Kosareva and Sergey Garnov
Appl. Sci. 2021, 11(24), 11888; https://doi.org/10.3390/app112411888 - 14 Dec 2021
Cited by 5 | Viewed by 2410
Abstract
Increase in conversion efficiency from a femtosecond optical pump into broadband terahertz (THz) radiation is currently an essential issue since it boosts THz source performance for medicine and security applications. An air-plasma based THz radiation from a two-color femtosecond filament is the most [...] Read more.
Increase in conversion efficiency from a femtosecond optical pump into broadband terahertz (THz) radiation is currently an essential issue since it boosts THz source performance for medicine and security applications. An air-plasma based THz radiation from a two-color femtosecond filament is the most efficient gas-based THz emitter, with a dipole local source having a maximum on the beam propagation axis. In this work, we show the novel advancement to THz yield increase with preservation of the forwardly directed dipole radiation. The two-color THz source can be enhanced if the filament plasma channel is placed into an external electrostatic field (DC bias), which is parallel to the second harmonic polarization direction. In the experiment, we produce a plasma channel from 800-nm, ∼50-fs, 2-mJ pulse with 200 μJ of 400-nm, ∼50-fs mixed with the pump, and allocate it between the electrodes carrying 7-kV/cm static field. Time-domain measurements and 3D+time simulations of THz waveforms from the two-color DC-biased filament show that the THz emission is the superposition of the THz waveforms generated in the 800+400-nm filament without a DC-bias and in the 800-nm (without 400-nm) plasma channel biased by 7-kV/cm static field. The additivity of the two local dipole THz sources is possible if the majority of free electrons are produced by the pump pulse. Full article
Show Figures

Figure 1

9 pages, 2409 KiB  
Article
Performance Enhancement of Photoconductive Antenna Using Saw-Toothed Plasmonic Contact Electrodes
by Xingyun Zhang, Fangyuan Zhan, Xianlong Wei, Wenlong He and Cunjun Ruan
Electronics 2021, 10(21), 2693; https://doi.org/10.3390/electronics10212693 - 4 Nov 2021
Cited by 4 | Viewed by 3276
Abstract
A photoconductive logarithmic spiral antenna with saw-toothed plasmonic contact electrodes is proposed to provide a higher terahertz radiation compared with the conventional photoconductive antenna (PCA). The use of saw-toothed plasmonic contact electrodes creates a strong electric field between the anode and cathode, which [...] Read more.
A photoconductive logarithmic spiral antenna with saw-toothed plasmonic contact electrodes is proposed to provide a higher terahertz radiation compared with the conventional photoconductive antenna (PCA). The use of saw-toothed plasmonic contact electrodes creates a strong electric field between the anode and cathode, which generates a larger photocurrent and thereby effectively increases the terahertz radiation. The proposed PCA was fabricated and measured in response to an 80 fs optical pump from a fiber-based femtosecond laser with a wavelength of 780 nm. When the proposed antenna is loaded with an optical pump power of 20 mW and a bias voltage of 40 V, a broadband pulsed terahertz radiation in the frequency range of 0.1–2 THz was observed. Compared to the conventional PCA, the THz power measured by terahertz time domain spectroscopy (THz-TDS) increased by an average of 10.45 times. Full article
(This article belongs to the Special Issue Terahertz Nanoantennas: Design and Applications)
Show Figures

Figure 1

12 pages, 3459 KiB  
Article
Direct Observation of Terahertz Frequency Comb Generation in Difference-Frequency Quantum Cascade Lasers
by Luigi Consolino, Malik Nafa, Michele De Regis, Francesco Cappelli, Saverio Bartalini, Akio Ito, Masahiro Hitaka, Tatsuo Dougakiuchi, Tadataka Edamura, Paolo De Natale and Kazuue Fujita
Appl. Sci. 2021, 11(4), 1416; https://doi.org/10.3390/app11041416 - 4 Feb 2021
Cited by 18 | Viewed by 3459
Abstract
Terahertz quantum cascade laser sources based on intra-cavity difference frequency generation from mid-IR devices are an important asset for applications in rotational molecular spectroscopy and sensing, being the only electrically pumped device able to operate in the 0.6–6 THz range without the need [...] Read more.
Terahertz quantum cascade laser sources based on intra-cavity difference frequency generation from mid-IR devices are an important asset for applications in rotational molecular spectroscopy and sensing, being the only electrically pumped device able to operate in the 0.6–6 THz range without the need of bulky and expensive liquid helium cooling. Here we present comb operation obtained by intra-cavity mixing of a distributed feedback laser at λ = 6.5 μm and a Fabry–Pérot device at around λ = 6.9 μm. The resulting ultra-broadband THz emission extends from 1.8 to 3.3 THz, with a total output power of 8 μW at 78 K. The THz emission has been characterized by multi-heterodyne detection with a primary frequency standard referenced THz comb, obtained by optical rectification of near infrared pulses. The down-converted beatnotes, simultaneously acquired, confirm an equally spaced THz emission down to 1 MHz accuracy. In the future, this setup can be used for Fourier transform based evaluation of the phase relation among the emitted THz modes, paving the way to room-temperature, compact, and field-deployable metrological grade THz frequency combs. Full article
(This article belongs to the Special Issue Mid-Infrared and THz Spectroscopy: Innovative Tools and Applications)
Show Figures

Figure 1

10 pages, 1301 KiB  
Article
Homodyne Solid-State Biased Coherent Detection of Ultra-Broadband Terahertz Pulses with Static Electric Fields
by Alessandro Tomasino, Riccardo Piccoli, Yoann Jestin, Boris Le Drogoff, Mohamed Chaker, Aycan Yurtsever, Alessandro Busacca, Luca Razzari and Roberto Morandotti
Nanomaterials 2021, 11(2), 283; https://doi.org/10.3390/nano11020283 - 22 Jan 2021
Cited by 9 | Viewed by 2598
Abstract
We present an innovative implementation of the solid-state-biased coherent detection (SSBCD) technique, which we have recently introduced for the reconstruction of both amplitude and phase of ultra-broadband terahertz pulses. In our previous works, the SSBCD method has been operated via a heterodyne scheme, [...] Read more.
We present an innovative implementation of the solid-state-biased coherent detection (SSBCD) technique, which we have recently introduced for the reconstruction of both amplitude and phase of ultra-broadband terahertz pulses. In our previous works, the SSBCD method has been operated via a heterodyne scheme, which involves demanding square-wave voltage amplifiers, phase-locked to the THz pulse train, as well as an electronic circuit for the demodulation of the readout signal. Here, we demonstrate that the SSBCD technique can be operated via a very simple homodyne scheme, exploiting plain static bias voltages. We show that the homodyne SSBCD signal turns into a bipolar transient when the static field overcomes the THz field strength, without the requirement of an additional demodulating circuit. Moreover, we introduce a differential configuration, which extends the applicability of the homodyne scheme to higher THz field strengths, also leading a two-fold improvement of the dynamic range compared to the heterodyne counterpart. Finally, we demonstrate that, by reversing the sign of the static voltage, it is possible to directly retrieve the absolute THz pulse polarity. The homodyne configuration makes the SSBCD technique of much easier access, leading to a vast range of field-resolved applications. Full article
Show Figures

Figure 1

13 pages, 3836 KiB  
Article
Performance Evaluation of a THz Pulsed Imaging System: Point Spread Function, Broadband THz Beam Visualization and Image Reconstruction
by Marta Di Fabrizio, Annalisa D’Arco, Sen Mou, Luigi Palumbo, Massimo Petrarca and Stefano Lupi
Appl. Sci. 2021, 11(2), 562; https://doi.org/10.3390/app11020562 - 8 Jan 2021
Cited by 23 | Viewed by 4492
Abstract
Terahertz (THz) technology is a promising research field for various applications in basic science and technology. In particular, THz imaging is a new field in imaging science, where theories, mathematical models and techniques for describing and assessing THz images have not completely matured [...] Read more.
Terahertz (THz) technology is a promising research field for various applications in basic science and technology. In particular, THz imaging is a new field in imaging science, where theories, mathematical models and techniques for describing and assessing THz images have not completely matured yet. In this work, we investigate the performances of a broadband pulsed THz imaging system (0.2–2.5 THz). We characterize our broadband THz beam, emitted from a photoconductive antenna (PCA), and estimate its point spread function (PSF) and the corresponding spatial resolution. We provide the first, to our knowledge, 3D beam profile of THz radiation emitted from a PCA, along its propagation axis, without the using of THz cameras or profilers, showing the beam spatial intensity distribution. Finally, we evaluate the THz image formation on a test-sample composed by a regular linen natural pattern. Full article
(This article belongs to the Special Issue Advances of THz Spectroscopy)
Show Figures

Figure 1

36 pages, 11339 KiB  
Article
Spurious Absorption Frequency Appearance Due to Frequency Conversion Processes in Pulsed THz TDS Problems
by Vyacheslav A. Trofimov, Nan-Nan Wang, Jing-Hui Qiu and Svetlana A. Varentsova
Sensors 2020, 20(7), 1859; https://doi.org/10.3390/s20071859 - 27 Mar 2020
Cited by 2 | Viewed by 3256
Abstract
The appearance of the spurious absorption frequencies caused by the frequency conversion process at the broadband THz pulse propagation in a medium is theoretically and experimentally discussed. The spurious absorption frequencies appear due to both the frequency doubling and generation of waves with [...] Read more.
The appearance of the spurious absorption frequencies caused by the frequency conversion process at the broadband THz pulse propagation in a medium is theoretically and experimentally discussed. The spurious absorption frequencies appear due to both the frequency doubling and generation of waves with sum or difference frequency. Such generation might occur because of the nonlinear response of a medium or its non-instantaneous response. This phenomenon is confirmed by the results of a few physical experiments provided with the THz CW signals and broadband THz pulses that are transmitted through the ordinary or dangerous substances. A high correlation between the time-dependent spectral intensities for the basic frequency and generated frequencies is demonstrated while using the computer simulation results. This feature of the frequency conversion might be used for the detection and identification of a substance. Full article
(This article belongs to the Special Issue Advanced Industrial Terahertz Sensing Applications)
Show Figures

Figure 1

15 pages, 3261 KiB  
Review
Coherent THz Hyper-Raman: Spectroscopy and Application in THz Detection
by Arianna Ceraso, Sen Mou, Andrea Rubano and Domenico Paparo
Materials 2019, 12(23), 3870; https://doi.org/10.3390/ma12233870 - 23 Nov 2019
Cited by 8 | Viewed by 3382
Abstract
Recently we have demonstrated a new nonlinear optical effect in the THz interval of frequencies. The latter is based on the use of femtosecond optical pulses and intense, sub-ps, broadband terahertz (THz) pulses to generate a THz-optical four- and five-wave mixing in the [...] Read more.
Recently we have demonstrated a new nonlinear optical effect in the THz interval of frequencies. The latter is based on the use of femtosecond optical pulses and intense, sub-ps, broadband terahertz (THz) pulses to generate a THz-optical four- and five-wave mixing in the investigated material. The spectrum of the generated signal is resolved in time and wavelength and displays two pronounced frequency sidebands, Stokes and anti-Stokes, close to the optical second harmonic central frequency 2 ω L , where ω L is the optical central frequency of the fundamental beam, thus resembling the spectrum of standard hyper-Raman scattering, and hence we named this effect ‘THz hyper-Raman’—THYR. We applied this technique to several crystalline materials, including α-quartz and gallium selenide. In the first material, we find that the THYR technique brings spectroscopic information on a large variety of low-energy excitations that include polaritons and phonons far from the Γ-point, which are difficult to study with standard optical techniques. In the second example, we show that this new tool offers some advantages in detecting ultra-broadband THz pulses. In this paper we review these two recent results, showing the potentialities of this new THz technique. Full article
(This article belongs to the Special Issue Advances in THZ Spectroscopy)
Show Figures

Figure 1

Back to TopTop