Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = brain tumour biology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1680 KiB  
Review
Microtubule-Targeting Agents: Advances in Tubulin Binding and Small Molecule Therapy for Gliomas and Neurodegenerative Diseases
by Maya Ezzo and Sandrine Etienne-Manneville
Int. J. Mol. Sci. 2025, 26(15), 7652; https://doi.org/10.3390/ijms26157652 (registering DOI) - 7 Aug 2025
Abstract
Microtubules play a key role in cell division and cell migration. Thus, microtubule-targeting agents (MTAs) are pivotal in cancer therapy due to their ability to disrupt cell division microtubule dynamics. Traditionally divided into stabilizers and destabilizers, MTAs are increasingly being repurposed for central [...] Read more.
Microtubules play a key role in cell division and cell migration. Thus, microtubule-targeting agents (MTAs) are pivotal in cancer therapy due to their ability to disrupt cell division microtubule dynamics. Traditionally divided into stabilizers and destabilizers, MTAs are increasingly being repurposed for central nervous system (CNS) applications, including brain malignancies such as gliomas and neurodegenerative diseases like Alzheimer’s and Parkinson’s. Microtubule-stabilizing agents, such as taxanes and epothilones, promote microtubule assembly and have shown efficacy in both tumour suppression and neuronal repair, though their CNS use is hindered by blood–brain barrier (BBB) permeability and neurotoxicity. Destabilizing agents, including colchicine-site and vinca domain binders, offer potent anticancer effects but pose greater risks for neuronal toxicity. This review highlights the mapping of nine distinct tubulin binding pockets—including classical (taxane, vinca, colchicine) and emerging (tumabulin, pironetin) sites—that offer new pharmacological entry points. We summarize the recent advances in structural biology and drug design, enabling MTAs to move beyond anti-mitotic roles, unlocking applications in both cancer and neurodegeneration for next-generation MTAs with enhanced specificity and BBB penetration. We further discuss the therapeutic potential of combination strategies, including MTAs with radiation, histone deacetylase (HDAC) inhibitors, or antibody–drug conjugates, that show synergistic effects in glioblastoma models. Furthermore, innovative delivery systems like nanoparticles and liposomes are enhancing CNS drug delivery. Overall, MTAs continue to evolve as multifunctional tools with expanding applications across oncology and neurology, with future therapies focusing on optimizing efficacy, reducing toxicity, and overcoming therapeutic resistance in brain-related diseases. Full article
(This article belongs to the Special Issue New Drugs Regulating Cytoskeletons in Human Health and Diseases)
Show Figures

Figure 1

30 pages, 2663 KiB  
Review
IGFBP-2 and IGF-II: Key Components of the Neural Stem Cell Niche? Implications for Glioblastoma Pathogenesis
by Abigail J. Harland and Claire M. Perks
Int. J. Mol. Sci. 2025, 26(10), 4749; https://doi.org/10.3390/ijms26104749 - 15 May 2025
Viewed by 1121
Abstract
Glioblastoma is a fatal and aggressive cancer with no cure. It is becoming increasingly clear that glioblastoma initiation is a result of adult neural stem cell (NSC) transformation—most likely those within the subventricular zone (SVZ). Indeed, transcriptomic analysis indicates that glioblastomas are reminiscent [...] Read more.
Glioblastoma is a fatal and aggressive cancer with no cure. It is becoming increasingly clear that glioblastoma initiation is a result of adult neural stem cell (NSC) transformation—most likely those within the subventricular zone (SVZ). Indeed, transcriptomic analysis indicates that glioblastomas are reminiscent of a neurodevelopmental hierarchy, in which neural stem and progenitor markers are widely expressed by tumour stem-like cells. However, NSC fates and the cues that drive them are poorly understood. Studying the crosstalk within NSC niches may better inform our understanding of glioblastoma initiation and development. Insulin-like growth factor binding protein 2 (IGFBP-2) has a well-established prognostic role in glioblastoma, and cell-based mechanistic studies show the independent activation of downstream oncogenic pathways. However, IGFBP-2 is more commonly recognised as a modulator of insulin-like growth factors (IGFs) for receptor tyrosine kinase signal propagation or attenuation. In the adult human brain, both IGFBP-2 and IGF-II expression are retained in the choroid plexus (ChP) and secreted into the cerebral spinal fluid (CSF). Moreover, secretion by closely associated cells and NSCs themselves position IGFBP-2 and IGF-II as interesting factors within the NSC niche. In this review, we will highlight the experimental findings that show IGFBP-2 and IGF-II influence NSC behaviour. Moreover, we will link this to glioblastoma biology and demonstrate the requirement for further analysis of these factors in glioma stem cells (GSCs). Full article
(This article belongs to the Special Issue The Role of the IGF Axis in Disease, 4th Edition)
Show Figures

Figure 1

26 pages, 18146 KiB  
Article
Trying to Kill a Killer; Impressive Killing of Patient Derived Glioblastoma Cultures Using NK-92 Natural Killer Cells Reveals Both Sensitive and Highly Resistant Glioblastoma Cells
by Jane Yu, Hyeon Joo Kim, Jordyn Reinecke, James Hucklesby, Tennille Read, Akshata Anchan, Catherine E. Angel and Euan Scott Graham
Cells 2025, 14(1), 53; https://doi.org/10.3390/cells14010053 - 5 Jan 2025
Viewed by 1333
Abstract
The overall goal of this work was to assess the ability of Natural Killer cells to kill cultures of patient-derived glioblastoma cells. Herein we report impressive levels of NK-92 mediated killing of various patient-derived glioblastoma cultures observed at ET (effector: target) ratios of [...] Read more.
The overall goal of this work was to assess the ability of Natural Killer cells to kill cultures of patient-derived glioblastoma cells. Herein we report impressive levels of NK-92 mediated killing of various patient-derived glioblastoma cultures observed at ET (effector: target) ratios of 5:1 and 1:1. This enabled direct comparison of the degree of glioblastoma cell loss across a broader range of glioblastoma cultures. Importantly, even at high ET ratios of 5:1, there are always subpopulations of glioblastoma cells that prove very challenging to kill that evade the NK-92 cells. Of value in this study has been the application of ECIS (Electric Cell–Substrate Impedance Sensing) biosensor technology to monitor the glioblastoma cells in real-time, enabling temporal assessment of the NK-92 cells. ECIS has been powerful in revealing that at higher ET ratios, the glioblastoma cells are acutely sensitive to the NK-92 cells, and the observed glioblastoma cell death is supported by the high-content imaging data. Moreover, long-term ECIS experiments reveal that the surviving glioblastoma cells were then able to grow and reseed the culture, which was evident 300–500 h after the addition of the NK-92 cells. This was observed for multiple glioblastoma lines. In addition, our imaging provides evidence that some NK-92 cells appear to be compromised early, which would be consistent with potent evasive mechanisms by the glioblastoma tumour cells. This research strongly highlights the potential for NK-92 cells to kill glioblastoma tumour cells and provides a basis to identify the mechanism utilised by the surviving glioblastoma cells that we now need to target to achieve maximal cytolysis of the resistant glioblastoma cells. It is survival of the highly resistant glioblastoma clones that results in tumour relapse. Full article
(This article belongs to the Special Issue Therapeutic Targets in Glioblastoma)
Show Figures

Figure 1

13 pages, 1405 KiB  
Article
A Retrospective Analysis of the Prognostic Factors and Adverse Events in the Treatment of Mucosal Melanoma in a Single Centre
by Lambert Wesener, Victoria Hagelstein, Patrick Terheyden and Ewan A. Langan
J. Clin. Med. 2024, 13(16), 4741; https://doi.org/10.3390/jcm13164741 - 13 Aug 2024
Cited by 1 | Viewed by 1530
Abstract
Background: Despite the dramatic advances in the management of metastatic cutaneous melanoma, there remains no consensus-based, evidence-based strategy for the management of mucosal melanoma. The rare nature of the disease, its late clinical presentation, and distinct tumour biology all complicate efforts to optimise [...] Read more.
Background: Despite the dramatic advances in the management of metastatic cutaneous melanoma, there remains no consensus-based, evidence-based strategy for the management of mucosal melanoma. The rare nature of the disease, its late clinical presentation, and distinct tumour biology all complicate efforts to optimise patient outcomes. Methods: To this end, we carried out a monocentric, retrospective analysis of all patients diagnosed with mucosal melanoma and treated between 2013 and 2021. Both tumour- and patient-specific characteristics were recorded, in addition to immune-related adverse events, in order to provide real-world data on disease progression, treatment efficacy, and the identification of prognostic markers. Results: A total of 20 patients were identified (14 females and 6 males), with a mean age at diagnosis of 65.9 years. The median follow-up was 3.9 years (95% CI 1.4–6.4 years) from the initiation of systemic therapy. The median OS in the entire cohort was 1.9 years (95% CI 0.5–3.3 years). Performance status, sex, body mass index, and the presence of brain metastases were not associated with poorer outcomes. However, serum lactate dehydrogenase levels (LDH) (p = 0.04) and an NRAS mutation were markers of a poor prognosis (p = 0.004). Conclusuion: There is a pressing need for real-world, prospective, and clinical trial data to inform the optimal management of mucosal melanoma, and data supporting the use of adjuvant and neo-adjuvant immunotherapy are currently lacking. However, an elevated LDH is a reliable, independent negative prognostic marker. Inter-disciplinary management remains essential in order to develop optimal treatment strategies. Full article
(This article belongs to the Section Dermatology)
Show Figures

Figure 1

14 pages, 2812 KiB  
Article
A New Systemic Disease Mouse Model for Glioblastoma Capable of Single-Tumour-Cell Detection
by Thomas M. B. Ware, Rodney B. Luwor and Hong-Jian Zhu
Cells 2024, 13(2), 192; https://doi.org/10.3390/cells13020192 - 19 Jan 2024
Cited by 3 | Viewed by 2479
Abstract
Background: Glioblastoma is characterised by extensive infiltration into the brain parenchyma, leading to inevitable tumor recurrence and therapeutic failure. Future treatments will need to target the specific biology of tumour recurrence, but our current understanding of the underlying mechanisms is limited. Significantly, there [...] Read more.
Background: Glioblastoma is characterised by extensive infiltration into the brain parenchyma, leading to inevitable tumor recurrence and therapeutic failure. Future treatments will need to target the specific biology of tumour recurrence, but our current understanding of the underlying mechanisms is limited. Significantly, there is a lack of available methods and models that are tailored to the examination of tumour recurrence. Methods: NOD-SCID mice were orthotopically implanted with luciferase-labelled donor U87MG or MU20 glioblastoma cells. Four days later, an unlabelled recipient tumor was implanted on the contralateral side. The mice were euthanised at a humane end-point and tissue and blood samples were collected for ex vivo analyses. Results: The ex vivo analyses of the firefly-labelled MU20 tumours displayed extensive invasion at the primary tumour margins, whereas the firefly-labelled U87MG tumours exhibited expansive phenotypes with no evident invasions at the tumour margins. Luciferase signals were detected in the contralateral unlabelled recipient tumours for both the U87MG and MU20 tumours compared to the non-implanted control brain. Remarkably, tumour cells were uniformly detected in all tissue samples of the supratentorial brain region compared to the control tissue, with single tumour cells detected in some tissue samples. Circulating tumour cells were also detected in the blood samples of most of the xenografted mice. Moreover, tumour cells were detected in the lungs of all of the mice, a probable event related to haematogenous dissemination. Similar results were obtained when the U87MG cells were alternatively labelled with gaussian luciferase. Conclusions: These findings describe a systemic disease model for glioblastoma which can be used to investigate recurrence biology and therapeutic efficacy towards recurrence. Full article
Show Figures

Figure 1

20 pages, 1454 KiB  
Review
Leptomeningeal Metastases in Melanoma Patients: An Update on and Future Perspectives for Diagnosis and Treatment
by Julian Steininger, Frank Friedrich Gellrich, Kay Engellandt, Matthias Meinhardt, Dana Westphal, Stefan Beissert, Friedegund Meier and Isabella C. Glitza Oliva
Int. J. Mol. Sci. 2023, 24(14), 11443; https://doi.org/10.3390/ijms241411443 - 14 Jul 2023
Cited by 9 | Viewed by 5445
Abstract
Leptomeningeal disease (LMD) is a devastating complication of cancer with a particularly poor prognosis. Among solid tumours, malignant melanoma (MM) has one of the highest rates of metastasis to the leptomeninges, with approximately 10–15% of patients with advanced disease developing LMD. Tumour cells [...] Read more.
Leptomeningeal disease (LMD) is a devastating complication of cancer with a particularly poor prognosis. Among solid tumours, malignant melanoma (MM) has one of the highest rates of metastasis to the leptomeninges, with approximately 10–15% of patients with advanced disease developing LMD. Tumour cells that metastasise to the brain have unique properties that allow them to cross the blood–brain barrier, evade the immune system, and survive in the brain microenvironment. Metastatic colonisation is achieved through dynamic communication between metastatic cells and the tumour microenvironment, resulting in a tumour-permissive milieu. Despite advances in treatment options, the incidence of LMD appears to be increasing and current treatment modalities have a limited impact on survival. This review provides an overview of the biology of LMD, diagnosis and current treatment approaches for MM patients with LMD, and an overview of ongoing clinical trials. Despite the still limited efficacy of current therapies, there is hope that emerging treatments will improve the outcomes for patients with LMD. Full article
(This article belongs to the Special Issue Molecular Research and New Therapy in Melanoma and Other Skin Cancers)
Show Figures

Figure 1

19 pages, 964 KiB  
Review
The Regulation of m6A Modification in Glioblastoma: Functional Mechanisms and Therapeutic Approaches
by Simon Deacon, Lauryn Walker, Masar Radhi and Stuart Smith
Cancers 2023, 15(13), 3307; https://doi.org/10.3390/cancers15133307 - 23 Jun 2023
Cited by 7 | Viewed by 2671
Abstract
Glioblastoma is the most prevalent primary brain tumour and invariably confers a poor prognosis. The immense intra-tumoral heterogeneity of glioblastoma and its ability to rapidly develop treatment resistance are key barriers to successful therapy. As such, there is an urgent need for the [...] Read more.
Glioblastoma is the most prevalent primary brain tumour and invariably confers a poor prognosis. The immense intra-tumoral heterogeneity of glioblastoma and its ability to rapidly develop treatment resistance are key barriers to successful therapy. As such, there is an urgent need for the greater understanding of the tumour biology in order to guide the development of novel therapeutics in this field. N6-methyladenosine (m6A) is the most abundant of the RNA modifications in eukaryotes. Studies have demonstrated that the regulation of this RNA modification is altered in glioblastoma and may serve to regulate diverse mechanisms including glioma stem-cell self-renewal, tumorigenesis, invasion and treatment evasion. However, the precise mechanisms by which m6A modifications exert their functional effects are poorly understood. This review summarises the evidence for the disordered regulation of m6A in glioblastoma and discusses the downstream functional effects of m6A modification on RNA fate. The wide-ranging biological consequences of m6A modification raises the hope that novel cancer therapies can be targeted against this mechanism. Full article
(This article belongs to the Special Issue Brain and Spinal Cord Tumors: Symptoms, Diagnosis, and Treatment)
Show Figures

Figure 1

31 pages, 2847 KiB  
Review
Understanding the Epitranscriptome for Avant-Garde Brain Tumour Diagnostics
by Ágota Tűzesi, Susannah Hallal, Laveniya Satgunaseelan, Michael E. Buckland and Kimberley L. Alexander
Cancers 2023, 15(4), 1232; https://doi.org/10.3390/cancers15041232 - 15 Feb 2023
Cited by 6 | Viewed by 2824
Abstract
RNA modifications are diverse, dynamic, and reversible transcript alterations rapidly gaining attention due to their newly defined RNA regulatory roles in cellular pathways and pathogenic mechanisms. The exciting emerging field of ‘epitranscriptomics’ is predominantly centred on studying the most abundant mRNA modification, N6-methyladenine [...] Read more.
RNA modifications are diverse, dynamic, and reversible transcript alterations rapidly gaining attention due to their newly defined RNA regulatory roles in cellular pathways and pathogenic mechanisms. The exciting emerging field of ‘epitranscriptomics’ is predominantly centred on studying the most abundant mRNA modification, N6-methyladenine (m6A). The m6A mark, similar to many other RNA modifications, is strictly regulated by so-called ‘writer’, ‘reader’, and ‘eraser’ protein species. The abundance of genes coding for the expression of these regulator proteins and m6A levels shows great potential as diagnostic and predictive tools across several cancer fields. This review explores our current understanding of RNA modifications in glioma biology and the potential of epitranscriptomics to develop new diagnostic and predictive classification tools that can stratify these highly complex and heterogeneous brain tumours. Full article
(This article belongs to the Special Issue Advanced Research in Oncology in 2022)
Show Figures

Graphical abstract

28 pages, 2534 KiB  
Article
Determining the Research Priorities for Adult Primary Brain Tumours in Australia and New Zealand: A Delphi Study with Consumers, Health Professionals, and Researchers
by Georgia K. B. Halkett, Lauren J. Breen, Melissa Berg, Rebecca Sampson, Hao-Wen Sim, Hui K. Gan, Benjamin Y. Kong, Anna K. Nowak, Bryan W. Day, Rosemary Harrup, Melissa James, Frank Saran, Brett Mcfarlane, Chris Tse and Eng-Siew Koh
Curr. Oncol. 2022, 29(12), 9928-9955; https://doi.org/10.3390/curroncol29120781 - 17 Dec 2022
Viewed by 3319
Abstract
The aim of this project was to determine research priorities, barriers, and enablers for adult primary brain tumour research in Australia and New Zealand. Consumers, health professionals, and researchers were invited to participate in a two-phase modified Delphi study. Phase 1 comprised an [...] Read more.
The aim of this project was to determine research priorities, barriers, and enablers for adult primary brain tumour research in Australia and New Zealand. Consumers, health professionals, and researchers were invited to participate in a two-phase modified Delphi study. Phase 1 comprised an initial online survey (n = 91) and then focus groups (n = 29) which identified 60 key research topics, 26 barriers, and 32 enablers. Phase 2 comprised two online surveys to (1) reduce the list to 37 research priorities which achieved consensus (>75% 2-point agreement) and had high mean importance ratings (n = 116 participants) and (2) determine the most important priorities, barriers, and enablers (n = 90 participants). The top ten ranked research priorities for the overall sample and sub-groups (consumers, health professionals, and researchers) were identified. Priorities focused on: tumour biology, pre-clinical research, clinical and translational research, and supportive care. Variations were seen between sub-groups. The top ten barriers to conducting brain tumour research related to funding and resources, accessibility and awareness of research, collaboration, and process. The top ten research enablers were funding and resources, collaboration, and workforce. The broad list of research priorities identified by this Delphi study, together with how consumers, health professionals, and researchers prioritised items differently, and provides an evidence-based research agenda for brain tumour research that is needed across a wide range of areas. Full article
Show Figures

Figure 1

18 pages, 2434 KiB  
Article
Exploratory Analysis of Serial 18F-fluciclovine PET-CT and Multiparametric MRI during Chemoradiation for Glioblastoma
by Kavi Fatania, Russell Frood, Marcus Tyyger, Garry McDermott, Sharon Fernandez, Gary C. Shaw, Marjorie Boissinot, Daniela Salvatore, Luisa Ottobrini, Irvin Teh, John Wright, Marc A. Bailey, Joanna Koch-Paszkowski, Jurgen E. Schneider, David L. Buckley, Louise Murray, Andrew Scarsbrook, Susan C. Short and Stuart Currie
Cancers 2022, 14(14), 3485; https://doi.org/10.3390/cancers14143485 - 18 Jul 2022
Cited by 6 | Viewed by 2540
Abstract
Anti-1-amino-3-18fluorine-fluorocyclobutane-1-carboxylic acid (18F-fluciclovine) positron emission tomography (PET) shows preferential glioma uptake but there is little data on how uptake correlates with post-contrast T1-weighted (Gd-T1) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) activity during adjuvant treatment. This pilot study aimed [...] Read more.
Anti-1-amino-3-18fluorine-fluorocyclobutane-1-carboxylic acid (18F-fluciclovine) positron emission tomography (PET) shows preferential glioma uptake but there is little data on how uptake correlates with post-contrast T1-weighted (Gd-T1) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) activity during adjuvant treatment. This pilot study aimed to compare 18F-fluciclovine PET, DCE-MRI and Gd-T1 in patients undergoing chemoradiotherapy for glioblastoma (GBM), and in a parallel pre-clinical GBM model, to investigate correlation between 18F-fluciclovine uptake, MRI findings, and tumour biology. 18F-fluciclovine-PET-computed tomography (PET-CT) and MRI including DCE-MRI were acquired before, during and after adjuvant chemoradiotherapy (60 Gy in 30 fractions with temozolomide) in GBM patients. MRI volumes were manually contoured; PET volumes were defined using semi-automatic thresholding. The similarity of the PET and DCE-MRI volumes outside the Gd-T1 volume boundary was measured using the Dice similarity coefficient (DSC). CT-2A tumour-bearing mice underwent MRI and 18F-fluciclovine PET-CT. Post-mortem mice brains underwent immunohistochemistry staining for ASCT2 (amino acid transporter), nestin (stemness) and Ki-67 (proliferation) to assess for biologically active tumour. 6 patients were recruited (GBM 1–6) and grouped according to overall survival (OS)—short survival (GBM-SS, median OS 249 days) and long survival (GBM-LS, median 903 days). For GBM-SS, PET tumour volumes were greater than DCE-MRI, in turn greater than Gd-T1. For GBM-LS, Gd-T1 and DCE-MRI were greater than PET. Tumour-specific 18F-fluciclovine uptake on pre-clinical PET-CT corresponded to immunostaining for Ki-67, nestin and ASCT2. Results suggest volumes of 18F-fluciclovine-PET activity beyond that depicted by DCE-MRI and Gd-T1 are associated with poorer prognosis in patients undergoing chemoradiotherapy for GBM. The pre-clinical model confirmed 18F-fluciclovine uptake reflected biologically active tumour. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

20 pages, 2475 KiB  
Review
Brain Vascular Microenvironments in Cancer Metastasis
by Lucas E. Tobar, Rae H. Farnsworth and Steven A. Stacker
Biomolecules 2022, 12(3), 401; https://doi.org/10.3390/biom12030401 - 4 Mar 2022
Cited by 14 | Viewed by 5773
Abstract
Primary tumours, particularly from major solid organs, are able to disseminate into the blood and lymphatic system and spread to distant sites. These secondary metastases to other major organs are the most lethal aspect of cancer, accounting for the majority of cancer deaths. [...] Read more.
Primary tumours, particularly from major solid organs, are able to disseminate into the blood and lymphatic system and spread to distant sites. These secondary metastases to other major organs are the most lethal aspect of cancer, accounting for the majority of cancer deaths. The brain is a frequent site of metastasis, and brain metastases are often fatal due to the critical role of the nervous system and the limited options for treatment, including surgery. This creates a need to further understand the complex cell and molecular biology associated with the establishment of brain metastasis, including the changes to the environment of the brain to enable the arrival and growth of tumour cells. Local changes in the vascular network, immune system and stromal components all have the potential to recruit and foster metastatic tumour cells. This review summarises our current understanding of brain vascular microenvironments, fluid circulation and drainage in the context of brain metastases, as well as commenting on current cutting-edge experimental approaches used to investigate changes in vascular environments and alterations in specialised subsets of blood and lymphatic vessel cells during cancer spread to the brain. Full article
(This article belongs to the Special Issue The Biology of Cell Metastasis)
Show Figures

Figure 1

18 pages, 596 KiB  
Review
Exploring Hyperoxia Effects in Cancer—From Perioperative Clinical Data to Potential Molecular Mechanisms
by Anca Irina Ristescu, Crina Elena Tiron, Adrian Tiron and Ioana Grigoras
Biomedicines 2021, 9(9), 1213; https://doi.org/10.3390/biomedicines9091213 - 13 Sep 2021
Cited by 7 | Viewed by 3048
Abstract
Increased inspiratory oxygen concentration is constantly used during the perioperative period of cancer patients to prevent the potential development of hypoxemia and to provide an adequate oxygen transport to the organs, tissues and cells. Although the primary tumours are surgically removed, the effects [...] Read more.
Increased inspiratory oxygen concentration is constantly used during the perioperative period of cancer patients to prevent the potential development of hypoxemia and to provide an adequate oxygen transport to the organs, tissues and cells. Although the primary tumours are surgically removed, the effects of perioperative hyperoxia exposure on distal micro-metastases and on circulating cancer cells can potentially play a role in cancer progression or recurrence. In clinical trials, hyperoxia seems to increase the rate of postoperative complications and, by delaying postoperative recovery, it can alter the return to intended oncological treatment. The effects of supplemental oxygen on the long-term mortality of surgical cancer patients offer, at this point, conflicting results. In experimental studies, hyperoxia effects on cancer biology were explored following multiple pathways. In cancer cell cultures and animal models, hyperoxia increases the production of reactive oxygen species (ROS) and increases the oxidative stress. These can be followed by the induction of the expression of Brain-derived neurotrophic factor (BDNF) and other molecules involved in angiogenesis and by the promotion of various degrees of epithelial mesenchymal transition (EMT). Full article
(This article belongs to the Special Issue Epithelial-to-Mesenchymal Transition (EMT) in Cancer)
Show Figures

Figure 1

14 pages, 467 KiB  
Review
One-Carbon Metabolism Associated Vulnerabilities in Glioblastoma: A Review
by Kimia Ghannad-Zadeh and Sunit Das
Cancers 2021, 13(12), 3067; https://doi.org/10.3390/cancers13123067 - 19 Jun 2021
Cited by 17 | Viewed by 3455
Abstract
Altered cell metabolism is a hallmark of cancer cell biology, and the adaptive metabolic strategies of cancer cells have been of recent interest to many groups. Metabolic reprogramming has been identified as a critical step in glial cell transformation, and the use of [...] Read more.
Altered cell metabolism is a hallmark of cancer cell biology, and the adaptive metabolic strategies of cancer cells have been of recent interest to many groups. Metabolic reprogramming has been identified as a critical step in glial cell transformation, and the use of antimetabolites against glioblastoma has been investigated. One-carbon (1-C) metabolism and its associated biosynthetic pathways, particularly purine nucleotide synthesis, are critical for rapid proliferation and are altered in many cancers. Purine metabolism has also been identified as essential for glioma tumourigenesis. Additionally, alterations of 1-C-mediated purine synthesis have been identified as commonly present in brain tumour initiating cells (BTICs) and could serve as a phenotypic marker of cells responsible for tumour recurrence. Further research is required to elucidate mechanisms through which metabolic vulnerabilities may arise in BTICs and potential ways to therapeutically target these metabolic processes. This review aims to summarize the role of 1-C metabolism-associated vulnerabilities in glioblastoma tumourigenesis and progression and investigate the therapeutic potential of targeting this pathway in conjunction with other treatment strategies. Full article
(This article belongs to the Special Issue Novel Treatment Strategies for Glioblastoma)
Show Figures

Graphical abstract

21 pages, 1752 KiB  
Review
Therapeutic Uses of Bacterial Subunit Toxins
by Clifford Lingwood
Toxins 2021, 13(6), 378; https://doi.org/10.3390/toxins13060378 - 26 May 2021
Cited by 20 | Viewed by 7788
Abstract
The B subunit pentamer verotoxin (VT aka Shiga toxin-Stx) binding to its cellular glycosphingolipid (GSL) receptor, globotriaosyl ceramide (Gb3) mediates internalization and the subsequent receptor mediated retrograde intracellular traffic of the AB5 subunit holotoxin to the endoplasmic reticulum. Subunit separation and [...] Read more.
The B subunit pentamer verotoxin (VT aka Shiga toxin-Stx) binding to its cellular glycosphingolipid (GSL) receptor, globotriaosyl ceramide (Gb3) mediates internalization and the subsequent receptor mediated retrograde intracellular traffic of the AB5 subunit holotoxin to the endoplasmic reticulum. Subunit separation and cytosolic A subunit transit via the ER retrotranslocon as a misfolded protein mimic, then inhibits protein synthesis to kill cells, which can cause hemolytic uremic syndrome clinically. This represents one of the most studied systems of prokaryotic hijacking of eukaryotic biology. Similarly, the interaction of cholera AB5 toxin with its GSL receptor, GM1 ganglioside, is the key component of the gastrointestinal pathogenesis of cholera and follows the same retrograde transport pathway for A subunit cytosol access. Although both VT and CT are the cause of major pathology worldwide, the toxin–receptor interaction is itself being manipulated to generate new approaches to control, rather than cause, disease. This arena comprises two areas: anti neoplasia, and protein misfolding diseases. CT/CTB subunit immunomodulatory function and anti-cancer toxin immunoconjugates will not be considered here. In the verotoxin case, it is clear that Gb3 (and VT targeting) is upregulated in many human cancers and that there is a relationship between GSL expression and cancer drug resistance. While both verotoxin and cholera toxin similarly hijack the intracellular ERAD quality control system of nascent protein folding, the more widespread cell expression of GM1 makes cholera the toxin of choice as the means to more widely utilise ERAD targeting to ameliorate genetic diseases of protein misfolding. Gb3 is primarily expressed in human renal tissue. Glomerular endothelial cells are the primary VT target but Gb3 is expressed in other endothelial beds, notably brain endothelial cells which can mediate the encephalopathy primarily associated with VT2-producing E. coli infection. The Gb3 levels can be regulated by cytokines released during EHEC infection, which complicate pathogenesis. Significantly Gb3 is upregulated in the neovasculature of many tumours, irrespective of tumour Gb3 status. Gb3 is markedly increased in pancreatic, ovarian, breast, testicular, renal, astrocytic, gastric, colorectal, cervical, sarcoma and meningeal cancer relative to the normal tissue. VT has been shown to be effective in mouse xenograft models of renal, astrocytoma, ovarian, colorectal, meningioma, and breast cancer. These studies are herein reviewed. Both CT and VT (and several other bacterial toxins) access the cell cytosol via cell surface ->ER transport. Once in the ER they interface with the protein folding homeostatic quality control pathway of the cell -ERAD, (ER associated degradation), which ensures that only correctly folded nascent proteins are allowed to progress to their cellular destinations. Misfolded proteins are translocated through the ER membrane and degraded by cytosolic proteosome. VT and CT A subunits have a C terminal misfolded protein mimic sequence to hijack this transporter to enter the cytosol. This interface between exogenous toxin and genetically encoded endogenous mutant misfolded proteins, provides a new therapeutic basis for the treatment of such genetic diseases, e.g., Cystic fibrosis, Gaucher disease, Krabbe disease, Fabry disease, Tay-Sachs disease and many more. Studies showing the efficacy of this approach in animal models of such diseases are presented. Full article
Show Figures

Graphical abstract

32 pages, 4377 KiB  
Review
Noncoding RNAs in Glioblastoma: Emerging Biological Concepts and Potential Therapeutic Implications
by Uswa Shahzad, Stacey Krumholtz, James T. Rutka and Sunit Das
Cancers 2021, 13(7), 1555; https://doi.org/10.3390/cancers13071555 - 28 Mar 2021
Cited by 28 | Viewed by 4667
Abstract
Noncoding RNAs (ncRNAs) have emerged as a novel class of genomic regulators, ushering in a new era in molecular biology. With the advent of advanced genetic sequencing technology, several different classes of ncRNAs have been uncovered, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), [...] Read more.
Noncoding RNAs (ncRNAs) have emerged as a novel class of genomic regulators, ushering in a new era in molecular biology. With the advent of advanced genetic sequencing technology, several different classes of ncRNAs have been uncovered, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and piwi-interacting RNAs (piRNAs), which have been linked to many important developmental and disease processes and are being pursued as clinical and therapeutic targets. Molecular phenotyping studies of glioblastoma (GBM), the most common and lethal cancer of the adult brain, revealed that several ncRNAs are frequently dysregulated in its pathogenesis. Additionally, ncRNAs regulate many important aspects of glioma biology including tumour cell proliferation, migration, invasion, apoptosis, angiogenesis, and self-renewal. Here, we present an overview of the biogenesis of the different classes of ncRNAs, discuss their biological roles, as well as their relevance to gliomagenesis. We conclude by discussing potential approaches to therapeutically target the ncRNAs in clinic. Full article
(This article belongs to the Special Issue Targeted Therapies for the Treatment of Glioblastoma)
Show Figures

Figure 1

Back to TopTop